
2019
Vol.5 No.1:2

Research Article

iMedPub Journals
www.imedpub.com

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://polymerscience.imedpub.com/archive.php

Polymer Sciences
ISSN 2471-9935

Abstract
A series of polymer/dye composite pairs, where the same polymer Poly (3-hexylthiophene-
2,5-diyl) or P3HT paired with a series of three molecular dyes [Meso-Tetra(4-carboxyphenyl)
porphine (TCPP), Ferriprotoporphyrin IX chloride (Hemin), and Protoporphyrin IX (Proto)] 
of different frontier orbitals and absorption coefficients are systematically investigated for 
potential optoelectronic conversion applications. A facile method to distinguish the charge 
and energy transfer contributions between emissive P3HT and dyes under certain conditions 
via concentration dependent photoluminescence (PL) is described. The experimental results 
from this study also revealed that the optoelectronic energy conversion efficiencies of the 
P3HT/dye based OE devices appear to be affected more critically by the P3HT/dye pair PL 
quenching than the optical absorption coefficients of the dyes, and that there appears to 
exist an optimal LUMO offset of P3HT/dye pair for most severe PL quenching or the best 
optoelectronic conversion efficiency. These study could be very useful for the design and 
development of next generation high efficiency soft materials based optoelectronic devices 
such as solar cells and photodetectors.
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Introduction
Photo induced charge transfer (CT) is a process in which an 
electron is transferred from an electron donating species (D) 
to an electron accepting species (A) upon photo excitation. 
On the contrary, photo induced energy transfer (ET) usually 
takes place through the non-radiative multiple interactions or 
couplings between an exciton (a tightly bond electron-hole 
pair) donating (D) and accepting (A) species (also referred to 
as the exciton transfer). Both transfers are distinct from each 
other but sometimes occur simultaneously, and this may lead 
to certain misinterpretation or confusion of physical processes. 
Basic difference between the two transfers is that the CT process 
involves an electron (or charge) transfer, whereas the ET process 
involves an exciton transfer [1-4]. The main problem or challenge 
is to distinctly separate the two processes or contributions so 
better solar photoelectric energy conversion materials and 
devices can be developed or optimized.

Abramavicius and Mukamel [5] proposed a tight-binding 
two-band model and used it to simulate the energy-transfer 
and charge-separation dynamics without separating the two 
processes. Sontakke et al. [4] used a dynamic rate equation 
approach to distinguish the electron and energy transfer 
processes between lanthanide ions in dielectric hosts. Chen et al. 
[6] studied charge and energy transfer using Time-Resolved pulse 

Laser spectroscopic experiments at nanosecond/picosecond 
levels without separating the two processes. Kandada et al. [7] 
analyzed charge and energy transfer between P3HT and PCBM 
in different timescale using the multi-pass transient absorption 
technique (TrAMP) again without separating the two processes.

In this study, a series of polymer/dye composite pairs, where the 
same polymer Poly(3-hexylthiophene-2,5-diyl) or P3HT paired 
with a series of molecular dyes (Figure 1) of different frontier 
orbitals are being investigated for potential optoelectronic 
conversion applications. A facile or straight forward method to 
analyze and separate the charge and energy transfer processes 
between P3HT and dyes via concentration dependent PL 
spectroscopy under certain conditions is described. To our best 
knowledge this is the first of such report.

Optoelectronic Properties of a Series of P3HT/
Dye Pairs
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Experimental Section
Materials
Poly (3-hexylthiophene-2,5-diyl) or P3HT was purchased from 
Sigma-Aldrich and used as is without further purification. Meso-
Tetra (4-carboxyphenyl) porphine (TCPP), Ferriprotoporphyrin IX 
chloride (Hemin), and Protoporphyrin IX (Proto) were purchased 
from Fisher-Scientific. Figure 1 exhibits all the materials molecular 
structures.

Characterizations
Optical spectroscopy: UV-Vis measurements were performed on a 
Perkin Elmer Lambda 1050 spectrophotometer in Tetrahydrofuran 
(THF) solutions. Photoluminescence (PL) spectra were collected 
on an ISA Flouromax-3 luminescence spectrofluorometer in THF 
solutions. (Excitation slits: 5 nm; Emission slits: 2 nm. Excitation 
wavelength: 440 nm). 1.04 × 10-6 M P3HT in THF was prepared and 
certain amount of dye was added to P3HT/THF solution forming 
P3HT/dye mixture solution with the concentration of dye varies 
from 1.25 × 10-7 M to 1.00 × 10-6 M in THF. Photoluminescence 
quenching Stern-Volmer plots, linear fitting, and quenching 
constants (Ksv) derivations are well established in literature and is 
utilized in this study [8].

Cyclic voltammetry (CV): The CV measurements were performed 
in 0.10 M TBA-HFP/acetonitrile solution by a Bioanalytical (BAS) 
Epsilon-100W tri-electrode cell system and 2 mM ferrocene/0.10 
M TBA HFP/CH3CN solution was used as CV internal reference. 
Before starting a measurement, dry nitrogen gas was bubbled 
through the solution for 5 minutes to remove any dissolved 
oxygen. Scan rate was used as 100 mV/s [9].

Solar cell devices fabrication and testing: 10.00 mg P3HT, 10.00 

mg PCBM and dye (1.15 mg TCPP, 0.95 mg Hemin and 0.82 mg 
Protoporphyrin, respectively) were dissolved in 1 mL mixture 
solvents of 1,2-Dichlorobenzene (DCB) and Dimethylformamide 
(DMF) (3:1, v/v). The mixture solution was stirred for 24 h at 
room temperature. P3HT (5.80 × 10-2M), PCBM (1.10 × 10-2M) 
and dye (1.45 × 10-3M). The ITO glass (Rs=8-12 Ω) was cleaned by 
sequential 5 minus sonication in solutions of detergent, acetone, 
isopropyl alcohol. Then ITO glass was rinsed with deionized 
water and dried with N2. PEDOT:PSS aqueous solution (Clevious 
PVPAI 4083, from H.C. Starck) was spun onto clean ITO glasses 
in 5000 rpm for 30 s forming 30 nm thin film, followed by drying 
in vacuum oven at 90°C for 1 hour. After cooling down to room 
temperature, the mixture solution was spun on the top of “ITO/
PEDOT:PSS” film in 1000 rpm for 60 s. Samples were kept in a high 
vacuum oven at 80°C for 30 mins. All the sample solutions were 
filtered by 0.2 μm filter. After cooling down to room temperature, 
evaporation of metal Al was performed in a glove box with the 
pressure of 1.0 × 10-7mbar. The film thickness was 100 nm. I-V 
measurement was performed by a solar simulator (1.5 AM 
simulated sunlight radiation), a current-voltage source measure 
unit (Keithley SMU-237).

Results and Discussions
Effect of the acceptor or PL quencher 
concentration
The charge transport properties in conjugated materials critically 
depend on the packing order of the chains in the solid state as well 
as on the density of impurities and structural defects [10]. In this 
study, both P3HT (donor) and dye (acceptor) in THF solution have 
a strong tendency of aggregation with increasing concentration, 
and this would affect significantly the PL quenching as a result 
of charge or energy transfers. In order to eliminate the potential 
PL quenching effect due to P3HT aggregation, pristine P3HT 
emission measurement versus concentration was carried out 
first to determine an optimal concentration range where PL 
quenching due to aggregates are minimum. Figure 2 revealed 
that the PL peak intensity (in units of counts per second or cps) 
of pristine P3HT (excited at 440 nm) increased dramatically over 
the concentration starting at 1.00 × 10-6 M and reached the 
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Charge and energy transfer analysis
The UV-Vis absorption peak of P3HT in THF is at 450 nm, so 440 
nm is used as excitation wavelength to excite P3HT. Figures 5 and 
6 exhibited PL emission spectra (PL intensity as arbitrary units 
or au) of P3HT quenched by different concentrations of Proto 
and TCPP, respectively. The emission peaks of Proto at 620 nm 
(Figure 5, where P/P-8 means P3HT at 1.04 x 10-4M/Proto at 8th 
concentration) and TCPP at 720 nm (Figure 6, where P/T-8 means 
P3HT at 1.04 x 10-4M//TCPP at 8th concentration) were also 
observed, and this can be due to 440 nm excitation also exciting 
the acceptor dyes, and it can also be due to possible energy 
transfer from P3HT to the emissive dyes. In Figure 7, no emission 
peak of Hemin was observed possibly due to Hemin is not emissive 
and/or no energy transfer occurs, only charge transfer occurs as 
PL quenching was observed. The contributions of accepter PL 

highest at concentration of 1.00 × 10-4 M, then decreases toward 
a concentration of 1.00 × 10-3 M. The decrease could be attributed 
mainly to P3HT aggregations [11]. P3HT PL peak exhibited a 
steady increase in the concentrations below 1.00 × 10-4 M, where 
it is believed that P3HT chains were without aggregation. As a 
result, P3HT/THF (Tetrahydrofuran) in a concentration range of 
5.00 × 10-6 M-4.00 × 10-5 M was selected in this study.

Figures 3 and 4 exhibit PL quenching Stern-Volmer plots of P3HT/
TCPP pairs in THF, where the concentration of P3HT is fixed at 5.00 
× 10-7M, Io represents the initial PL peak intensity of P3HT without 
the quencher, and I represents the PL peak intensity of P3HT with 
quencher TCPP at different concentrations. PL quenching of P3HT 
by TCPP exhibited a Stern-Volmer linear line below the TCPP 
concentration of about 5.00 × 10-5 M (Figure 4) and a non-linear 
curve in high concentrations beyond 5.00 × 10-5 M possibly due to 
P3HT aggregations (Figure 3). The concentration of acceptor dye 
between 1.25 × 10-7 M and 1.00 × 10-6 M was used for calculating 
PL quenching coefficients as aggregations can be neglected.
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emission peak increase due to acceptor concentration increase 
and due to energy transfer shall be analyzed respectively in 
following paragraphs.

Pristine acceptor Proto and TCPP dyes emission spectra at 
different concentrations were measured (shown in Figures 8 and 
9) in order to deduct the dye concentration contributions toward 
their PL in actual intensities. When both donor and acceptor 
are PL emissive, under certain conditions or approximations, 
CT and ET contributions could be separated and quantified via 
concentration dependent PL spectra and eqn. (1) [12]. The CT and 
ET contribution calculation details of P3HT/Proto and P3HT/TCPP 
pairs using concentration dependent PL spectra and eqn. (1) are 
tabulated in Tables 1 and 2.

ΔPL(CT)=(ΔPL(D) +ΔPL(A) - ΔPL(AA))/2			                       (1)

Where,

ΔPL(CT)=PL change due to charge transfer (CT)

ΔPL(D)=Donor PL Peak Drop
ΔPL(AA)=Acceptor PL Peak change with pristine acceptor in solvent 
only

ΔPL(A)=Acceptor PL Peak change.

The CT and ET calculation results from Tables 1 and 2 indicated 
that there were about 58% and 74% of energy transfers in the 
emission process of P3HT/Proto and P3HT/TCPP, respectively. 
Before deducting the energy transfer contribution, the Stern-
Volmer quenching constants (Ksv) of P3HT/dye pairs were 3.92 × 
104 M-1 and 2.61 × 104 M-1 for Proto and TCPP respectively (Figure 
10). After deducting energy transfer (ET) contributions, the Ksv 
values were 1.69 × 104 M-1 and 9.49 × 103 M-1 corresponding to 
charge transfer (CT) from P3HT to Proto and TCPP (Figure 11).

Finally, solar cells using the three P3HT/dye pairs combined with 
a common acceptor, phenyl-C61-butyric acid methyl ester (PCBM) 
were also fabricated and tested as shown in Figures 12 and 13, 
where Figure 12 exhibits solar cell device fabrication scheme, 
and Figure 13 exhibits the photo JV curves of the solar cells, and 
solar cell device data are also tabulated in Table 3. The frontier 
orbital (HOMO/LUMO) levels of P3HT and the three dyes were 
measured using Cyclic Voltammetry (CV) method combined with 
UV-visible spectroscopy and the data are shown in Figure 12b 
and Table 4. The molar absorption coefficients (Abs-Coeff, or ɛ) of 
the three dyes were determined via UV-Vis. The molar absorption 
coefficients (Abs-Coeff), photoluminescence quenching constants 
(K-sv), lowest unoccupied molecular orbital offsets (d-LUMO), and 
fabricated solar cell power conversion efficiencies (η, or PCE) of 
the three P3HT/dyes (Proto, Hemin, and TCPP) are listed in Table 
4, and normalized values are compared in Figure 14.

As shown in Figure 14, when the ΔLUMO values (correlating to 
photo induced electron transfer driving forces from P3HT to dyes) 
of P3HT/dye pairs increase from 0.46 to 0.76 to 0.84 eV (from 
Proto to Hemin to TCPP), respectively, the PL quenching (Ksv) as 
well as the solar cell efficiencies (η) initially increases from Proto 
to Hemin, and then decreases for TCPP. For these three P3HT/dye 
pairs, this research indicated that the photo generated excitons 
appear to dissociate most efficiently at an intermediate ΔLUMO 
value. This observation could be a strong evidence for the Marcus 
electron transfer model regarding ‘inverted region’ theory, and 
also confirms an earlier theoretical prediction regarding exciton 
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dissociation efficiency versus ΔLUMO [13-17]. As a matter of fact, 
a time resolved microwave conductivity (TRMC) studies on a 
series of polymer/fullerene thin film OE devices also observed an 
optimum driving force corresponding to highest photo induced 
microwave conductivity [18].

Conclusion
Photo induced charge transfer (CT) and energy transfer (ET) 

could occur simultaneously in a molecular donor/acceptor 
weakly electronically coupled pair. If both donor and acceptor 
are PL emissive, under certain conditions and approximations, 
CT and ET contributions may be separated and quantified via 
concentration dependent PL spectra. The experimental results 
from this study also revealed that the optoelectronic conversion 
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Equation 1)

D PL due 
to CT

D PL (Io/
I(CT))-1

ET=dD-CT ET, %

1.25 897188 557980 0 0 102178 0 0 897188 0 0 /
2.48 892410 653765 4778 95785 196070 93893 89115 1443 895745 0.00161 3335 69.8
3.71 893103 751590 4085 193610 283393 181215 177130 -4155 901343 -0.00461 8240 /
4.93 887515 844085 9673 286105 375953 273775 264103 -1329 898516 -0.00148 11001 /
6.15 878158 924048 19030 366068 470445 368268 349238 10615 886573 0.01197 8415 44.2
7.35 875770 1019775 21418 461795 555463 453285 431868 6454 890734 0.00725 14964 69.9
8.55 874625 1105238 22563 547258 649728 547550 524988 11428 885760 0.01290 11135 49.4

Note: A: Proto; D: P3HT, 1.04 × 10-6 M. Excitation slits: 5 nm; Emission slits: 2 nm. Excitation wavelength: 440 nm

Table 1 Calculation of ET % in P3HT PL quenched by Proto in THF.
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Equation 1)

D PL due 
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Note: A: TCPP; D: P3HT, 1.04 × 10-6 M. Excitation slits: 5 nm; Emission slits: 2 nm; Excitation wavelength: 440 nm

Table 2 Calculation of ET % in P3HT PL quenched by TCPP in THF.
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efficiencies for the three P3HT/dye pairs are affected more 
critically by the polymer/dye PL quenching than the dye optical 
absorption coefficients, and that the correlation between the 

optoelectronic conversion efficiencies or PL quenching versus 
LUMO offsets of P3HT/dye pairs appear to follow Marcus electron 
transfer model involving an ‘inverted region’. For future studies 
or better illustrations, more dyes of different frontier orbitals and 
with more similar molecular structures are more desirable. The 
results of such studies could guide the design and development 
of next generation high-efficiency organic optoelectronic devices, 
such as, solar cells and photodetectors.
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Figure 14

Dyess Jsc (mA/cm2) Voc (V) FF (%) η (%, un-calibrated)

Proto 1.07141 0.16 22.615 0.038

Hemin 4.1 0.24 25.624 0.25

TCPP 0.73412 0.28 15.723 0.033

Table 3 Performance of ITO/PEDOT:PSS/P3HT:dye:PCBM/Al bulk 
heterojunction photovoltaic devices under a AM 1.5G one Sun solar 
simulator.

P3HT Proto Hemin TCPP
HOMO (eV, from CV peak 

onset)
-5.05 -5.13 -5.33 -5.45

LUMO (eV, from CV peak 
onset)

-2.73 -3.19 -3.49 -3.57

Eg (eV) 2.32 1.94 1.84 1.88
Absorption coefficient, 

M-1cm-1
1.07 × 104 1.39 × 105 6.71 × 104 4.00 × 105

d-LUMO (P3HT/Dye), eV 0.46 0.76 0.84

Ksv (P3HT/Dye, CT 
contribution)

1.69 × 104 1.45 × 105 9.49 × 103

η or PCE (P3HT/Dye/PCBM) 0.038 0.25 0.033

Table 4: Electronic and optoelectronic properties of P3HT and three 
dyes.
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