American Journal of Advanced Drug Delivery Open Access

  • ISSN: 2321-547X
  • Journal h-index: 22
  • Journal CiteScore: 9.36
  • Journal Impact Factor: 5.76
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days

Articles published in American Journal of Advanced Drug Delivery have been cited by esteemed scholars and scientists all around the world. American Journal of Advanced Drug Delivery has got h-index 22, which means every article in American Journal of Advanced Drug Delivery has got 22 average citations.

Following are the list of articles that have cited the articles published in American Journal of Advanced Drug Delivery.

  2021 2020 2019 2018 2017

Year wise published articles

31 18 25 9 14

Year wise citations received

253 232 219 180 151
Journal total citations count 1671
Journal impact factor 5.76
Journal 5 years impact factor 9.29
Journal cite score 9.36
Journal h-index 22
Journal Impact Factor 2020 formula
IF= Citations(y)/{Publications(y-1)+ Publications(y-2)} Y= Year
Journal 5-year Impact Factor 2020 formula
Citations(2016 + 2017 + 2018 + 2019 + 2020)/
{Published articles(2016 + 2017 + 2018 + 2019 + 2020)}
Journal citescore
Citescorey = Citationsy + Citationsy-1 + Citationsy-2 + Citations y-3 / Published articlesy + Published articlesy-1 + Published articlesy-2 + Published articles y-3
Important citations
CH, V., Goudanavar, P., & Inayathulla, A. A. NOVEL APPROACH TO PREPARE AND EVALUATE FRUIT PEEL EXTRACT BASED ON SILVER NANOPARTICLES.
PourShaban, M., Moniri, E., Safaeijavan, R., & Panahi, H. A. (2021). Kinetics, Isotherm and Adsorption Mechanism Studies of Letrozole Loaded Modified and Biosynthesized Silver Nanoparticles as a Drug Delivery System: Comparison of Nonlinear and Linear Analysis. Korean Chemical Engineering Research, 59(4), 493-502.
Adelere, I. A., & Lateef, A. (2016). The use of agro-wastes, enzymes and pigments.
Banu, R., Reddy, G. B., & Mangatayaru, K. G. (2020, October). Catalytic and antibacterial activity of microwave-assisted synthesis of silver nanoparticles using punica granatum peel extract. In AIP Conference Proceedings (Vol. 2269, No. 1, p. 030074). AIP Publishing LLC.
ADELERE, I., & LATEEF, A. Nanotechnology Reviews’ Just Accepted’paper ISSN (online) 2191-9097.
Panta, R., & Shrestha, S. (2018). Chemical Synthesis of Silver Nanostructure: Size Dependent Electronic Properties. Journal of Nepal Chemical Society, 38, 1-7.
Dutta, T., Chattopadhyay, A. P., Ghosh, N. N., Khatua, S., Acharya, K., Kundu, S., ... & Das, M. (2020). Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies. Chemical Papers, 74, 4089-4101.
Kareem, P. A. (2018). Silver Nanoparticles Synthesized by Using Matricaria chamomilla Extract and Effect on Bacteria Isolated from Dairy Products. Diyala Journal For Pure Science, 14(4).
Foujdar, R., Chopra, H. K., Bera, M. B., Chauhan, A. K., & Mahajan, P. (2021). Effect of Probe Ultrasonication, Microwave and Sunlight on Biosynthesis, Bioactivity and Structural Morphology of Punica granatum Peel’s Polyphenols-Based Silver Nanoconjugates. Waste and Biomass Valorization, 12(5), 2283-2302.
Mohammad, D. A. E., & Al-Jubouri, S. H. K. (2019). Comparative antimicrobial activity of silver nanoparticles synthesized by Corynebacterium glutamicum and plant extracts. Baghdad Science Journal, 16(3 Suppl.), 689-696.
Vinay, C. H., Goudanavar, P., & Acharya, A. (2018). Development and characterization of pomegranate and orange fruit peel extract based silver nanoparticles. Journal of Manmohan Memorial Institute of Health Sciences, 4(1), 72-85.
Jaradat, A. A. A. R. (2018). Effectiveness of Plants Fiber Impregnated with Green Nanoparticles for Water Disinfection.
Fatthallah, N. A., Mansour, N. A., Mohamed, M. G., & Mazrouaa, A. M. (2017). Susceptibility of Biosynthesis Silver Nanoparticles on the Antimicrobial Potential of Poly N-vinylpyrrolidone. International Journal of Microbiology and Biotechnology, 2(2), 106.
Castro Batioja, K. A. (2018). Elaboración de nanopartículas de plata vía síntesis y compuestos orgánicos de púnica granatum y catálisis bacteriana de escherichia coli, staphylococcus aureus y aspergillus niger (Bachelor's thesis, Universidad de Guayaquil, Facultad de Ingeniería Química).
Basumatari, M., Devi, R. R., Gupta, M. K., Gupta, S. K., Raul, P. K., Chatterjee, S., & Dwivedi, S. K. (2021). Musa balbisiana Colla pseudostem biowaste mediated zinc oxide nanoparticles: Their antibiofilm and antibacterial potentiality. Current Research in Green and Sustainable Chemistry, 4, 100048.
Kushwah, M., Bhadauria, S., Singh, K. P., & Gaur, M. S. (2019). Antibacterial and Antioxidant Activity of Biosynthesized Silver Nanoparticles Produced by Aegle marmelos Fruit Peel Extract. Analytical Chemistry Letters, 9(3), 329-344.
Ranjithkumar, R., CK, S. K., Sharmila, C., & Simi, V. (2015). Green synthesis of silver nanoparticles using graviola leaf aqueous extract at room temperature. Kongunadu Research Journal, 2(2), 6-10.
Fawcett, D., Brundavanam, S., & Poinern, G. E. J. (2018). The biogenic synthesis of silver nanoparticles as a method for recovering silver from secondary sources using extracts from indigenous Australian plants. Silver recovery from assorted spent sources: toxicology of silver ions, 103.
Ullah, M. N., Umer, A., Aadil, M. A., Rehman, F., & Ramzan, N. (2017). Plant-based synthesis of silver nanoparticles and their characteristic properties. Bioinspired, Biomimetic and Nanobiomaterials, 6(1), 20-36.
Izadi, A., Safaeijavan, R., Moniri, E., & Alavi, S. A. (2018). Green synthesis of Iron oxide nanoparticles using carum carvi L. and modified with chitosan in order to optimize the anti-cancer drug adsorption. Int. J. Bio-Inorg. Hybr. Nanomater, 7(1), 71-78.