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is solved using Zimmerman’s technique through hyperbolic 
membership function. Also, the nonlinear terms occurring in 
the Zimmerman’s procedure are linearalised to marginalize the 
intricacy. A numerical example is given for better understanding 
of the technique.

Fuzzy Multi-objective Nonlinear Program-
ming Problem (FMONLPP)
We consider fuzzy multi objective nonlinear programming 
problem with trapezoidal fuzzy coefficients as follows

Max j
p j pj jZ c x α= ∑

 		                                        p=1, 2…q

. . ij jj
s t a x b≤∑ 

   i=1,2…m          			                 (2.1)
1
ija  pjc and  are in the above relation are in trapezoidal form as 
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Now the FMONLPP can be transformed to a MONLPP by applying 
the Rouben’s ranking function R as below. 
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p pj jj
Max R Z R c xα   =   

   
∑ 				    p = 1, 2…q

Introduction
The real world problems with multiple conflicting objectives are 
more conveniently modeled into multi-objective programming 
problems. Further, when the parameters are imprecise numerical 
quantities, it is very much appropriate to implement fuzzy 
quantities for modeling these situations. In 1970, Bellmann 
and Zadeh introduced the concept of fuzzy quantities in 
decision making. Authors like H.R. Maleki, A. Ebrahimnejad 
et al., P. Fortemps et al., H. Zimmerman have introduced fuzzy 
programming approach to solve crisp multi-objective linear 
programming problem. In 1981, Leberling used a nonlinear 
membership function in form of hyperbolic function for solving 
linear programming problem. In 1991, Dhingra et al. introduced 
exponential, quadratic and logarithimic membership functions 
for optimal designing problems. In 1997, R. Verma et al. used 
the fuzzy programming technique based on some nonlinear 
membership function to solve fuzzy MOLPP. R. B. Dash et al. 
used defuzzification through ranking function and Zimmerman’s 
technique based on trapezoidal membership function for solving 
fuzzy MOLPP. P. Rath et al. used exponential and hyperbolic 
membership functions in Zimmerman’s technique to solve 
fuzzy MOLPP. Recently P. Rath et al. extended the idea of their 
paper and solved fuzzy multi-objective nonlinear programming 
problem (FMONLPP) through exponential membership function 
[1-17]. In this paper, after defuzzification of FMONLPP, the 
resulting nonlinear multi-objective programming problem 
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Where , ,ij i ja b c′ ′ ′  are real numbers corresponding to the fuzzy 
numbers 

~ ~ ~
, ,ij ij ija b c   with respect to the exponential function 

respectively and the Rouben’s ranking function is given below. 

Rouben’s ranking function
The ranking function suggested by F. Rouben is defined by

1 1( ) ( ( ))
2 2

L vR a a a β α= + + −

where ( , , , )L L v va a a a aα β= − +

Lemma 1

The optimum solutions of (2.1) and (2.2) are equivalent.

Proof

Let M1, M2 be set of all feasible solutions of (2.1) and (2.2) 
respectively.

Then x ϵ M1

~ ~
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(By applying the Rouben’s ranking function)		      i=1, 2…m
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Converse can be proved similarly.

Thus, M1=M2

Let x* ϵ X be the complete optimal solution of (2.1).

Then ( ) ( )
~ ~

*
p pZ x Z x≥ for all x ϵ X, where X is the set of feasible 

solutions.
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Modified fuzzy programming technique
We modified the Zimmermann’s technique using hyperbolic 
membership function in order to solve multi-objective nonlinear 
programming problem (2.2).

Step-1:

The multi-objective linear programming problem is solved by 
considering one objective at a time and ignoring all others. The 
process is repeated q times for q different objective functions.

Let X1, X2,…Xq be the ideal situations for the respective functions.

Step-2:

A pay-off matrix of size q by q is formed using all the ideal solutions 
of step-1. Then from pay-off matrix lower bounds (Lp) and upper 
bounds (Up) of the objective functions are obtained.

Thus p p pL Z U′≤ ≤ 			     	    p=1, 2,…q

Step-3:

Using hyperbolic membership function, an equivalent crisp model 
for the fuzzy model can be formulated as follows:

Min λ

{((U L )/2) Z (x) } {((U L )/2) Z (x) }

{((U L )/2) Z (x) } {((U L )/2) Z (x) }
1 1
2 2

p p p p p p p p

p p p p p p p p

e e
e e

α α

α αλ
+ − − + −

+ − − + −

−
≤ +

+

 	    p=1, 2…q

pj j ia x b′ ′≤∑ 					        i=1, 2...m

0, 0jxλ ≥ ≥ 					          j=1, 2…n

After simplification, the above problem reduces to

Min 1mnx +

Subject to

( )1( ) 2p p mn p p pZ x x U Lα α++ ≥ + 		      p=1, 2…q

j ipj
a x b′ ′≤∑ 				    	    i=1, 2...m

xj ≥0,	  				                         j=1, 2…n

1 0mnx + ≥

Where -1
1 tan  (2 1)mnx h λ+ = −

Step-4:
The crisp model is solved and the optimal compromise solution 
is obtained. The values of objective functions at the compromise 
solution are obtained.
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Numerical example
~ ~ ~ ~

2
1 1 2 1:  ( ) 2 3 2Max Z x x x x= + −
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Using ranking function, the problem reduces to 
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1 1, 0x x ≥

2
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1 2.   1.1 3.9 3.8s t x x+ ≤

1 21.1 1.1 2.1x x+ ≤

Solving (3.2) and (3.4) by Wolf’s method we get

1 2
539 503870.3637,  0.8718

1482 257798
x x= = = =

Solving (3.3) and (3.4) by Wolf’s method, we get

1 2
9 17360.1837,  0.9226
49 1911

x x= = = =

The pay-off matrix of Lower Bounds (L.B.) and Upper Bounds 
(U.B.) of the objective functions 1Z ′  and 2Z ′  is  given below

          Function		      LB		                       UB

	 2Z ′ 		  3.0655			   3.00770

	 2Z ′ 		  3.8065			   3.9653

The crisp model can be formulated as 

Min 3x
Subject to

( ) ( )2 2 3 2 2 2 2Z x x U Lα α+ ≥ +

( ) ( )2 2 3 2 2 2 2Z x x U Lα α+ ≥ +

pj j ia x b′ ′≤∑

1,2...nj = 				                                (3.5)

1,2...nj =

Putting the values of Zi, Ui, Li, i=1,2, we get

Min 3x
s.t.

2
1 2 1 32.2389 3.0109 3.7830 3x x x x+ − + ≥

2
1 2 1 32.2389 3.0109 3.7830 3x x x x+ − + ≥

1 21.0 1.1 2.1x x+ ≤  			                               (3.6)

1 21.0 1.1 2.1x x+ ≤

1 2 3, , 0x x x ≥

Due to presence of non-linear term 2
1x in the constraint (3.6), the 

problem becomes too complex to solve. To avoid the situation 
taking advantage of 
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10.1837 0.3637x≤ ≤

We linearize 2
1x as follows.

2 2 2 2 2
1 10 10 11 11 12 12 13 13x a x a x a x a x= + + +

Where 

		  12 0.3037x =

		  12 0.3037x =

		  12 0.3037x =

		  13 0.3637x =
Then the problem (3.6) reduces to 

Min: 3x
s.t.

( )2 2 2 2
1 2 10 10 11 11 12 12 13 13 32.1490 2.8330 1.8560 3x x a x a x a x a x x+ − + + + + ≥

( )2 2 2 2
1 2 10 10 11 11 12 12 13 13 32.2389 3.0109 3.7830 3x x a x a x a x a x x+ − + + + + ≥

1 21.1 3.9 3.8x x+ ≤ 				                (3.7)
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1 2 10 11 12 13, , , , , 10x x a a a a ≥

1 2 10 11 12 13, , , , , 10x x a a a a ≥  

Solving (3.7) the optimal solution of the problem is obtained as:
*
2 0.9243x =
*
2 0.9243x =

Now the optimal value of the objective functions of FMOLPP (4.1) 
becomes

( ) ( ) ( )
( )

2

2
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* * * *
1 1 2 1

* * *
1 2 1

2 3 2
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Z x x x

x x x

= + −

+ −

( ) ( ) ( )
( )

2

2

~ ~ ~
* * * *
2 1 2 1

* * *
1 2 1

3 4 5
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Z x x x

x x x
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+ −

The membership functions corresponding to the fuzzy objective 

functions are as follows.
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0.1248
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Conclusion
The closeness of the result of the numerical example of this paper 
with that of the previous paper [17] confirms that the method 
given in this paper is an alternative way of solving fuzzy multi-
objective nonlinear programming problem.
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