Journal of the Pancreas Open Access

  • ISSN: 1590-8577
  • Journal h-index: 80
  • Journal CiteScore: 29.12
  • Journal Impact Factor: 19.45*
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +44 7460731551

Abstract

IL-1beta-Induced iNOS Expression, NO Release and Loss in Metabolic Cell Viability Are Resistant to Inhibitors of Ceramide Synthase and Sphingomyelinase in INS 832/13 Cells

Rajakrishnan Veluthakal, Giridhar Rao Jangati, Anjaneyulu Kowluru

Context Emerging evidence indicates regulatory roles for ceramide in the metabolic dysfunction of the islet beta cell. Recently, potential similarities between IL-1beta and ceramide on their effects on islet beta cell have been reported, including reduction in mitochondrial membrane potential and loss in metabolic cell viability.Objective Herein, we investigated whether IL-1beta-induced nitric oxide synthetase (iNOS) expression, nitric oxide (NO) release and loss in metabolic cell viability require ceramide biosynthesis either via the activation of sphingomyelinase or ceramide synthase.Setting Insulin-secreting INS 832/13 cells.Results We found that two structurally-distinct inhibitors of sphingomyelinase activation (e.g., 3-O-methylsphingomyelin or desipramine) or ceramide biosynthesis inhib-itor (e.g., fumonisin) failed to exert clear effects on IL-1beta-induced iNOS expression, NO release and loss in cell viability.Conclusions Taken together, our findings indicate that neither the sphingomyelinase nor the ceramide synthase activation is required for IL-1beta-induced metabolic abnormalities in insulin-secreting INS 832/13 cells.