Quality in Primary Care Open Access

  • ISSN: 1479-1064
  • Journal h-index: 27
  • Journal CiteScore: 6.64
  • Journal Impact Factor: 4.22
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days

Abstract - (2016) Volume 24, Issue 1

Slacklining to facilitate rehabilitation in Traumatic Brain Injury 2 years post injury: A case study for lower limb weakness and balance and clonus

Dr. C Philip Gabel, PhD. PT, MSc*

Denise Krklec Bond University Physiotherapy Clinical Educator, Australia

Corresponding Author:
Dr. C Philip Gabel
Bond University Physiotherapy Clinical Educator
PO Box 760 Coolum Beach 4573, Australia
Tel: 61 408 481125; Work: 61 7 5446 1022 AH: 61 7 5473 9614
E-mail: cp.gabel@bigpond.com
Visit for more related articles at Quality in Primary Care

Abstract

Background: Slacklining, a complex neuromechanical composite-chain activity on a tightened band, uses whole-body dynamics to respond to external environmental changes. This enables self-developed response strategies for balance-retention through learning, neuroplastic changes and presynaptic downregulation of reflexes including Hoffman’s reflex. Composite chain activities hasten skill acquisition by providing challenges, uncommon in daily life or rehabilitation.

Methods: Case study examination of single and dual slacklining rehabilitation for a 42-year-old female, two years post traumatic brain injury (TBI) with affected balance, clonus, left-sided weakness, and fatigue (physical, cognitive, and psychosocial). Slacklining was introduced for 4-weeks (Figure 1) and effectiveness assessed through functional outcome status.

Results: Rehabilitation outcomes (Figure 2) included 2-month inpatient in a brain-injury rehabilitation unit (Pt#1- 2,ICU-wards); Outpatient rehabilitation 3-2xweekly over 16 months, followed by independent exercises and hydrotherapy (Pt#2-3); return to work commenced 1-year post-injury, gradually increasing from 4-18 hours over 12 months, with functional status unchanged (Pt#3-4). Increased work to 24-hours/week decreased hydrotherapy and exercises from fatigue and poor immunological status (Pt#4); remained working 24-hours/week, started slacklining 2-4xweek 10 minutes (Pt#5-baseline measure); after 3-weeks of slacklining function, balance and fatigue improved while clonus reduced (Pt#6). Status progressed with significant improvements in the ARGS, BESS and MFIS (student t-test, p<0.05)

Conclusions: These preliminary data indicate Slacklining has a notable effect on function post TBI. Slacklining as adjunct therapy to existing land/hydrotherapy exercises provides external stimulations that activate global-body responses and facilitate neuroplastic changes including pre-synaptic central down-regulation for some reflexes. This facilitated control, reduced neural fatigue and functional gains were quantifiable. Further research is required to determine therapy frequency and progression rates.