Polymer Sciences Open Access

  • ISSN: 2471-9935
  • Journal h-index: 9
  • Journal CiteScore: 3.80
  • Journal Impact Factor: 4.55
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

3D Pharming: Direct Printing of Personalized Pharmaceutical Tablets

Giovanny F. Acosta-Velez1,Benjamin M. Wu2,3

Personalized medicine aims to tailor drug combination and dosage manufacturing to the specific needs of a patient by taking into consideration its genetic profile, phenotypic response, and pathophysiology. New technologies are needed to enable the rapid manufacturing of custom pharmaceutical tablets in a scalable manner, while meeting quality assurance regulatory standards. 3D Pharming, the use of 3D Printing to directly fabricate personalized pharmaceutical tablets, is under intense development by many investigators due to its unprecedented control for: 1) stability of multiple drugs within a pill; 2) precise dose of each drug; and 3) release kinetics of each component by incorporating designed structures that can modulate dissolution and diffusion profiles. Additionally, it has the potential to scale in order to meet the economics and quality that the pharmaceutical industry demands. This article reviews the manufacture of pharmaceutical tablets through powder bed inkjet 3D printing and fused deposition modelling, the two 3D printing techniques with the greatest progress towards personalized pharmaceutical tablets. The engineering of pills through these two methods, featuring varied dissolution profiles, chemical complexions, dosages, and multiple drugs incorporation, is thoroughly discussed.