

Archives in Chemical Research

ISSN: 2572-4657

Open access Opinion

The Harmful Effects of Carbon Monoxide on the Humans

Mohammed Furgan*

Department of Physics, Ibb University, Yemen

INTRODUCTION

Carbon monoxide (CO) is an uninteresting gas with no scent. It is emitted by a variety of ignition sources, including as engine vehicles, power plants, out-of-control fires, and incinerators, and arises from the inadequate combustion of carbon-containing materials such combustible gas, fuel, or wood. The majority of CO emissions into the surrounding air that occur in the open come from a variety of sources, particularly in metropolitan areas. Similarly, methane and non-methane hydrocarbons, other unstable natural hydrocarbons in the air, and natural atoms in surface waters and soils can all frame carbon monoxide through photochemical reactions in the air.

DESCRIPTION

Additionally, there are other indoor sources of CO that combine to increase openness. Air toxins are a concern for air quality monitors because they could reasonably be expected to put public health and government support at risk. There is strong evidence that CO can have a negative impact on health, participate in barometric reactions that lead to ozone air pollution, and contribute to environmental change. Because it binds to hemoglobin in the blood and reduces the blood's ability to carry oxygen, carbon monoxide is harmful. This interferes with the delivery of oxygen to the body's organs. The most well-known effects of CO exposure include fatigue, headaches, confusion, and drowsiness because the lack of oxygen to the brain causes these symptoms.

Transient CO exposure can also worsen cardiovascular disease patients' already reduced ability to respond to the increased oxygen demands of exertion, activity, or stress. Chest pain and reduced exercise resistance are caused by insufficient oxygen delivery to the heart muscle. Children who are stillborn and whose mothers have high levels of CO openness during pregnancy are at risk for negative formative effects. Pregnant women, newborns, elderly people and anyone with iron deficiency or a history of heart or respiratory disease are likely to experi-

ence health effects from exposure to elevated CO levels.

The amount of oxygen that can be transported to vital organs including the heart and brain when breathing air with a high CO centralization is decreased. At extremely high concentrations, which are possible indoors or in other enclosed environments, CO can lead to shakiness, agitation, obviousness, and death. Extremely high CO levels are unlikely to occur outside. However, when CO levels are elevated outside, people with certain types of cardiovascular sickness may have particular concerns. In situations where the heart needs more oxygen than usual, these people currently have a reduced ability to get oxygenated blood to their souls. They are especially powerless to fend against the effects of CO when exercising or under increased pressure. In these conditions, a brief exposure to elevated CO may result in decreased cardiac oxygenation and angina, which is chest pain [1-4].

CONCLUSION

When breathed in, carbon monoxide is extremely dangerous to human health. It reduces the blood's ability to carry oxygen throughout the body. The effects of carbon monoxide on health can differ depending on levels of openness. Carbon monoxide may produce headaches, fatigue or impaired engine performance at low levels of exposure. Carbon monoxide can induce confusion, chest pain, blurred vision, and difficulty thinking at high concentrations or after a prolonged period of exposure. Finally, exposure to carbon monoxide at very high amounts can cause seizures, unconsciousness, or even death.

ACKNOWLEGEMENT

None

CONFLICT OF INTEREST

Authors declare no conflict of interest

Received: 01-June-2022 Manuscript No: IPACRH-22-13932 Editor assigned: 03-June-2022 **PreQC No:** IPACRH-22-13932 (PQ) **Reviewed:** 17-June-2022 QC No: IPACRH-22-13932 22-June-2022 Manuscript No: IPACRH-22-13932 (R) **Revised: Published:** 29-June-2022 DOI: 10.21767/2572-4657.6.3.13

Corresponding author Mohammed Furqan, Department of Physics, Ibb University, Yemen, E-mail: furqan_md33@gmail.com

Citation Furgan M (2022) The Harmful Effects of Carbon Monoxide on the Humans. Arch Chem Res. 6:13.

Copyright © Furqan M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Furqan M.

ACKNOWLEGEMENT

None

CONFLICT OF INTEREST

Authors declare no conflict of interest

REFERENCES

1. Wallace JL, Ianaro A, De Nucci G(2017) Gaseous mediators in gastrointestinal mucosal defense and injury. Dig Dis Sci

62:2223-2230.

- Adach W, Olas B (2019) Carbon monoxide and its donors-their implications for medicine. Future Med Chem 11:61-73.
- 3. Kawashima A, Oda Y, Yachie A, Koizumi S, Nakanishi I (2022) Heme oxygenase-1 deficiency: The first autopsy case. Hum Pathol 33:125-130.
- 4. Motterlini R (2007) Carbon monoxide-releasing molecules (CO-RMs): Vasodilatory, anti-ischaemic and anti-inflammatory activities. Biochem Soc Trans 35:1142-1146.