Gynecology & Obstetrics Case report Open Access

  • ISSN: 2471-8165
  • Journal h-index: 7
  • Journal CiteScore: 0.44
  • Journal Impact Factor: 1.86
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days


Preoperative Molecular Subtype Classification Prediction of Ovarian Cancer Using Multi-Sequence Feature Fusion Network-Based Multi-Parametric AMRI

Agnieszka Socha

Ovarian cancer is one of the most lethal gynecologic malignancies, largely due to its late diagnosis and heterogeneous nature. Understanding the molecular subtypes of ovarian cancer is critical for personalized treatment and improving patient outcomes. Traditional biopsy methods, while informative, are invasive and sometimes not feasible preoperatively. Advanced imaging techniques combined with machine learning offer a promising non-invasive alternative for molecular subtype classification. In this context, the use of Multi-Sequence Feature Fusion Network-Based Multi-Parametric Apparent Magnetic Resonance Imaging (AMRI) presents a groundbreaking approach.

Published Date: 2024-03-29; Received Date: 2024-03-02