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Abstract
The structural equation model is proposed for constructing risk scores for 
cardiac surgical patients, in view of the perioperative nature of risk-scoring 
and the complexity in data structures. The decision trees could be applied for 
model selection, in terms of identification of relevant predictors and variable 
discretization. The pitfalls of the conventional methodology, based on logistic 
regression for estimation and prediction, Hosmer-Lemeshow test for goodness of 
fit and c-statistics for assessment of predictive accuracy, are also discussed.
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Introduction
Constructing risk scores for cardiac surgical patients commands 
a high level of intellectual attention, fueled in part by its multi-
disciplinary nature and the ever-emerging evidence from cardiac 
research. The search for an “ideal” model is earnestly pursued 
as a clinical and methodological undertaking, but the recent 
developments in statistics and data science have not been 
appropriately infused into the endeavour. While the celebrated 
EuroSCORE II, STS and ACEF [1-3] scores continue to serve the 
needs of the scientific community, it is timey to re-examine the 
underlying methodological issues and to shed light on the pitfalls 
of the current practice, which even the most recent reference 
fails to address [4]. 

The abovementioned scores are developed with the conventional 
statistical approach. The underlying model is binary logistic 
regression (logit), given that the outcome of primary interest 
is mortality status (survived/dead) at a specific end-point. 
Constructed with the Binomial distribution and estimated with 
the maximum-likelihood technique [5], the estimated coefficients 
(interpreted as odds ratios), which quantify the contribution of 
their respective predictors with reference to the sign, magnitude 
and significance, are promised to be “best asymptotically 
normal”. This means that all statistical inferences, say finding 
the probability-values and constructing the confidence intervals, 
could be facilitated with the familiar normal distribution. A 
forward-selection, backward-elimination or a stepwise procedure 
is often implemented to search for the “optimal” set of predictors 
that could best predict the mortality status jointly. The variable-

selection process also helps to ascertain how a quantitative 
predictor is associated with mortality (linearly or non-linearly), 
and to identify its optimum cut-off point with the Receiver 
Operating Characteristic (ROC) Curve [6]. The goodness-of-fit and 
calibration of the chosen model is examined with the Hosmer-
Lemeshow test (H-L test) [7] and its discriminatory power or 
predictive accuracy with the area under the ROC (AUC) curve or 
c-statistics. The finalized equation is translated into a risk score 
for prediction.

Methods
Thus, there are two integrated tasks in risk-scoring construction: 
model building and model assessment. The main issue of 
model building concerns the selection and assessment of the 
role of individual predictors. In model assessment, the joint 
performance of the selected predictors is scrutinized, with the 
score’s predictive accuracy taking the center stage. The advocated 
practice is to construct a score with the most-updated medical 
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evidence augmented with a sound clinical interpretation, and to 
let the “data speak for themselves”. An acceptable model is one 
that could predict the outcome accurately, based on carefully-
selected predictors and precisely-estimated coefficients. 
However, an important feature concerning the role of predictors 
in the context of cardiac surgery has been overlooked. The 
predictors in the logit are assumed to be independent. While 
this facilitates interpretation, it fails to reflect the underlying 
complexity of the inter-relationships among the predictors in 
action. As such, it could only provide a partial picture on how each 
predictor is associated with the mortality status. For example, old 
age could be associated with arterial stiffness and left ventricular 
diastolic function [8], which in turn translated into a higher risk of 
death. The influence of age on death could be direct (measured 
as an independent predictor) and indirect—manifested through 
arterial stiffness and left ventricular diastolic function. While age, 
arterial stiffness and left ventricular diastolic function are baseline 
predictors, they are not mutually independent in the logical 
sense. In the context of logit and all conventional regression 
models, this problem might be highlighted as multicollinearity, 
which needs to be rectified before the final model is derived. 
However, the very fact that multicollinearity is often detected 
suggests that it is a matter of fact that a considerable number of 
predictors are correlated by nature. It is an undeniable nature of 
the issue under investigation. The common practice could be to 
omit of some of these correlated predictors, but this would result 
in model distortion, lack of fit and loss of information. 

A related issue is the application of intraoperative factors 
in predicting the mortality status. One good example is the 
cardiopulmonary bypass (CPB) time. The vast majority of Coronary 
Artery Bypass Graft (CABG) operations are now performed under 
CPB to take advantage of a motionless and bloodless operative 
field. However, CPB is not free from side effects and postoperative 
complications [9], and the extra-corporeal circulation could 
stimulate an inflammatory response [10], possibly owing to the 
blood’s exposure to abnormal shearing forces and contact with 
the artificial surfaces of the bypass circuit [11-13]. It follows 
that patients’ risk could be amplified with the duration of such 
exposure. A risk score that ignores the CPB time and depends 
solely on preoperative factors would thus be inadequate. As such, 
to better predict the mortality status, the score should factor in 
intraoperative factors (including aortic cross-clamp time), which 
could also in turn be analyzed with relevant preoperative factors 
(e.g., operation-related factors such as urgency of operation). The 
intraoperative factors are variables that play a dual role in the risk 
score: as predictors of mortality status and as outcomes of the 
preoperative factors. 

But the conventional logit could not cope with the sequential 
nature of these predictors. Having the preoperative and 
intraoperative predictors listed side by side in the logit effectively 
distorts their natural sequential order. This might result in the 
detection of multicollinearity and thus generating an erroneous 
interpretation of the results, in particular how each predictor 
affects the outcome. 

A more complete risk score should involve relevant postoperative 
outcomes that are expected to affect the mortality status. These 
include prolonged mechanical ventilation, prolonged intensive 
care stay, prolonged hospital stay, the needs for re-operations 
and re-admissions, and the development of complications. Again, 
these factors must be considered in the risk score according to 
their sequential nature. The model must be able to consider them 
as predictors of death (ultimate outcome), and as outcomes to 
be predicted by relevant preoperative and intraoperative factors. 
A risk score is only reasonable, useful and comprehensive if it 
is perioperative in nature, as the occurrence of death could be 
explained by preoperative, intraoperative and postoperative 
factors acting individually and jointly, directly and indirectly. 

To overcome the problems outlined above and to facilitate a 
more comprehensive and fruitful analysis involving correlated 
and sequentially-arranged predictors, the structural equation 
model (SEM) [14] is recommended. Constructed with an 
underlying covariance matrix, SEM differs from the conventional 
regression models in terms of its unique set-up. It could offer 
more in terms of hypothesis testing and interpretation, and the 
much needed flexibility in accommodating the preoperative 
predictors with the intraoperative factors and postoperative 
outcomes. One does not have to build k separate models with 
k outcomes, as SEM could accommodate all variables in a single 
analytical setting and allows the model-builder to specify the 
sequential ordering of the predictors. It is effectively a system 
of related equations that enables multiple outcomes of mixed 
types (qualitative and quantitative) be handled concurrently, and 
without making unrealistic assumptions (e.g., independence of 
predictors) required in conventional models. In the event when 
there are correlated predictors a sub-model is built. As such, the 
risk prediction model is made up of several sub-models based on 
the number of intermediate and final outcomes, and each could 
be interpreted separately. 

It is helpful to visualize the proposed modelling strategy in the 
form of a path diagram (Figure 1), which is an integral part of 

Figure 1 A generic path diagram for cardiac risk-scoring 
construction.
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SEM. It depicts all the data interrelationships involved. For 
example, PreOP→IntraOp indicates that an analysis is performed 
for ascertaining the effects of preoperative factors (say creatinine 
clearance, left ventricular ejection function, PA systolic pressure 
as in EuroSCORE II) on intraoperative factor (say CPB time). The 
preoperative factor is in turn predicted with demographics (e.g., 
age, gender), which are hypothesized to have a direct effect on 
the intraoperative factors, postoperative outcomes and mortality 
as well. The preoperative factor constitutes a sub-model within 
the entire network, so are the intraoperative factors and 
postoperative outcomes. It is crucial to consider the directions 
of the arrows. It makes no sense to consider PostOp→IntraOp, 
as this violates the temporal ordering of the postoperative 
outcomes and intraoperative factors. Neither is it logical to have 
PreOp→Demo as it is absurd to test whether prevalence of kidney 
failure could explain gender. Figure 1 is a simplified path diagram 
for facilitating discussion, as a box must be specified for a specific 
predictor in actual practice. In a nutshell, a risk score constructed 
with gSEM enables one to apply preoperative factors to predict 
all relevant intraoperative and postoperative outcomes of the 
cardiac surgery, thus producing a more consolidated, realistic and 
useful result in prediction.

In passing, note that SEM is not a new endeavour; it is 
overlooked in medical research but has been successfully applied 
in cardiovascular research in recent years [15-17]. The latest 
member of SEM is the generalized SEM (gSEM) [18], which serves 
to generalize all known parametric models (e.g., generalized 
linear model, generalized estimating equations, generalized 
linear mixed model and time-to-event analysis). The specific 
choice of the underlying probabilistic distributions is determined 
in accordance with the nature of the outcomes considered in the 
model. In the case of a binary outcome, the Binomial distribution 
is appropriate and the generated coefficients are transformed as 
odds ratios. For counts, an appropriate distribution is Poisson, 
with the coefficients exponentiated as incidence rate ratios. 
For continuous outcomes the choice depends on whether they 
are bell-shaped (Normal), bounded (Beta) or skewed (Inverse 
Gaussian or Gamma). In time to event analysis the choice could 
be Weibull and the estimated coefficients are hazard ratios. The 
gSEM routine and commands are available in popular software 
packages such as R and Stata. The sample size calculation, 
however, remains a tricky issue given the complexity but a useful 
reference is available in literature [19].

With the help of gSEM a more complicated study design could 
be accommodated. While the well-cited risk scores consider 
mortality at some end point, it is possible to consider a 
longitudinal design where the mortality status is monitored in 
more than one periods, say at 30 days, 31-90 days, 91-365 days 
and beyond. This would call for the application of a multi-level 
gSEM [18], which could ascertain the possible change in outcome 
over the periods explicitly. From a clinical point of view, this could 
be more informative than considering the mortality status as at 
some end point.

The issue of variable-selection is discussed next. This is a much 
trickier issue than the current literature might suggest. It involves 
not only the selection of specific predictors but how they should 
be featured in the risk score. For example, LV function, renal 
dysfunction based on dialysis and creatinine clearance and PA 
systolic pressure are discretized in EuroSCORE II, and so is serum 
creatinine in determining the ACEF score. The discretization does 
not necessarily result in loss of information as the conventional 
wisdom might suggest [20]. As the ultimate aim is to construct 
an accurate risk score it makes sense to discretize some 
quantitative predictors meaningfully, in view of the fact that the 
risk of death might not be uniform with a unit increase in such 
predictors [21]. For example, the risk of death might be different 
for patients in different age groups, as shown in the STS score. 
Failing to recognize this might reduce the accuracy in prediction. 
While locating a cut-off with the ROC curve is legitimate, it is not 
ideal on the very fact that only one cut-off is allowed, even if it 
is optimal with respect to the sensitivity and specificity. There 
is no reason to believe that there should be only one cut-off. A 
more practical approach is not to make any assumption on the 
number of potential cut-offs but implement a multi-way splitting 
decision tree, i.e., Chi-square Automatic Interaction Detector 
(CHAID) [22], to determine what are the cut-off(s). With the 
help of chi-square test and analysis of variance, CHAID identifies 
the cut-off(s) by objectively considering how the quantitative 
predictors should be merged to better predict the outcome of 
interest. Moreover, CHAID is a multivariate technique that could 
handle multiple predictors. The model-builder should devote his 
time and effort to interpret the generated cut-off(s), to make the 
necessary refinement and to explain the results with justification. 
It is also worth noting that decision trees are constructed mainly 
for uncovering relationships among variables and is thus an 
indispensable tool for variable selection. Once the predictors and 
their cut-offs/splitting points are identified they are considered in 
the gSEM for model estimation. In fact, one could apply decision 
trees for constructing a risk score directly, although they do not 
possess the statistical properties of logit and gSEM. The product 
of a decision tree is a rule-based decision in the “if-then” format, 
rather than a p-value for ascertaining statistical significance.

Conclusion and Discussion
The final issue highlights the pitfalls of logit, H-L test and ROC 
despite their widespread use. In the context of rare events a logit 
based on maximum likelihood estimation could underestimate 
the odds ratios and the probability of event (say death), given 
that the model is dominated by the overwhelming number of 
non-events. The degree of bias depends on the number of cases 
in the less frequent category of outcome under investigation. 
This is certainly a serious problem as the incidence of death 
after cardiac surgery is greatly reduced, thanks to advancement 
in skills and technology. The solution to reduce such bias is to 
apply the Firth logit [23] and related method [24], but a more 
careful analysis of how death occurred is desired. It is certainly 
not a good practice to consider a composite outcome in order 
to achieve a bigger number, as it masks the sequential nature 
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of death and other postoperative outcomes discussed above. It 
is a well-known fact that the H-L test is sensitive to the choice 
of groupings (g) for comparing the actual and expected number 
of events (say death), and it can be demonstrated that the 
conclusion concerning the model’s goodness of fit could change 
drastically with a different g. Despite adhering to the guideline 
that g should be higher than the number of predictors involved-a 
much ignored advice in practice-the problem remains. Adding a 
non-significant predictor could increase the p-value of the test, 
thereby giving a wrong impression that the model fits the data 
satisfactorily. Similarly, the ROC curve could also be a misleading 
measure of logit’s predictive performance, as a poorly-fitted 
model could possess high discrimination power while a well-
fitted model could suffer from poor discrimination [25]. 

What could one do with these pitfalls then? Bearing in mind that 
the ultimate aim of a risk score is to predict accurately, it is thus 
more helpful to report the direct measures: accuracy, sensitivity, 
specificity and the positive and negative predictive values. 
Measuring the degree of the separation of events from non-
events, the Kolmogorov-Smirnov chart is a worthy alternative 
approach for model assessment. Intuitively, a model is evaluated 
by the ability to separate the events from non-events. A gain or 
a lift chart may also be reported; these are measures in terms 
of results obtained with and without the risk prediction model. 
Several alternative goodness of fit methods that do not require 
groupings of data could be found in reference [26-28]. Cardiac 
risk-scoring construction should evolve with a shift from the 
conventional paradigm of methodology.

http://www.imedpub.com/cardiovascular-investigations-open-access/


2019
Vol.3 No.1:1

5© Under License of Creative Commons Attribution 3.0 License         

Cardiovascular Investigations: Open Access

References
1	 Nashef S, Roques F, Sharples L, Nilsson J, Smith C, et al. (2012) 

EuroSCORE II. Eur J Cardio-Thorac 41: 734-745.

2	 Shahian D, O’Brien S, Filardo G, Ferraris V, Haan C, et al. (2009) The 
Society of Thoracic Surgeons 2008 cardia risk models: part 3 valve 
plus coronary artery bypass grafting surgery. Ann Thorac Surg 88: 
S43-62.

3	 Ranucci M, Castelvecchio S, Menicanti L, Frigiola A, Pelissero G (2009) 
Risk of assessing mortality risk in elective cardiac operations: age, 
creatinine, ejection fraction, and the law of parsimony. Circulation 
119: 3053-3061. 

4	 Ranucci M, Di Dedda U, Castelvecchio S, La Rovere M, Menicanti L, et 
al. (2016) In search of the ideal risk-scoring system for very high-risk 
cardiac surgical patients: a two-stage approach. J Cardiothorac Surg 
11: 13.

5	 Nelder J, Wedderburn R (1972) Generalized linear models. J R Stat 
Soc Ser A-G 135: 370-384.

6	 Hanley J, McNeil B (1982) The meaning and use of the area under a 
receiver operating characteristic (ROC) curve. Radiology 143: 29-36.

7	 Hosmer D, Lemeshow S, Sturdivant RX (2013) Applied Logistic 
Regression, 3rd edn, Wiley, New York.

8	 Kim HL, Lim WH, Seo J-B, Chung WY, Kim MA, et al. (2017) Association 
between arterial stiffness and left ventricular diastolic function in 
relation to gender and age. Medicine 96: e5783.

9	 Murphy G, Angelini G (2004) Side effects of cardiopulmonary bypass: 
what is the reality? J Card Surg 19: 481-488. 

10	 Cremer J, Martin M, Redl H, Bahrami S, Abraham C, et al. (1996) 
Systemic inflammatory response syndrome after cardiac operations. 
Ann Thorac Surg 61: 1714-1720. 

11	 Day J, Taylor K (2005) The systemic inflammatory response syndrome 
and cardiopulmonary bypass. Int J Surg 3: 129-140.

12	 Butler J, Rocker G, Westaby S (1993) Inflammatory response to 
cardiopulmonary bypass. Ann Thorac Surg 1993 55: 552-559.

13	 Ohata T, Mitsuno M, Yamamura M, Tanaka H, Kobayashi Y, et al. (2008) 
Beneficial effects of mini-cardiopulmonary bypass on hemostasis in 
coronary artery bypass grafting: analysis of inflammatory response 
and hemodilution. ASAIO J 54: 207-209.

14	 Kline R (2011) Principles and practice of structural equation 
modeling, 3rd edn, The Guilford Press, New York.

15	 Kua J, Zhao LP, Kofidis T, Chan SP, Yeo TC, et al. (2015) Sleep apnea 
is a risk factor for acute kidney injury after coronary artery bypass 
grafting. Eur J Cardio-thorac 49: 1188-1194.

16	 Zhao LP, Kofidis T, Chan SP, Ong TH, Yeo TC, et al. (2015) Sleep apnea 
and unscheduled readmission in patients undergoing coronary 
artery bypass surgery. Atherosclerosis 242: 128-134.

17	 Madhavan S, Chan SP, Tan WC, Eng J, Li B, et al. (2018) Cardiopulmonary 
bypass time: every minute counts. J Cardiovasc Surg 59: 274-281.

18	 Rabe-Hesketh S, Skrondal A, Pickels A (2004) Generalized multilevel 
structural equation modelling. Psychometrika 69: 167-190.

19	 Wolf E, Harrington K, Clark S, Miller M (2013) Sample size 
requirements for structural equation models: an evaluation of 
power, bias, and solution propriety. Educ Psychol Meas 76: 913-934.

20	 Royston P, Altman DG, Sauerbrei W (2006) Dichotomizing continuous 
predictors in multiple regression: a bad idea. Stat Med 25: 127-141.

21	 Kotsiantis S, Kanellopoulos D (2006) Discretization techniques: a 
recent survey. GESTS Int Trans Comp Sci Eng 32: 47-58.

22	 Kass G (1980) An exploratory technique for investigating large 
quantities of categorical data. Appl Stat 29: 119-127.

23	 Firth D (1993) Bias reduction of maximum likelihood estimates. 
Biometrika 80: 27-38.

24	 King G, Zeng L (2001) Logistic regression in rare events data. Polit 
Anal 9: 137-163.

25	 Lobo J, Jimenez-Valverde A, Real R (2008) AUC: a misleading measure 
of the performance of predictive distribution models. Global Ecol 
Biogeogr 17: 145-151. 

26	 Stukel T (1988) Generalized logistic models. J Am Stat Assoc 83: 426-
431.

27	 Orme C (1990) The small-sample performance of the information-
matrix test. J Econometrics 46: 309-331.

28	 Tjur T (2009) Coefficients of determination in logistic regression 
models - a new proposal: the coefficient of determination. Am Stat 
63: 366-372.


