Insights in Biomedicine Open Access

  • ISSN: 2572-5610
  • Journal h-index: 8
  • Journal CiteScore: 1.77
  • Journal Impact Factor: 0.76
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

Biological Principles of Nanostructured Hydroxyapatite Associated With Metals: A Literature Review

Filho MPC, Barreto MA, Maia MC and Vale DS

The aim of this paper is to present, in the light of literature, a comprehensive review, by reviewing the literature related to bone grafts, biomaterials (BM) and nanotechnology containing five metals (Zn, Fe, Sr, Mg and Mn) with a view of an unprecedented experimental research support evaluation of the biocompatibility of these materials for human implantation. The BM market for graft indicates a trend of using synthetic materials, to the detriment of those of biological origin, ease of its large-scale production, reproducibility, doping structure and control of their physical, chemical and morphological characteristics, enabling the association with growth factors. Understanding the bone structure and its interaction with the human body are grounds factors for the development of new research. In this context, pure hydroxyapatite (main component of bone) lacks adequate biological properties because it shows high solubility and rapid incorporation of time while the materials are on the market have only osteoconductive properties, ie still not known any with ideal property. Was performed with a bibliographic levamento bone substituitos descriptor, biocompatibility and metals involved (Mg, Sr, Zn, Fe, Mn) in Bireme databases, Medline, and lilacs, which were initially selected and journals 135 on the subject. After further screening, they remained 69 that are part of this review. The international consensus pointing hidroxipatita as a base material for bone grafting biomaterials in humans, however, alone, possesses rapid incorporation requiring doped with one or more structures to achieve satisfactory results. The Bicompatibilidade, biodegradability and osteocondutibilidade are basic characteristics of BM as well, based on these principles, translational research in the implant area has evolved, seeking changes at the molecular level bringing new attributes to BM and consequently.