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Abstract
The spread of professional microwave (MW) reactors in the last 25 years 
brought about a revolutionary change in synthetic organic chemistry. This 
methodology has also had a positive inpact on organophosphorus chemistry 
enhancing reluctant reactions, or just making the reactions more efficient 
in respect of rate, selectivity and yield. In special cases, MW irradiation may 
substitute catalyst, or may simplify catalytic systems.

Introduction
The use of the microwave (MW) technique spread fast in synthetic 
laboratories, and these days it knocks at the door of industry. 
At the beginning, only domestic MW ovens were available, 
but later, different variations of professional MW equipment 
were developed and utilized in many kind of syntheses, such as 
substitutions, additions, eliminations, condensations, acylations, 
esterifications, alkylations, C–C coupling reactions, cycloadditions, 
rearrangements and the formation of heterocycles [1].

The main problem with industrial application is the scale-up [2,3]. 
On the one hand, there is a problem with the structural material, 
as the batch reactors may be made of only teflon or glass. On 
the other hand, the limited penetration depth of MWs into the 
reaction mixtures prevents the construction of bigger size batch 
reactors. Presently, the only possibility for a certain degree of 
scale-up is the use of continuous-flow reactors [2,4]. A batch 
MW reactor may be supplied with a flow cell, where the mixture 
is moved by pumps. In another variation, a continuous tube 
reactor with a diameter of up to 6–9 mm was elaborated that 
makes possible the processment of ca 300 l/day [5]. A capillary 
microreactor consisting of four parallel capillary tubes was also 
described. The above equipment may be used well in industrial 
research and development laboratories. The only criterion of 
such application is that the reaction mixtures must not to viscous 
and heterogeneous. The author of this paper believes that 
“bundle of tubes” reactors incorporating a number of glass tubes 
with a diameter of several mm-s may bring a breakthrough in the 
industry. Another good accomplishment is to apply assembly line-
type equipment that transports the solid reaction components 
placed in suitable vessels into a tunnel, where the irradiation 
takes place [6].

The most common benefits from MW irradiation is the 
considerable shortening of reaction times and the increase 
in the selectivities. However, the most valuable benefit is 

when a reaction can be performed that is otherwise rather 
reluctant under traditional thermal conditions. This may be the 
consequence of a so-called special MW effect [7]. There are, of 
course, other advantages as well that will be shown below within 
the pool of organophosphorus chemistry that is a dynamically 
developing field. Organophosphorus compounds including 
P-hetereocycles find applications in synthetic organic chemistry 
as reactants, solvents (ionic liquids), catalysts and P-ligands and, 
due to their biological activity, also as components of drugs and 
plant protecting agents [8-9]. The utilization of MW irradiation in 
organophosphorus chemistry is a relatively new field [10-13]. In 
this article, the attractive features of the application of the MW 
technique in organophosphorus syntheses are summarized in 
four groups.

Reactions those are Reluctant under Ther-
mal Conditions
The most common way to prepare esters is the acid catalyzed 
direct esterification of carboxylic acids with alcohols (Figure 1). 
The reaction is reversible, hence the alcohol should be applied in 
excess and/or the water formed should be removed by distillation, 
in most cases, in the form of binary or ternary azeotropes.

Phosphinic acids, however, do not undergo esterification 
with alcohols to afford phosphinates, or the reaction is rather 
reluctant (Figure 2/A). For this, the esters of phosphinic acids 
are synthesized by the reaction of phosphinic chlorides with 
alcohols in the presence of a base (Figure 2/B) [8]. An alternative 
possibility is preparation by the Arbuzov reaction (Figure 2/C) [8].
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The preparations of phosphinates were summarized [14]. 
The generally used esterification method (Figure 2/B) has the 
drawback of requiring the use of relatively expensive P-chlorides. 
Beside this, hydrogen chloride is formed as the by-product that 
must be removed by a base. Hence, the method is not too atomic 
efficient and is not environmentally friendly.

We tried the direct esterification of phosphinic acids with alcohols 
under MW conditions. To our surprise, a series of phosphinic 
acids underwent esterification with alcohols with longer chain at 
around 200°C on MW irradiation (Figure 3) [15–18].

The esterification of cyclic phosphinic acids, such as 1-hydroxy-
3-phospholene oxides, 1-hydroxy-phospholane oxides and 
1-hydroxy-1, 2, 3, 4, 5, 6-hexahydrophosphinine oxides and 
phenylphosphinic acid was carried out in the presence of ca. 
15-fold excess of the alcohols in a closed vessel to afford the 
phosphinates in acceptable to excellent yields [15,16,18]. The 
method seems to be of general value. It was also found that the 
esterification of phosphinic acids is thermoneutral and kinetically 
controlled [16,17]. Moreover, it was proved that the reaction 
under discussion is not reversible [16]. 

Reactions that became More Efficient 
under MW Conditions
There are many reactions in the field of organophosphorus 
chemistry that become more efficient on MW irradiation [10,11]. 
The advantages include shorter reaction times and higher 
yields. Moreover, in a lot of cases, there is no need for solvents. 
Such reactions are, for example, Diels–Alder cycloadditions, 
fragmentation-related phosphorylations and inverse Wittig-type 
transformations [19-22].

The MW-assisted synthesis of α-hydroxyphosphonates from 
substituted arylaldehydes and dialkyl phosphites under solvent-
free conditions also belongs to this group (Figure 4) [23].

In a variation, dialkyl phosphites were added on the carbonyl group 
of α-oxophosphonates. The hydroxy-methylenebisphosphonates 
were obtained selectively in the reaction of acetylphosphonates 

(R1=Me), but in the reaction of benzoylphosphonates (R1=Ph), the 
formation of mixed phosphonates–phosphates was inevitable as a 
result of a rearrangement (Figure 5) [24,25].

The hydroxy-methylenebisphosphonates are analogues of widely 
used dronic acids/dronates used in bone diseases [26-28].

Reactions in which the Catalysts are 
Replaced by MW Irradiation
We found that active methylene containing compounds underwent 
C-alkylation by reaction with alkyl halides in the presence of K2CO3 
under MW-assisted solvent-free conditions. In other words, the 
phase transfer catalyst could be substituted by MW irradiation 
[29,30]. This method was then extended to the alkylation of tetraethyl 
methylenebisphosphonate, diethyl cyanomethylphosphonate 
and ethoxycarbonylmethylenephosphonate (11c) to afford the 
corresponding monoalkylated products in variable yields (Figure 6) 
[31–33].

In another field, α-aminophosphonates and α-aminophosphine 
oxides were synthesized by the solvent-free and catalyst-free 
MW-assisted Kabachnik-Fields condensation of primary amines, 
aldehydes/ketones and >P(O)H species (Figure 7). 
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Earlier preparations utilized catalysts (e.g. BiNO3 [35], 
phthalocyanine [36], and Lantanoid (OTf)3 [37]) that cannot be 
regarded “green” agents. We proved that under MW conditions, 
there is no need for any catalyst. Moreover, the syntheses could 
be performed without the use of any solvent [38].

Applying heterocyclic amines or >P(O)H species, the resulting 
α-aminophosphonic derivatives included N-heterocyclic [39] and 
P-heterocyclic derivatives [40]. Later on, amino acids and esters 
were also used in the phospha-Mannich condensation [41,42].

Double Kabachnik-Fields condensations were also elaborated 
applying two equivalents of the formaldehyde and the same quantity 
of the >P(O)H species (Figure 8) [43,44].

The bis (phosphinoxidomethyl) amines (Y=Ph) were useful precursors 
of bidentate P-ligands after double deoxygenation that could be 
used for the synthesis of ring platinum complexes [43,44].

As the consequence of their diverse bioactivity, the 
α-aminophosphonates are in the focus these days [45].

Reactions in which the Catalysts may be 
Simplified under MW Conditions
The Hirao reaction involves the P-C coupling of aryl bromides with 
dialkyl phosphites in the presence of Pd (PPh3)4 and a base in a 
solvent [46]. We were successful in elaborating a P-ligand-free 
variation of the P-C coupling under MW conditions. Hence, a series 
of substituted aryl bromides were reacted with dialkyl phosphites 
in the presence of Pd(OAc)2 catalyst, in the absence of any P-ligand 
to afford arylphosphonates in 69-93% yield. No solvent was used 
(Figure 9/ (1)) [47,48]. The reaction was then extended to couplings 
with alkyl phenyl-H-phosphinates and secondary phosphine oxides to 
give alkyl-diarylphosphinates and arylphosphine oxides, respectively 
(Figure 9/ (2) & (3)) [47,48]. In the latter instance, solvent had to be 
used to overcome the problem of heterogeneity.

A NiCl2-catalyzed version of the P-C coupling reactions was also 
developed [49]. NiCl2 is cheaper than Pd(OAc)2, however, the 
previous is more toxic.

The discovery that P-C coupling reactions may be carried out in 
the presence of P-ligand-free metal salts is important as decreases 
environmental burdens and costs [50].

Summary
In summary, the MW technique was shown to have an increasing 
potential in organophosphorus chemistry. It may make possible 
otherwise rather reluctant transformations, or, as in most cases, 
simply enhances the reactions, and makes them more efficient. 
In certain instances, MW irradiation may substitute catalysts, or 
may make possible the simplification of catalyst systems. Many 
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MW-assisted reactions may be performed under solvent-free 
conditions.
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