
2017
Vol. 7 No. 3:19

Research Article

1© Under License of Creative Commons Attribution 3.0 License | This article is available from: www.imedpub.com/european-journal-of-experimental-biology/

European Journal of Experimental Biology
ISSN 2248-9215

iMedPub Journals
www.imedpub.com

DOI: 10.21767/2248-9215.100019

Siguna Mueller1,
Farhad Jafari1 and
Don Roth2

1	 Department	of	Mathematics,	University	
of	Wyoming,	Laramie,	WY,	USA	

2	 Department	of	Molecular	Biology	and	
School	of	Energy	Resources,	University	
of	Wyoming,	Laramie,	WY,	USA

*Corresponding author: Don	Roth

 RothDon@uwyo.edu	

Department	of	Molecular	Biology	and	
School	of	Energy	Resources,	University	of	
Wyoming,	Laramie,	WY,	USA.

Tel: +446 224 5344

Citation: Mueller	S,	Jafari	F,	Roth	D	(2017)
Improving	Dependability	and	Precision	of	
Data	Encoding	in	DNA.	Eur	Exp	Biol.	Vol.	7	
No.	3:19.

Improving Dependability and Precision of
Data Encoding in DNA

Abstract
DNA	 storage	 of	 information	 is	 emerging	 as	 the	 next-generation	 approach	 to	
archiving	vast	amounts	of	data.	Various	sophisticated	approaches	for	data	storage	
in	DNA	have	been	proposed.	Herein	we	present	a	multistep	algorithm	designed	to	
detect	and/or	correct	errors	introduced	at	any	stage	of	the	DNA	storage	process,	
including	 those	 during	 message	 DNA	 generation,	 and	 propose	 refinements	
designed	to	ensure	authenticity	and	correctness	of	each	individual	encoded	DNA	
block.	 In	addition,	the	algorithm	allows	authentic	decoding	without	a	reference	
sequence	 or	message	meaning.	 The	 algorithm	 is	 designed	 based	 on	 principles	
underlying	provably	secure	cryptographic	systems.	Importantly,	our	new	algorithm	
compares	 favorably	with	current	ones	 in	 terms	of	ease	of	 implementation	and	
message	expansion.	In	cases	where	reads	are	error-free,	our	algorithm	should	be	
faster	than	current	alignment	techniques.	Without	knowing	the	original	data,	a	
certificate	is	generated	that	confirms	that	the	obtained	data	are	exactly	the	same	
as	the	original.	Our	algorithm	has	applications	to	DNA	steganography,	sequence	
alignment,	fast	identification	of	correct	reads	in	next	generation	sequencing	and	
to	message	security.	

Keywords: Digital	information	storage	in	DNA;	Error	detection;	Error	correction;	
Next	generation	sequencing;	Alignment	algorithm	

Received: March	21,	2017, Accepted: May	30,	2017,	Published: June	15,	2017

Background
The	potential	of	DNA	has	been	realized	for	various	information-theoretic	protocols,	including	DNA	steganography	for	the	identification	
of	genetically	modified	organisms	[12,21,23]	hiding	of	messages	in	DNA	[9,11,16,20]	and	long-term	data	storage	in	DNA	[3,7,8,10,14,21].	
These	applications	require	mechanisms	to	validate,	ensure,	and	possibly	verify	message	accuracy.	This	is	particularly	important	when	
correctness	of	the	retrieved	data	is	not	variable	by	a	reference	sequence	or	other	means	such	as	a	comparison	with	a	meaningful	
text	template.	DNA	is	a	typical	code	and	so	are	all	the	information	theoretic	algorithms	that	utilize	it.	However,	what	is	seen	by	the	
receiver	of	the	message	might	not	be	the	same	as	what	was	initially	sent	or	encoded.	Thus,	it	is	critical	that	processes	using	DNA	for	
data	storage	have	dependable	and	precise	error	correcting	or	detecting	features.

Storing	messages	in	DNA	was	first	demonstrated	in	1988	and	the	largest	project	to	date	encoded	about	750	kilobytes	of	data,	including	
text,	tables,	photos,	and	video	[10].	As	with	any	computer	code,	DNA	coding	approaches	are	susceptible	to	errors	during	construction	
of	the	code,	storage,	and	read-out.	Relative	to	these	issues,	algorithms	to	develop	in vivo	[23]	and	in vitro	[7,10]	based	approaches	to	
utilizing	DNA	as	a	framework	for	archiving	large	data	sets	have	been	developed.

Two	of	the	most	promising	approaches	for	information	archiving	in	DNA	use	in vitro	algorithms	and	next-generation	DNA	synthesis	
and	sequencing	[7,10].	Both	approaches	[7,10]	rely	on	the	sequencing	of	multiple	oligonucleotides	(nt)	per	message	component.	In	
Ref.	7	they	reported	an	average	of	≈3000-fold	coverage	of	each	recovered	nucleotide	base.	However,	there	were	message	sequences	
with	only	single	coverage	from	amplification	procedures	and	these	contributed	to	process	errors.	The	work	in	Goldman	et	al.	[10]	
relied	on	the	sequencing	of	≈107	copies	for	each	DNA	string.	Given	that	the	sequencing	reaction	consumed	≈0.1%	of	the	DNA	of	the	
initial	 library,	two	components	were	not	sequenced	at	all	and	had	to	be	specifically	sequenced	with	manual	techniques	[10].	This	
result	was	suggested	to	be	due	to	specific	self-complementary	regions	that	led	to	hybridization	and	sequencing	failure.	Although	both	
projects	report	a	significant	average	coverage,	neither	was	sufficient	for	complete	error	protection.

2017
Vol. 7 No. 3:19

2 This article is available from: www.imedpub.com/european-journal-of-experimental-biology/

European Journal of Experimental Biology
ISSN 2248-9215

To	address	 these	 issues	Church	et	al.	 [7]	 relied	on	multiple	message	copies	 to	 identify	errors,	and	Goldman	et	al.	 [10]	employed	
additional	explicit	error	correcting	features.	However,	with	current	approaches	it	is	still	difficult	to	consistently	ensure	appropriate	
coverage	of	every	single	nt	that	 is	necessary	for	correction	of	errors	generated	due	to	message	mutation,	especially	 if	there	is	no	
reference	for	determining	if	the	obtained	reads	reflect	the	authentic	message.	This	is,	in	turn,	is	dependent	on	the	length	and	quality	
of	continuous	sequences	that	provide	appropriate	alignment	of	overlapping	reads.

Similar	error	correction	issues	impact	next	generation	DNA	sequencing	technologies.	Current	alignment	programs	developed	to	handle	
the	numerous	individual	reads	use	three	main	approaches	(see	[15]	and	the	references	therein):	(i)	“hashing”	the	read	sequences	and	
scanning	through	the	reference	sequence:	(ii)	“hashing"	of	the	reference	genome	and	(iii)	merge-sorting	of	the	reference	subsequences	
and	read	sequences.

Herein,	 we	 present	 a	 multistep	 algorithm	 that	 increases	 the	 reliability	 and	 precision	 of	 existing	 approaches	 without	 negatively	
impacting	efficiency	and	effectiveness.	In	particular,	our	algorithm	establishes	a	significant	guarantee	of	message	validity,	authenticity	
and	integrity.	It	also	can	be	applied	for	the	archiving	of	vast	data	sets,	in	optimization	of	DNA	sequencing	algorithms,	and	in	precisely	
tagging	 genetically	modified	organisms	 (GMOs).	Our	 solution	also	 specifically	 identifies	which	 reads	 are	 correct	prior	 to	majority	
voting	and	prior	to	knowing	the	message	meaning.	Given	appropriate	reads	this	approach	allows	pooling	of	the	correct	sequences	and	
facilitates	rapid	and	accurate	decoding.

Examples	of	errors	in	DNA	storage	protocols	are	summarized	in	Tables 1 and 2.	Analysis	of	the	robustness	of	current	algorithms	under	
single	sequence	coverage	[7]	identified	significant	distortions	of	encoded	text,	video,	or	pictures	from	sequence	errors	which	may	
render	decoding	totally	untranslatable.	The	most	complete	algorithm	to	date	in	terms	of	error	correction	is	that	of	Goldman	et	al	
[10].	Analysis	of	[10]	identified	a	potential	problem	during	assembly	of	the	decoded	sequence	reads	where	two	specific	regions	were	
not	recovered	from	any	sequenced	read.	Repeats	of	this	motif	had	a	self-reverse	complementary	pattern	and	it	was	hypothesized	
that	long,	self-complementary	DNA	fragments	might	not	be	readily	sequenced	using	the	Illumina	process	[2]	or	other	next	generation	
sequencing	protocols.	It	had	previously	been	determined	[7]	that	individual	sequences,	especially	those	containing	large	GC	content	
or	long	self-complementary	regions	are	difficult	to	accurately	read	or	synthesize.

Church	et	al.	[7]	were	the	first	to	suggest	that	choosing	bases	randomly	(A or C	for	0	and	T or G	for	1)	while	disallowing	homopolymer	
runs	greater	than	three	[7]	may	overrule	any	sequence	properties	that	are	detrimental	to	sequencing.	Based	upon	analysis	of	potential	
sequencing	failure	encountered	during	decoding,	Goldman	et	al.	[7]	suggested	development	of	a	code	with	no	long	self-complementary	
regions	[9,10].	They	suggested	an	additional	step	during	encoding	[10]	whereby	the	initial	message	les	could	be	pre-processed	either	
by	a	one-time	pad	[19]	or	other	stream	cipher	[17]	with	a	standard	or	known	key	stream.	This	would	lead	to	DNA	segments	having	
random	properties	[10],	but	would	be	difficult	to	implement	practically.	While	introducing	randomness	can	be	crucial,	the	problem	is	
how	to	do	this	in	a	way	such	that	accurate	decoding	can	be	done	without	access	to	the	reference	message.	A	one-time	pad	requires	a	
random	key	equal	to	the	length	of	the	encoded	message	[17]	and	any	key	stream	that	is	used	during	message	DNA	generation	needs	
to	be	available	during	decoding.	This	leads	to	the	problem	of	how	the	random	key	can	be	made	available	to	the	decoding	party.	As	
a	result,	a	sophisticated	cryptographic	scheme	would	be	required	to	achieve	randomness	 in	the	stream	cipher	further	requiring	a	
process	to	store	and	pass	to	the	decoder	a	very	long	key.	For	long-term	data	storage	these	options	may	limit	application.

True	randomness	is	not	needed	to	prevent	detrimental	structure	that	 impact	DNA	synthesis	and	sequencing.	 In	cryptography	it	 is	
generally	 important	 to	 use	 good	 random-number	 generators	 but	 not	 as	 important	 as	 using	 good	 encryption	 algorithms	 and	 key	
management	procedures	[19].	In	practice,	therefore,	crypto-graphic	techniques	use	secure	pseudo-number	generators	or	keystreams	
[19].	We	employ	this	approach	in	our	multiscale	algorithm	described	below.	

Main Text
The	key	features	of	this	algorithm	can	be	subdivided	into	5	steps.	A	glossary	of	abbreviations	is	given	below.	These	features	include	
(1)	Generation	of	each	block	as	a	sequence	of	nt's	that	occurs	at	least	R•S-fold	and	that	is	randomized	by	number	7	in	STEP	1.	This	
prevents	any	detrimental	structure	that	would	interfere	with	sequencing.	(2)	Randomization	is	only	a	function	of	the	base	2	to	base	4	
conversion	and	hence,	does	not	require	a	random	key	during	decryption	as	it	is	not	a	stream	cipher	or	a	one-time	pad.	(3)	Each	block	
represents	information	about	data	as	well	as	the	address	and	is	then	further	randomized.	The	code	represents	each	(randomized	and	
expanded)	message	block	mi	exactly	R	times	within	each	DNA	segment.	

encoded message [17] and any key stream that is used during message DNA generation needs to be available

during decoding. This leads to the problem of how the random key can be made available to the decoding

party. As a result, a sophisticated cryptographic scheme would be required to achieve randomness in the

stream cipher further requiring a process to store and pass to the decoder a very long key. For long-term

data storage these options may limit application.

True randomness is not needed to prevent detrimental structure that impact DNA synthesis and sequenc-

ing. In cryptography it is generally important to use good random-number generators but not as important

as using good encryption algorithms and key management procedures [19]. In practice, therefore, crypto-

graphic techniques use secure pseudo-number generators or keystreams [19]. We employ this approach in

our multiscale algorithm described below.

Main Text

The key features of this algorithm can be subdivided into five steps. A glossary of abbreviations is

given below. These features include (1) Generation of each block as a sequence of nt’s that occurs at least

R · S-fold and that is randomized by number 7 in STEP 1. This prevents any detrimental structure that

would interfere with sequencing. (2) Randomization is only a function of the base 2 to base 4 conversion

and, hence, does not require a random key during decryption as it is not a stream cipher or a one-time pad.

(3) Each block represents information about data as well as the address and is then further randomized.

The code represents each (randomized and expanded) message block mi exactly R times within each DNA

segment.

m1||m1|| . . . ||m1︸ ︷︷ ︸
⇓Repeated R times

Encoded as nt’s

, . . . mn||mn . . . ||mn︸ ︷︷ ︸
⇓Repeated R times

Encoded as nt’s

DNA segment DNA1︸ ︷︷ ︸
⇓Amplif. & Sequ. to

, . . . DNA segment DNAn︸ ︷︷ ︸
⇓Amplif. & Sequ. to

sequ. (DNA1)1, . . . , sequ. (DNA1)S̃ . . . sequ. (DNAn)1, . . . , sequ. (DNAn)S̃

(4) The above is essentially an R · S repetition code. Each of the recovered ≥ S sequences (DNAi)j is

made up of a collection of R blocks of mi. (5) The choice of R is dictated by the parameter S as well as the

anticipated and required security. Both R and S work in concert. The larger R is, the more “expensive” in

terms of message expansion but is more secure (Figure 2). In [7], there was no repetition and some sequences

were only recovered once, increasing the probability of error introduction.

4

3© Under License of Creative Commons Attribution 3.0 License

2017
Vol. 7 No. 3:19

European Journal of Experimental Biology
ISSN 2248-9215

(4)	The	above	is	essentially	an	R•S	repetition	code.	Each	of	the	recovered	≥ S	sequences	(DNAi)j	is	made	up	of	a	collection	of	R	blocks	
of mi.	(5)	The	choice	of	R	is	dictated	by	the	parameter	S	as	well	as	the	anticipated	and	required	security.	Both	R	and	S	work	in	concert.	
The	larger	R	is,	the	more	“expensive"	in	terms	of	message	expansion	but	is	more	secure	(Figure 1).	In	[7],	there	was	no	repetition	and	
some	sequences	were	only	recovered	once,	increasing	the	probability	of	error	introduction.	

As	in	[7,10]	oligonucleotide	library	is	sequenced	using	next-generation	sequencing	technologies.	The	decoding	scheme	identifies	each	
base	of	encoded	information	based	on	a	majority	vote	of	all	the	read	bases	corresponding	to	its	position.	The	final	decoding	into	the	
message	file	from	the	sequencing	reads	is	obtained	by	exactly	reversing	the	encoding	process.

STEP 1-Encoding
The	original	 text	or	data	 are	 subdivided	 into	equal	 length	blocks.	 Each	block	 contains	both	 the	data	part	 and	 the	 corresponding	
addressing	information.	Combining	both	into	one	block	before	repetition	and	sequencing	helps	to	ensure	proper	placement	during	
decoding.

1. Represent	the	original	message	M	in	binary	and	let	len(M)	be	the	length	(in	characters)	of	the	binary	representation	of	M.

2. Let	lM	be	the	representation	of	len(M)	in	binary,	as	appropriate	pre-pend	with	zeros	to	give	a	fixed	length,	generate	the	fixed	length	
binary	block	M̃=M||0…0||lM	by	adding	in	zeros	so	that	the	length	of	M̃	is	a	multiple	of	l/R-lid.

3.	 Divide	M̃	into	pieces	M̃i	of	equal	length	l/R-lid.	

As in [7], [10], the oligonucleotide library is sequenced using next-generation sequencing technologies.

The decoding scheme identifies each base of encoded information based on a majority vote of all the read

bases corresponding to its position [10]. The final decoding into the message file from the sequencing reads

is obtained by exactly reversing the encoding process.

STEP 1. Encoding: The original text or data are subdivided into equal length blocks. Each block

contains both the data part and the corresponding addressing information. Combining both into one block

before repetition and sequencing helps to ensure proper placement during decoding.

1. Represent the original message M in binary and let len(M) be the length (in characters) of the binary

representation of M .

2. Let lM be the representation of len(M) in binary, as appropriate pre-pend with zeros to give a fixed

length, generate the fixed length binary block M̃ = M ||0 . . . 0||lM by adding in zeros so that the length

of M̃ is a multiple of l/R− lid.

3. Divide M̃ into pieces M̃i of equal length l/R− lid.

M̃ = M̃1︸︷︷︸
of length l/R − lid

|| M̃2︸︷︷︸
of length l/R − lid

||...|| M̃n︸︷︷︸
of length l/R − lid

. (1)

This exactly incorporates all of M̃ .

4. Let IDbin be a (fixed length) binary string identifying the original file and unique with a given ex-

periment. For each counter i obtained in step 2, find the binary representation of i. Let IDi be the

concatenation of IDbin and the binary representation of i. If needed, pre-pend the latter with zeros to

give the fixed length lid for each IDi.

5. Incorporate the identifier IDi into each block of M̃i to get

m = M̃1||ID1︸ ︷︷ ︸
of length l/R

|| M̃2||ID2︸ ︷︷ ︸
of length l/R

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R

. (2)

This divides m into equal size blocks m = m1||m2|| . . . ||mn where mi = M̃i||IDi.

6. Represent each block R times which will give the individual DNA segments of length l, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

5

Sequence of
Steps Main Features Comment

STEP	1,	STEP	2 Detection	of	substitution	errors To	detect	t	substitution	errors,	choose	R	such	that	R•S	≥	2t	+	1

STEP	3,	STEP	2 Improved	randomization

The	randomization	function	number	7	in	STEP	1	may	lead	to	self-
complementary	patterns,	e.g.,	when	encoding	consecutive	1's.	Simple	
cryptographic	techniques	yield	a	higher	degree	of	randomness	to	

prevent	self-complementarity	and	other	harmful	patterns

STEP	3,	STEP	4,	
STEP	2

Detection	of	any	errors,	including	those	during	message	
DNA	preparation

Authenticity	is	established	via	a	cryptographic	hash	value	that	is	
appended	to	the	message	part	before	sequencing.	This	enables	the	

choice	of	the	correct	reads	(provided	at	least	one	exists,	i.e.,	that	S>0)
STEP	3,	STEP	5,	

STEP	2 Proof	of	Authenticity	of	the	individual	segments Similar	to	previous	steps,	but	more	efficient

Table 1: Algorithm	STEPS	and	their	Main	Features.

Summary of potential errors in storing data in DNA with existing approaches
Type of problem Previous approaches Our approach

Efficient	generation	de-novo	of	DNA	
according	to	predetermined	design

Generation	of	short	DNA	
segments	with	small	potential	

for	errors
Same	as	[7,10]

Individual	pieces	require	correct	
identification	and	alignment	during	decoding

Segmentation	into	both	data	
and	addressing	info Same	as	[7,10]

ID	and	address	of	individual	segments	needs	
to	be	included	in	the	code

Parity	check	to	test	obtained	
indexing	identification Included	as	part	of	robustness	features	of	algorithm	techniques

Sequences	with	specific	properties	or	
structure	cannot	be	sequenced

Reverse-complementation,	25	
bp	of	set	the	homopolymer	
rule,	manual	correction,	

randomization

Refined	randomization

Errors	can	occur	in	each	individual	step	of	
the	Algorithm

Coding	theory	and	ampli	cation	
and/or	sequencing	of	many	

strings
Tools	derived	from	provably	secure	crypto	systems

Errors	that	occur	early	cannot	be	identified	
or	corrected. Manual	intervention	 Proof	of	correctness	of	obtained	strings	and	Proof	of	completeness	

of	recovered	data	via	a	simple	cryptographic	solution

Table 2: Primary	potential	for	errors	when	using	DNA	as	data	storage.	This	table	provides	a	comparison	of	type.	of	problems	that	can	arise	when	using	
DNA	as	data	storage,	the	previous	approaches	in	dealing	with	these	problems	and	our	approach.	In	combining	the	strengths	of	the	existing	methods	
via	coding	theory	with	our	proposed	cryptographic	solutions,	the	algorithm	is	simplified	and	made	more	efficient.	The	last	step	utilizes	a	specific	
optimal	scheme	from	cryptography	(Optimal	Asymmetric	Encryption	Padding)	which	is	probably	the	most	efficient	way	to	ensure	correctness	of	the	
entire	string	along	with	adequate	randomization.

2017
Vol. 7 No. 3:19

4 This article is available from: www.imedpub.com/european-journal-of-experimental-biology/

European Journal of Experimental Biology
ISSN 2248-9215

4. This	exactly	incorporates	all	of	M̃.

5. Let	IDbin	be	a	(fixed	length)	binary	string	identifying	the	original	file	and	unique	with	a	given	experiment.	For	each	counter	i	obtained	
in	step	2,	find	the	binary	representation	of	i.	Let	IDi be	the	concatenation	of	IDbin	and	the	binary	representation	of	i.	If	needed,	pre-
pend	the	latter	with	zeros	to	give	the	fixed	length	lid	for	each	IDi.

6.	 Incorporate	the	identifier	IDi into	each	block	of	Mi	to	get	

As in [7], [10], the oligonucleotide library is sequenced using next-generation sequencing technologies.

The decoding scheme identifies each base of encoded information based on a majority vote of all the read

bases corresponding to its position [10]. The final decoding into the message file from the sequencing reads

is obtained by exactly reversing the encoding process.

STEP 1. Encoding: The original text or data are subdivided into equal length blocks. Each block

contains both the data part and the corresponding addressing information. Combining both into one block

before repetition and sequencing helps to ensure proper placement during decoding.

1. Represent the original message M in binary and let len(M) be the length (in characters) of the binary

representation of M .

2. Let lM be the representation of len(M) in binary, as appropriate pre-pend with zeros to give a fixed

length, generate the fixed length binary block M̃ = M ||0 . . . 0||lM by adding in zeros so that the length

of M̃ is a multiple of l/R− lid.

3. Divide M̃ into pieces M̃i of equal length l/R− lid.

M̃ = M̃1︸︷︷︸
of length l/R − lid

|| M̃2︸︷︷︸
of length l/R − lid

||...|| M̃n︸︷︷︸
of length l/R − lid

. (1)

This exactly incorporates all of M̃ .

4. Let IDbin be a (fixed length) binary string identifying the original file and unique with a given ex-

periment. For each counter i obtained in step 2, find the binary representation of i. Let IDi be the

concatenation of IDbin and the binary representation of i. If needed, pre-pend the latter with zeros to

give the fixed length lid for each IDi.

5. Incorporate the identifier IDi into each block of M̃i to get

m = M̃1||ID1︸ ︷︷ ︸
of length l/R

|| M̃2||ID2︸ ︷︷ ︸
of length l/R

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R

. (2)

This divides m into equal size blocks m = m1||m2|| . . . ||mn where mi = M̃i||IDi.

6. Represent each block R times which will give the individual DNA segments of length l, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

5

7.	 This	divides	m into	equal	size	blocks	m=m1||m2||	...	||mn	where	mi=M̃ i||IDi.

8.	 Represent	each	block	R	times	which	will	give	the	individual	DNA	segments	of	length	l,	i.e.,	let	

As in [7], [10], the oligonucleotide library is sequenced using next-generation sequencing technologies.

The decoding scheme identifies each base of encoded information based on a majority vote of all the read

bases corresponding to its position [10]. The final decoding into the message file from the sequencing reads

is obtained by exactly reversing the encoding process.

STEP 1. Encoding: The original text or data are subdivided into equal length blocks. Each block

contains both the data part and the corresponding addressing information. Combining both into one block

before repetition and sequencing helps to ensure proper placement during decoding.

1. Represent the original message M in binary and let len(M) be the length (in characters) of the binary

representation of M .

2. Let lM be the representation of len(M) in binary, as appropriate pre-pend with zeros to give a fixed

length, generate the fixed length binary block M̃ = M ||0 . . . 0||lM by adding in zeros so that the length

of M̃ is a multiple of l/R− lid.

3. Divide M̃ into pieces M̃i of equal length l/R− lid.

M̃ = M̃1︸︷︷︸
of length l/R − lid

|| M̃2︸︷︷︸
of length l/R − lid

||...|| M̃n︸︷︷︸
of length l/R − lid

. (1)

This exactly incorporates all of M̃ .

4. Let IDbin be a (fixed length) binary string identifying the original file and unique with a given ex-

periment. For each counter i obtained in step 2, find the binary representation of i. Let IDi be the

concatenation of IDbin and the binary representation of i. If needed, pre-pend the latter with zeros to

give the fixed length lid for each IDi.

5. Incorporate the identifier IDi into each block of M̃i to get

m = M̃1||ID1︸ ︷︷ ︸
of length l/R

|| M̃2||ID2︸ ︷︷ ︸
of length l/R

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R

. (2)

This divides m into equal size blocks m = m1||m2|| . . . ||mn where mi = M̃i||IDi.

6. Represent each block R times which will give the individual DNA segments of length l, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

59.		 In	the	basic	scheme	we	use	standard	methods	to	achieve	randomization.	This	is	generated	by	the	base-2	to	base-4	conversion.	
Generally,	given	the	binary	string	s=s1s2 ... sn,	this	gives	one	of	the	four	values	A, C, G, T	according	to	A	or	C	randomly,	if	si=0	and	
T	or	G	randomly	if	si=1	for	each	i.	This	randomization	is	applied	here	to	t=t1,	t2,...,	tn	but	with	the	stronger	restriction	of	avoiding	
homopolymer	runs	of	length	≥	2.	This	gives	the	base	four	oligos	f1=F (t1), f2=F (t2),..., fn=F (tn)	in	terms	of	the	four	nts	A, C, G, T.

STEP	1	may	be	improved	via	a	7	step	process	outlined	below.	The	original	DNA	sequence	along	with	the	addressing	information	is	
subdivided	into	blocks	of	length	l.	Instead	of	amplifying	and	sequencing	each	block	as	it	contains	the	base	four	representation	of	the	
data	along	with	their	identifiers	that	might	lead	to	sequencing	errors,	each	of	the	blocks	are	masked	by	some	randomizing	features.	
The	key	to	code	and	decode	this	randomization	is	appended	to	each	block.	Consequently,	both	the	original	part	containing	the	nt	and	
the	appended	randomizer	convert	each	block	into	arbitrary	sequences	with	(pseudo)	random	properties.	As	random	strings,	they	can	
be	amplified	and	sequenced.	Since	representation	in	base	3	is	somewhat	more	efficient	than	in	base	2,	base	3	representation	is	used,	
with	base	3	to	base	4	(i.e.,	DNA)	representation	accomplished	via	the	algorithm	[10].

1. Represent	the	original	message	M	as	a	concatenation	of	base	3	strings	that	are	obtained	via	the	Huffman	algorithm	and	append	
enough	zeros	to	M	to	get	M̃=M0	...	0	so	that	the	length	of	this	is	a	multiple	of	l/R-lid-lr.	The	Huffman	step	adds	further	efficiency	and	

Figure 1 Error	correction	in	our	basic	encoding	scheme. The	Error	Probability	during	the	entire	protocol,	synthesis	
and	sequencing,	versus	optimal	R	value	for	different S.	To	correct	t	substitution	errors	the	Hamming	
distance	of	the	code,	R•S	must	be	≥ 2t+1.	Once	S	 is	known,	R	 is	chosen	accordingly.	The	figure	gives	
examples	of	such	choices	for	which	all	errors	in	synthesis	and	sequencing	can	be	corrected.	The	optimal	
R	value	(left)	is	the	R	value	that	maximizes	the	largest	available	effective	message	length,	i.e.	the	length	
of	each	segment	M̃i.	The	plot	on	the	right	shows	the	result	for	our	basic	encryption	scheme,	where	this	
length	is	l/R-lid:	In	these	plots,	lid=15	and	l=200.

5© Under License of Creative Commons Attribution 3.0 License

2017
Vol. 7 No. 3:19

European Journal of Experimental Biology
ISSN 2248-9215

uniqueness	in	decoding.	Without	it,	the	length	of	M, lM	needs	to	be	appended,	as	above	(see	the	example	below).

2.	 Split	M̃	into	pieces	M̃i	of	equal	length	l/R-lid-lr.	

7. In the basic scheme we use standard methods to achieve randomization. This is generated by the

base-2 to base-4 conversion. Generally, given the binary string s = s1s2 . . . sn, this gives one of the

four values A,C,G, T according to A or C randomly, if si = 0 and T or G randomly if si = 1 for each

i. This randomization is applied here to t = t1, t2, . . . , tn but with the stronger restriction of avoiding

homopolymer runs of length ≥ 2. This gives the base four oligos f1 = F (t1), f2 = F (t2), . . . , fn = F (tn)

in terms of the four nts A,C,G, T .

STEP 1 may be improved via a 7 step process outlined below. The original DNA sequence along with

the addressing information is subdivided into blocks of length l. Instead of amplifying and sequencing each

block as it contains the base four representation of the data along with their identifiers that might lead to

sequencing errors, each of the blocks are masked by some randomizing features. The key to code and decode

this randomization is appended to each block. Consequently, both the original part containing the nt and

the appended randomizer convert each block into arbitrary sequences with (pseudo) random properties. As

random strings, they can be amplified and sequenced. Since representation in base 3 is somewhat more

efficient than in base 2, base 3 representation is used, with base 3 to base 4 (i.e., DNA) representation

accomplished via the algorithm in [10].

1. Represent the original message M as a concatenation of base 3 strings that are obtained via the

Huffman algorithm and append enough zeros to M to get M̃ = M0 . . . 0 so that the length of this is

a multiple of l/R − lid − lr. The Huffman step adds further efficiency and uniqueness in decoding.

Without it, the length of M , lM needs to be appended, as above (see the example below).

2. Split M̃ into pieces M̃i of equal length l/R− lid − lr.

M̃ = M̃1︸︷︷︸
of length l/R − lid − lr

|| M̃2︸︷︷︸
of length l/R − lid − lr

||...|| M̃n︸︷︷︸
of length l/R − lid − lr

. (3)

By step 1.) this exactly divides out all of M̃ .

3. Let IDter be a (fixed length) base-3 string identifying the original file and unique with a given exper-

iment. For each counter i obtained in step 2, let IDi be the concatenation of IDter and the base-3

representation of i, the latter pre-pended with zeros as needed to give the fixed length lid for each IDi.

4. Incorporate the identifier IDi into each block of M̃i to get

m̃ = M̃1||ID1︸ ︷︷ ︸
of length l/R − lr

|| M̃2||ID2︸ ︷︷ ︸
of length l/R − lr

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R − lr

. (4)

6

By	step	1	this	exactly	divides	out	all	of	M̃.

3. Let	IDter	be	a	(fixed	length)	base-3	string	identifying	the	original	file	and	unique	with	a	given	experiment.	For	each	counter	i	obtained	
in	step	2,	let	IDi be	the	concatenation	of	IDter	and	the	base-3	representation	of	i,	the	latter	pre-pended	with	zeros	as	needed	to	give	
the	fixed	length	lid	for	each	IDi.

4.	 Incorporate	the	identifier	IDi into	each	block	of	M̃i to	get	the	below	sequence.	

7. In the basic scheme we use standard methods to achieve randomization. This is generated by the

base-2 to base-4 conversion. Generally, given the binary string s = s1s2 . . . sn, this gives one of the

four values A,C,G, T according to A or C randomly, if si = 0 and T or G randomly if si = 1 for each

i. This randomization is applied here to t = t1, t2, . . . , tn but with the stronger restriction of avoiding

homopolymer runs of length ≥ 2. This gives the base four oligos f1 = F (t1), f2 = F (t2), . . . , fn = F (tn)

in terms of the four nts A,C,G, T .

STEP 1 may be improved via a 7 step process outlined below. The original DNA sequence along with

the addressing information is subdivided into blocks of length l. Instead of amplifying and sequencing each

block as it contains the base four representation of the data along with their identifiers that might lead to

sequencing errors, each of the blocks are masked by some randomizing features. The key to code and decode

this randomization is appended to each block. Consequently, both the original part containing the nt and

the appended randomizer convert each block into arbitrary sequences with (pseudo) random properties. As

random strings, they can be amplified and sequenced. Since representation in base 3 is somewhat more

efficient than in base 2, base 3 representation is used, with base 3 to base 4 (i.e., DNA) representation

accomplished via the algorithm in [10].

1. Represent the original message M as a concatenation of base 3 strings that are obtained via the

Huffman algorithm and append enough zeros to M to get M̃ = M0 . . . 0 so that the length of this is

a multiple of l/R − lid − lr. The Huffman step adds further efficiency and uniqueness in decoding.

Without it, the length of M , lM needs to be appended, as above (see the example below).

2. Split M̃ into pieces M̃i of equal length l/R− lid − lr.

M̃ = M̃1︸︷︷︸
of length l/R − lid − lr

|| M̃2︸︷︷︸
of length l/R − lid − lr

||...|| M̃n︸︷︷︸
of length l/R − lid − lr

. (3)

By step 1.) this exactly divides out all of M̃ .

3. Let IDter be a (fixed length) base-3 string identifying the original file and unique with a given exper-

iment. For each counter i obtained in step 2, let IDi be the concatenation of IDter and the base-3

representation of i, the latter pre-pended with zeros as needed to give the fixed length lid for each IDi.

4. Incorporate the identifier IDi into each block of M̃i to get

m̃ = M̃1||ID1︸ ︷︷ ︸
of length l/R − lr

|| M̃2||ID2︸ ︷︷ ︸
of length l/R − lr

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R − lr

. (4)

6		 This	divides	m̃	into	equal	size	blocks	m̃=m̃1||m̃2|| ... ||m̃n.

5.	 For	each	piece	in	m̃	chose	a	random	string	ri of	constant	length	lr	and	compute.

This divides m̃ into equal size blocks m̃ = m̃1||m̃2|| . . . ||m̃n.

5. For each piece in m̃ chose a random string ri of constant length lr and compute

m = m̃1 ⊕3 e(r1)||r1︸ ︷︷ ︸
of length l/R

|| m̃2 ⊕3 e(r2)||r2︸ ︷︷ ︸
of length l/R

||...|| m̃n ⊕3 e(rn)||rn︸ ︷︷ ︸
of length l/R

. (5)

Here, ⊕3 denotes direct sum modulo 3. This divides m into equal size blocks m = m1||m2|| . . . ||mn

where mi = m̃i ⊕3 e(ri)||ri.

6. Represent each block R times, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

.

7. Represent DNA as A,C,G, T (rather than base 3) using the base-3 to DNA encoding [10].

While STEP 1 is very easy to apply, the randomization step number 7 in STEP 1 may not always provide

sufficient random effect to avoid any detrimental structures and properties of the obtained nt sequence.

Number 7 in STEP 1 by itself is random, but for longer sequences of, for example, 0’s, may still give rise to

AC repeats, violating the desired homopolymer condition.

STEP 2. Generation of DNA:

1. Determine the code as a collection of DNA segments G(f) = G(f1), . . . , G(fn), where G denotes the

physical representation and synthesis of DNA corresponding to the design given in segment ti of length

l (oligo library synthesis).

2. Perform the characterization algorithms (e.g., [4], see [10]) to validate the correctness of the synthesized

library.

3. Amplify and sequence a sufficient number of copies (i.e., S̃ times) to ensure that each base of the

original message will be recovered at least S times.

STEP 3: Improved Encoding: A cryptographic randomization function is chosen as follows to ensure

sufficient randomness in number 7 in STEP 1: Select a cryptographic expansion function e that takes as

input short random strings r and outputs longer (for the algorithm in [10] - ternary) strings e(r) that are

random. Select lr the length of the input string r and let the output length be l/R− lr.

7

	 Here,	⊕3	denotes	direct	sum	modulo	3.	This	divides	m	into	equal	size	blocks	m=m1||m2|| ... ||mn where	mi=m̃i ⊕3 e(ri)||ri.

6	 Represent	each	block	R	times,	i.e.,	let	

This divides m̃ into equal size blocks m̃ = m̃1||m̃2|| . . . ||m̃n.

5. For each piece in m̃ chose a random string ri of constant length lr and compute

m = m̃1 ⊕3 e(r1)||r1︸ ︷︷ ︸
of length l/R

|| m̃2 ⊕3 e(r2)||r2︸ ︷︷ ︸
of length l/R

||...|| m̃n ⊕3 e(rn)||rn︸ ︷︷ ︸
of length l/R

. (5)

Here, ⊕3 denotes direct sum modulo 3. This divides m into equal size blocks m = m1||m2|| . . . ||mn

where mi = m̃i ⊕3 e(ri)||ri.

6. Represent each block R times, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

.

7. Represent DNA as A,C,G, T (rather than base 3) using the base-3 to DNA encoding [10].

While STEP 1 is very easy to apply, the randomization step number 7 in STEP 1 may not always provide

sufficient random effect to avoid any detrimental structures and properties of the obtained nt sequence.

Number 7 in STEP 1 by itself is random, but for longer sequences of, for example, 0’s, may still give rise to

AC repeats, violating the desired homopolymer condition.

STEP 2. Generation of DNA:

1. Determine the code as a collection of DNA segments G(f) = G(f1), . . . , G(fn), where G denotes the

physical representation and synthesis of DNA corresponding to the design given in segment ti of length

l (oligo library synthesis).

2. Perform the characterization algorithms (e.g., [4], see [10]) to validate the correctness of the synthesized

library.

3. Amplify and sequence a sufficient number of copies (i.e., S̃ times) to ensure that each base of the

original message will be recovered at least S times.

STEP 3: Improved Encoding: A cryptographic randomization function is chosen as follows to ensure

sufficient randomness in number 7 in STEP 1: Select a cryptographic expansion function e that takes as

input short random strings r and outputs longer (for the algorithm in [10] - ternary) strings e(r) that are

random. Select lr the length of the input string r and let the output length be l/R− lr.

7

7	 Represent	DNA	as	A, C, G, T	(rather	than	base	3)	using	the	base-3	to	DNA	encoding	[10].

While	STEP	1	is	very	easy	to	apply,	the	randomization	step	number	7	in	step	1	may	not	always	provide	sufficient	random	effect	to	avoid	
any	detrimental	structures	and	properties	of	the	obtained	nt	sequence	[17].	Number	7	in	step	1	by	itself	is	random,	but	for	longer	
sequences	of,	for	example,	0's,	may	still	give	rise	to	AC	repeats,	violating	the	desired	homopolymer	condition.

STEP 2-Generation of DNA
1.	 Determine	 the	 code	 as	 a	 collection	 of	 DNA	 segments	G(f)=G(f1): ... :G(fn), where	G	 denotes	 the	 physical	 representation	 and	

synthesis	of	DNA	corresponding	to	the	design	given	in	segment	ti	of	length	l	(oligo	library	synthesis).

2.	 Perform	the	characterization	algorithms	(e.g.,	[4],	see	[10])	to	validate	the	correctness	of	the	synthesized	library.

3.	 Amplify	 and	 sequence	 a	 sufficient	 number	 of	 copies	 (i.e.,	 Š	 times)	 to	 ensure	 that	 each	 base	 of	 the	 original	message	will	 be	
recovered	at	least	S	times.

STEP 3-Improved encoding
A	 cryptographic	 randomization	 function	 is	 chosen	 as	 follows	 to	 ensure	 sufficient	 randomness	 in	 number	 7	 in	 step	 1-Select	 a	
cryptographic	expansion	function	e	that	takes	as	input	short	random	strings	r	and	outputs	longer	(for	the	algorithm	in	[10]	-	ternary)	
strings	e(r)	that	are	random.	Select	lr	the	length	of	the	input	string	r	and	let	the	output	length	be	l/R-lr.

For	the	improved	encryption	scheme,	the	repetition	also	results	in	a	R.S	repetition	code.	The	main	difference	is	the	randomization	via	
m̃i⊕3e(ri)||ri	which	makes	each	component	completely	(pseudo)-random.	This	step	could	be	realized	in	binary	(as	above),	or	designed	
in	combination	with	other	codes	from	coding	theory	[18].	The	Huffman	code	that	we	apply	has	several	additional	robustness	features.	
The	decoding	is	the	reverse	of	coding	protocol.	In	addition,	each	m̃i	needs	to	be	recovered	in	(5)	by	recovering	ri	and	recomputing	e(ri).	
This	allows	the	computation	of	m̃i from	the	first	part	of	each	mi.	Continuing	as	above	this	yields	M.	The	original	data	length	does	not	
have	to	be	included	but	may	be.	Rather,	decoding	follows	from	properties	of	the	Huffman	table.	Beginning	at	the	first	part	of	M̃	find	

2017
Vol. 7 No. 3:19

6 This article is available from: www.imedpub.com/european-journal-of-experimental-biology/

European Journal of Experimental Biology
ISSN 2248-9215

the	corresponding	Huffman	text	words	of	length	5	or	6	(whichever	is	found	in	the	Huffman	table).	Because	there	is	no	Huffman	code	
word	in	the	table	that	consists	only	of	zeros	the	process	terminates	when	the	next	block	of	length	5	or	6	are	all	zeros.

Using	a	Huffman	code	as	in	[10]	has	independent	advantages,	in	addition	to	what	is	needed	for	error	correction.	It	leads	to	shorter	
average	text	lengths	than	for	fixed	length	codes.	Moreover,	Huffman	code	words	that	are	tabulated	give	additional	protection	against	
errors.	Indeed,	there	are	a	total	of	35 +36	ternary	words	of	length	5	or	6,	but	only	a	few	hundred	of	these	are	words	used	in	the	table.	
Finally,	 it	automatically	offers	additional	robustness	via	the	 individual	word	 lengths,	e.g.,	the	original	text	 length	follows	from	the	
individual	Huffman	codewords	and	does	not	need	to	be	included	explicitly	in	M̃.

The	randomization	step	provides	true	pseudo-randomness	that	should	provide	adequate	scrambling	of	the	nt's	to	prevent	detrimental	
DNA	structure	and	formation.	Each	component	in	the	message	is	a	completely	random	string.	Nonetheless	the	randomization	key	is	
automatically	obtained	during	decoding	and	does	not	require	any	additional	steps	(e.g.,	sending	the	key	to	the	decoder)	[19].	Different	
ri's	are	chosen	to	avoid	the	presence	of	the	same	part	r.	Randomization	provides	a	mechanism	to	identify	mutations	in	living	systems.	
Algorithms	described	for	in vitro	applications	can	be	extended	to	in vivo	approaches	like	[24].

Throughout	it	is	assumed	that	both	R	and	S	are	≥	1.	Thus,	after	sequencing	each	original	base	is	recovered	at	least	once,	and	each	
block	is	repeated	R	≥	1	times.	As	in	[10],	the	decoding	scheme	identifies	each	base	of	encoded	information	based	on	a	majority	vote	
of	all	the	read	bases	corresponding	to	its	position.	As	each	base	of	encoded	information	is	represented	R	times,	due	to	their	minimal	
base	coverage	S,	each	will	be	represented	R•S	time	in	our	R•S	repetition	code.	From	this	it	follows	that	the	minimum	distance	of	our	
encoding	scheme	is	R•S	[18].	Practically,	the	distribution	of	the	mean	number	of	times	each	base	of	encoded	information	is	sequenced	
and	the	base	coverage	follows	a	normal	distribution.	In	both	[7]	and	[10],	the	mean	is	quite	large.	The	limiting	issue	is	the	minimum	of	
these,	termed	S.	Quality	control	and	evaluation	of	current	sequencing	algorithms	dictates	how	many	sequences	need	to	be	generated	
(i.e.,	how	large	Š	needs	to	be)	to	obtain	S>1.	These	do	not	correct	situations	where	S=0.	This	occurred	in	Ref.	10	and	required	manual	
intervention.

STEP 4-Detection of any errors, including those during message DNA preparation

Using	an	R•S-fold	repetition	code	as	above,	allows	the	detection	and	correction	of	many	substitution	errors	during	sequencing,	storage,	
and	decoding,	but	it	cannot	correct	errors	due	to	insertion	or	deletion,	or	if	the	error	occurred	earlier	[20],	i.e.,	during	message	DNA	
preparation,	even	when	R or S	is	large.	Alternatively,	if	S=0	for	some	message	bases,	as	was	the	case	in	[10]	where	the	sequencing	
reaction	destroyed	two	regions	of	nt's,	then	the	data	are	lost	and	cannot	be	recovered.

In	fact,	[21]	argued	that	unfortunately	there	is	no	system	that	would	provide	security	and	protection	against	errors	that	are	introduced	
at	the	level	of	message	DNA	preparation.	Such	errors	cannot	be	fixed	by	the	synthesis	of	enough	oligos.	These	types	of	errors	may	lead	
to	inaccurate	decoding	and	change	the	meaning	of	the	recovered	message.	This	would	be	extremely	harmful	in	situations	when	the	
change	of	meaning	is	not	obvious	or	when	there	is	no	way	to	assign	meaning,	as	with	a	cryptographic	key	or	access	code.

In	such	a	case	it	would	be	desirable,	at	least,	to	be	aware	of	such	errors.	Goldman	et	al.	[10]	employed	some	quality	control	mechanisms	
after	DNA	synthesis,	library	preparation,	and	sequencing.	They	compared	the	GC	content	and	the	k-mer	frequencies	along	the	reads	
with	the	designed	DNA	strings.	This	approach	may	not	be	able	to	detect	data	loss	during	the	sequencing	reaction.	It	would	also	not	
identify	errors	made	during	initial	message	DNA	generation.	For	instance,	faulty	oligos	can	mimic	a	desired	GC content	and	thereby	
pass	the	checking	routine	[10].	The	following	approaches	will	address	these	issues.

1.	 During	encoding,	append	the	hash	value	H(M̃)	to	M̃.

2.	 During	decoding	recompute	the	hash	value	of	the	rst	part	of	M̃	and	compare	it	to	the	given	hash	value.	These	values	can	only	agree	
if	no	errors	had	occurred.

In	 information	 theory,	 cryptographic	 hash	 functions	 are	 a	means	 for	 ensuring	 authenticity.	 For	 example,	 they	 are	used	 to	 check	
whether	a	le	has	been	changed.	The	hash	value	of	the	le	is	stored	separately	and	the	integrity	of	the	le	is	checked	by	computing	the	
hash	value	of	the	actual	le	and	comparing	it	with	the	stored	hash	value.	If	the	hash	values	are	the	same,	then	the	le	is	unchanged.	
Secure	hash	functions	have	been	developed	that	are	mathematically	strong	in	a	range	of	situations	[1,6,22].

This	step	improves	the	previous	algorithms	by	providing	proof	if	errors	occurred	during	message	DNA	generation.	Practically,	hash	
functions	generate	a	very	short	output,	so	the	cost	in	message	expansion	via	H(M̃)	is	minimal.	While	it	is	easy	to	appended	the	hash	
value	to	M̃,	the	added	number	of	strings	impacts	efficiency.	Effectively,	the	available	message	length	is	shortened	by	whatever	length	
the	hash	value	requires.	Below,	a	more	efficient	approach	is	described.

STEP 5-Establishing authenticity of the individual segments
In	order	 to	achieve	 this	without	 knowledge	of	 the	message	meaning	 two	modifications	 to	 the	above	 scheme	are	needed	during	
encoding.

1.	 Choice	of	security	parameter	and	identifiers:	Let	k	be	a	small	number,	e.g., k=10	or	15	(this	will	be	further	described	below).	Modify	

7© Under License of Creative Commons Attribution 3.0 License

2017
Vol. 7 No. 3:19

European Journal of Experimental Biology
ISSN 2248-9215

number	3	in	STEP	3	as	follows.	Let IDi=IDter||1k||0 ... ||0i3,	where	i3	is	the	base-	3	representation	of	i,	prepended	with	zeros	so	that	
IDi is	of	fixed	length	lid:	The	difference	to	above	is	that	k	1’s	are	inserted	in	each	identifier.	This	special	structure	will	be	used	during	
a	verification	step	during	decoding.

2.	 Computation	of	m:	Update	equation	(5)	as	follows:

impacts efficiency. Effectively, the available message length is shortened by whatever length the hash value

requires. Below, a more efficient approach is described.

STEP 5. Establishing authenticity of the individual segments : In order to achieve this without

knowledge of the message meaning two modifications to the above scheme are needed during encoding.

1. Choice of security parameter and identifiers: Let k be a small number, e.g., k = 10 or 15 (this will

be further described below). Modify number 3 in STEP 3 as follows. Let IDi = IDter||1k||0 . . . ||0i3,

where i3 is the base- 3 representation of i, prepended with zeros so that IDi is of fixed length lid.

The difference to above is that k 1′s are inserted in each identifier. This special structure will be used

during a verification step during decoding.

2. Computation of m: Update equation (5) as follows:

m = m̃1 ⊕3 e(r1)||r1 ⊕3 H(m̃1 ⊕3 e(r1))︸ ︷︷ ︸
of length l/R

|| . . . || m̃n ⊕3 e(rn)||rn ⊕3 H(m̃n ⊕3 e(rn))︸ ︷︷ ︸
of length l/R

. (6)

As above, this dividesm into equal size blocksm = m1||m2|| . . . ||mn, where nowmi = m̃i⊕3e(ri)||ri⊕3

H(m̃i ⊕3 e(ri)).

During decoding, each mi is validated for correctness by itself, as follows:

1. Define the first l/R− lr digits in mi as m̃i ⊕3 e(ri).

2. Compute the hash value.

3. Define ri as the last lr digits in mi subtracted bitwise modulo 3 from the value in step (2).

4. Compute e(ri).

5. Obtain m̃i via e(ri) from the value obtained in step (colorgreen 1).

6. Obtain M̃i and IDi from each m̃i according to their respective lengths.

7. Define z as the k digits in IDi immediately following the (fixed length) identifying info IDter in IDi.

Check if z is a string of k 1’s. If so, return i, M̃i and IDter. Otherwise report an error.

STEP 5 relies on verifying the final product and proves that this is the original encoded data. Without

knowing what the original data are, the algorithm can verify whether the original and final data are the

same. The algorithmic security check (number 7 in STEP 5) will only pass for blocks that are entirely

10

As	above,	this	divides	m	into	equal	size	blocks	m=m1||m2|| ... ||mn ,	where	now	mi=m̃i⊕3 e(ri)||ri ⊕3 H(m̃i⊕3 e(ri)).

During	decoding,	each	mi	is	validated	for	correctness	by	itself,	as	follows:

1.	 Define	the	first	l/R- lr digits	in	mi	as	m̃i⊕3e(ri).

2.	 Compute	the	hash	value.

3.	 Define	ri as	the	last	lr	digits	in	mi	subtracted	bitwise	modulo	3	from	the	value	in	step	(2).

4.	 Compute	e(ri).

5.	 Obtain	m̃i via	e(ri) from	the	value	obtained	in	step	(1).

6.	 Obtain	M̃i and	IDi from	each	m̃i according	to	their	respective	lengths.

7.	 Define	z	as	the	k	digits	in	IDi	immediately	following	the	(fixed	length)	identifying	info	IDter in	IDi.

Check	if	z	is	a	string	of	k	1's.	If	so,	return	i, m̃i and IDter.	Otherwise	report	an	error.

STEP	5	relies	on	verifying	the	final	product	and	proves	that	this	is	the	original	encoded	data.	Without	knowing	what	the	original	data	
are,	the	algorithm	can	verify	whether	the	original	and	final	data	are	the	same.	The	algorithmic	security	check	(number	7	in	STEP	5)	will	
only	pass	for	blocks	that	are	entirely	correct.	This	includes	correctness	for	the	data	as	well	as	the	addressing	component.	In	particular,	
any	nucleotide	errors	as	well	as	wrong	placement	will	lead	to	an	error	message.	To	find	which	one	is	correct,	only	one	string	needs	to	
be	identified.	This	idea	has	been	used	for	various	cryptographic	applications	[1,6,22].	It	was	originally	designed	for	achieving	provable	
optimal	asymmetric	encryption	[5].	That	context	requires	the	additional	feature	of	maintaining	secrecy.	We	adapted	the	underlying	
premise	of	this	approach	to	our	algorithm.	A	formal	proof	of	security	is	given	in	[5].	In	essence,	it	is	impossible	to	get	a	valid	cipher	
text,	other	than	starting	with	the	message	(i.e.,	the	data	to	be	encoded)	and	encoding	it	with	the	above	algorithm.

A	necessary	condition	for	the	security	check	in	number	7	in	STEP	5	is	that	all	of	the	encoded	part	of	the	block	is	obtained	and	decoded	
correctly.	Any	error	during	decoding	will	almost	certainly	lead	to	a	decoded	value	of	z	that	is	not	all	1's.	This	is	based	on	the	fact	that	if	
the	decoded	value	of	e(r) or of H(m̃i⊕3e(ri))	and	the	original	value	are	not	the	same,	then	it	is	unlikely	that	the	random	cryptographic	
functions	will	result	in	the	desired	value	of	z.	A	more	refined	proof	(relative	to	plaintext-awareness)	is	given	in	[5].

Any	possible	error	during	the	entire	synthesis	process	will	be	detected	but	may	not	be	corrected	at	this	point.	This	includes	errors	during	
message	DNA	preparation,	or	if	the	sequencing	depth	for	some	bases	is	zero,	i.e.,	if	some	data	were	consumed	during	the	process.	
In	our	algorithm,	the	message	part	contains	both	the	original	data	component	as	well	as	its	corresponding	indexing	information.	The	
check	guarantees	validity	of	the	data	part	and	establishes	that	the	addressing	 information	will	be	obtained	correctly	as	the	check	
applies	to	both;	thus,	wrong	placement	is	impossible.	In	particular,	the	algorithm	can	verify	if	the	decoded	message	is	the	same	as	
the	original	message,	and	any	nt	error	or	wrong	placement	will	lead	to	an	error	message.	Typically,	with	next	generation	sequencing,	
there	will	be	numerous	correct	reads.	Even	though	the	original	message	is	never	seen,	it	can	be	verified	as	correct.	Thus,	alignment	
and	comparison	are	not	necessary.	When	one	correct	string	has	been	identified,	the	process	of	identifying	the	next	correct	string	can	
proceed.	Finally,	on	average,	this	should	be	a	great	saving	over	current	alignment	based	techniques	to	identify	correct	strings.	Only	
one	correct	string	needs	to	be	identified.	If	there	is	no	single	correct	string,	this	will	be	identified	quickly	by	the	algorithmic	check,	in	
which	case	majority	voting	needs	to	be	applied	for	each	base	individually.

The	price	for	this	security	check	is	the	number	k	of	1's	added	to	IDi.	In	provably	secure	cryptographic	systems	there	is	considerable	
uncertainty	regarding	acceptable	limits	to	k	 [1,6,13,22].	We	suggest	k=10	or	15	should	be	large	enough	such	that	a	block	of	1's	 is	
unlikely	to	be	present	by	chance.	The	length	of	k	effectively	defines	the	possible	length	of	M̃	and	of	IDi.

Figure 1	summarizes	examples	of	choices	for	R	and	S,	illustrating	the	strengths	of	the	described	algorithm	steps	above	without	the	
use	of	cryptography.	Small	values	of	S	are	included	to	reflect	poor	sequencing	quality.	In	reality,	S	should	be	much	larger,	making	the	
schemes	more	robust.	With	current	technologies,	the	probability	of	errors	for	a	DNA	sequence	is	about	1/500	during	synthesis,	and	
1/1000	during	sequencing.	In	[10],	the	mean	error	rate	per	base	at	the	level	of	sequencing	reads	was	1/250,	which	was	higher	than	
the	combined	synthesis	and	sequencing	error	rate	reported	above	because	of	additional	errors	that	were	introduced	by	incorrect	
indexing.

2017
Vol. 7 No. 3:19

8 This article is available from: www.imedpub.com/european-journal-of-experimental-biology/

European Journal of Experimental Biology
ISSN 2248-9215

In	information	theory,	cryptographic	hash	functions	are	a	means	for	providing	authenticity.	Secure	hash	functions	have	been	developed	
that	are	mathematically	strong	in	a	range	of	situations.	For	example,	they	are	used	to	check	whether	a	file	has	been	changed.	The	hash	
value	of	the	file	is	stored	separately	and	the	integrity	of	the	le	is	checked	by	computing	the	hash	value	of	the	actual	file	and	comparing	
it	with	the	stored	hash	value.	If	the	hash	values	are	the	same,	then	the	file	is	unchanged.

The	incorporation	of	hash	functions	improves	the	previous	algorithms	by	providing	proof	as	to	whether	errors	occurred	during	message	
DNA	generation.	Practically,	hash	functions	generate	a	very	short	output,	so	the	cost	in	message	expansion	via	H(M̃)	is	minimal.

With	current	technologies,	synthesis	and	sequencing	results	in	a	large	pool	of	correct	oligos,	or	strings.	This	was	confirmed	in	[10]	
where	after	amplification	and	sequencing	the	read	duplication	level	was	high,	providing	many	reads	covering	any	single	string.

Modern	sequence	alignment	algorithms	have	several	challenges.	The	two	most	important	relate	to	the	enormous	amount	of	short	
reads	generated	by	next	generation	DNA	sequencing	technologies	and	the	appropriate	choice	of	 the	reference	genome,	allowing	
for	mismatches	and	gaps.	Contrary	to	algorithms	developed	for	sequence	alignment	for	DNA,	encoding	the	decoder	has	no	known	
reference	sequence.	A	large	number	of	reads	are	received,	many	with	errors.	Currently,	majority	voting	for	each	individual	base	is	
used	to	inform	decision	making	regarding	the	most	likely	correct	base	[24].	The	main	problem	with	this	approach	is	the	enormous	
amount	of	data	that	need	to	be	stored,	compared	and	evaluated,	as	well	as	the	problem	of	systemic	errors.	We	present	a	solution	
that	does	two	things.	First,	it	identifies	one	complete	correct	sequence	among	the	many	assuming	that	at	least	one	complete	correct	
sequence	exists.	The	main	task	is	to	differentiate	it	from	the	many	without	having	to	analyze	enormous	numbers	of	comparisons.	
Second,	we	add	randomization	to	deter	any	systemic	errors.

Example:	Generally,	the	value	if	R	 is	chosen	such	that	R.S	is	bigger	than	a	required	Hamming	distance	(Figure 1).	Here,	we	use	an	
example	for	R=3	to	illustrate	application	of	the	algorithm.	If	l=198	is	the	largest	integer	less	or	equal	to	l0=200	for	which	l/R=66	is	an	
integer.	In	the	example	our	le	identifier	has	fixed	length	3,	ternary	string	IDter:=	021.

Let	 the	 message	 be	 given	 in	 ternary	 as	 M=2200212002222221021010011022210122111100211201-
121111210120202212221101001112220000200022101111021012100102120002002001102101212211112021100-010020212000
12000111200210212101110210100112001000220122220112210012110.	The	length	of	this	is	210	and	can	be	written	in	ternary	as	
l3:=	210=(21210)3.

Choice of parameters and encoding
•	 Let	lr=5	be	the	length	of	the	randomizers	ri.

•	 Let	lid=17	be	the	length	of	the	identifier,	i.e.	the	addressing	information	for	each	message	component.

•	 Let	the	fixed	length	of	the	ternary	representation	of	lM	be	lb=8.	Recall	that	lM	is	l3	prepended	with	zeros	to	give	this	desired	length.	
Here,	lM=00021210.

•	 To	obtain	M̃,	one	has	to	append	exactly	p	zeros	to	M,	such	that	the	length	of	M	plus	lb	plus	p	is	divisible	by	(l/R-lid-lr)=44.	Here,	
210+8+2=220=5.44	shows	that	p=2.	Therefore,	M=M||0000021210,	where	M	is	as	above	in	ternary.	

•	 Then	 n:=len(M̃)=(l/R-lid-lr) is	 the	 number	 of	 blocks	 that	 will	 have	 to	 be	 sequenced.	 Here,	 len(M̃) is	 the	 length	 of	 the	 ternary	
representation	of	M	and	therefore	n=220/44=5.

•	 Let	the	length	of	the	ternary	representation	of	the	internal	counter	i	be	10.	This	is	the	counter	of	the	blocks,	i.e.,	i=1,….,n.

•	 Let	the	size	of	the	security	parameter k	be	10.	This	 is	 the	number	of,	say,	1s	that	 is	appended	to	the	counter	 i inside	of	each	
identifier.

This	results	 in	n=5	identifiers	 ID1=02111111111110001,	...,	 ID5=02111111111110012	which	are	obtained	from	 IDter=021,	appended	
with	the	k	1s	and	the	counter	i	(in	ternary)	with	internal	padding	to	give	the	fixed	length	of	each	IDi	to	be	lid=17.

Specifically,M̃=2200212002222221021010011022210122111100211201121111210120202212221101001112220000200022101111021012100102120002002
001102101212211112021100010020212000120001112002102121011102101001120010002201222201122100121100000021210	
(which	is	of	length	220).	Further,	when	incorporating	the	specific	identifiers	including	the	string	of	the	k	1s,	the	n=5	internal	blocks	m̃i
are m̃1=2200212002222221021010011022210122111100211202111111111110001,	 ...,	m̃5=01001120010002201222201122100121
10000002121002111111111110012.	Each	of	these	has	length	l/R-lr=61.	

Let	r1=02000,,	r5=11211	random	ternary	strings	of	length	lr=5.

`The	expansion	function	e	may	be	computed	via	the	internal	hash	function	of	Maple,	by	computing	the	hash	of	these	ri.	The	output	of	
the	hash	function	is	a	hexadecimal	string	of	length	32	that	can	be	converted	into	the	corresponding	ternary	string.	To	find	the	e(ri),	the	
ternary	representation	of	hash	of	ri,	H(ri),	is	chosen	for	only	the	first 61=len(m̃i) ternary	digits.	For	instance,	H(r1)=82fc813ae79eea7e
3c24af961f59e6cf	 and	 therefore	e(r1)=1120002022021210101202212012212121211020111122111010120010021.Bitwise	 addition	
modulo	3	of	m̃i	and	e(r1)	results	in	0020211021210101122212220001122210022120022021222121201120022	which	is	the	first	part	

9© Under License of Creative Commons Attribution 3.0 License

2017
Vol. 7 No. 3:19

European Journal of Experimental Biology
ISSN 2248-9215

of m1.	which	is	the	first	part	of	m1.

Analogously,	the	hash	of	this	is	now	computed	via	the	hexadecimal	hash	of	Maple	converted	to	ternary	and	then	truncated	the	desired	
length	lr=5.	Again,	the	hash	is	added	bitwise	modulo	3	to	ri	to	give	the	second	part	of	the	mi.	For	instance,	H(m̃i⊕3e(r1))⊕3r1=12200.
Therefore,	e.g.,	m1=002021102121010112221222000112221002212002202122212120112002212200.

The	 ti	 are	 constructed	 by	 repeating	 each	 of	 the	 mi	 exactly	 R=3	 times.	 E.g.,	 t1=00202110212101011222-
122200011222100221200220212221212011200221220000202110212101011222122200011222100221200220212-
2212120112002212200002021102121010112221222000112221002212002202122212120112002212200.	Each	of	 the	 ti	has	 length	
3	66=198	which	is	l,	as	desired.	Finally,	each	of	these	is	represented	in	base	four	via	the	base-3	to	DNA	encoding	([10],	Table 1)	by	
avoiding	homopolymers.

Overall,	the	result	of	the	encoding	part	is	a	list	of	n=5	DNA	segments,	e.g.,	the	first	being	DNA1=CGCGCTCGCTGACTAGATGCTGCAC
GTCTGCAGTATGATACATATCATGATCACTCAC-GCAGCACGTATATCTATCAGTCGAGCATCATGTACTCATGACGCAGCGTGCGCTGCAGCTGT-
CTGTATGATGTACGCGCTCGCTGACTAGATGCTGCACGTCTGCAGTATGATACATATCATGATCACTCACGCAGCACG.

Decoding
Each	of	the	n	segments	of	the	DN	Ai	is	reconverted	into	their	base-3	equivalents.

For	 example:	 DNA1	 becomes	 00202110212101011222122200011222100221200220212221212011200221220000202110212-
10101122212220001122210022120022021222121201120022122000020211021210101122212220001122210022-
12002202122212120112002212200	 (which,	 if	 correct,	 is	 t1).	 Each	 of	 these	 n	 recovered	 segments	 are	 then	 divided	 into	 R	
subcomponents	of	 equal	 size.	 For	 instance,	 the	first	 component	 gives	 the	 three	 subpieces	0020211021210101122212220001122
21002212002202122212120112002212200;	 002021102121010112221222-000112221002212002202122212120112002212200;	
0020211021210101122212220001122210022120022021222-12120112002212200:	These	should	all	be	the	same	strings,	 repeated	
R=3	times.	During	decoding,	a	simple	majority	vote	will	compare	each	of	the	entries	in	these	R	subpieces	and	return	the	most	likely	
entry	for	each	individual	digit.	Here,	since	there	were	no	errors,	only	one	of	these	(same)	substrings	is	computed.	Doing	this	for	all	the	
n=5	recovered	DNA	strings	yields	the	original	strings	m1,…,m5.

This	concludes	the	part	of	the	method	that	utilizes	repetition	codes.	However,	this	part	may	not	detect	all	possible	errors.	The	next	
steps	illustrate	how	the	additional	components	derived	from	cryptographic	methods	address	this	issue.

Each	of	the	recovered	blocks	(which	should	be	the	mi	and	which	for	simplicity	are	termed	mi	although	it	still	must	be	confirmed	that	
they	are	the	same	as	the	original	mi)	is	by	itself	validated	for	correctness,	as	detailed	in	STEP	5	as	follows.

Let	 Yi	 be	 the	 last	 l/R-lr=61	 digits	 for	 each	 of	 the	 recovered	 blocks	 mi.	 For	 instance,	 the	 Yi	 recovered	 from	 mi	 is	 "0020211
021210101122212220001122210022120022021222121201120022".	 The	 hash	 value	 for	 this	 gives	 "19e30bb67ee7486
df967389903d1487b".	 This	 allows	 for	 the	 recomputation	 of	 the	 r1=02000.	 The	 expansion	 function	 applied	 to	 this	 yields	
e(r1)=11200020220212101012022120122121212110201111221110-10120010021.	 Subsequently,	 m̃1	 is	 recovered	 as	
220021200222222102101001102221012211110021120211111-1111110001.

The	crucial	step	is	done	via	recovering	the	IDi and	testing	if	they	are	of	the	correct	form,	i.e.	with	a	desired	number	of	1's.	For	instance	
ID1	is	recovered	as	02111111111110001.	The	first	three	digits	yield	IDter=021	and	the	next	k=10	digits	are	crucial.	If	there	is	no	error,	
the	string	will	be	1111111111,	i.e.,	the	test	string	z of k=10	consecutive	1's.	If	this	test	is	passed,	the	entire	component	mi	is	therefore	
proven	to	be	correct	[5].	If	all	the	mi	are	validated	then	this	gives	the	original	message	m	along	with	a	proof	that	the	recovered	m	is	
the	same	as	the	original.

Error detection and correction
The	internal	repetition	into	R	segments	constitutes	a	classic	repetition	code	with	straight	forward	error	correcting	properties.	A	simple	
majority	vote	will	identify	less	then	(R-1)/2 substitution	errors.	Internal	R	fold	repetition	is	achieved	and	is	demonstrated	above	to	
illustrate	the	choice	of	the	parameters.	However,	the	strength	of	our	method	does	not	rely	on	this	part	and	indeed	one	could	achieve	
strong	security	even	for	R=1,	due	to	the	cryptography	part	integrated	in	STEP	4	and	STEP	5.

If	the	size	of	the	security	parameter	k	is	large	enough	then	any	category	of	error	will	be	identified	during	decoding	(Table 3).	In	case	
of	any	error,	the	security	check	will	not	pass	for	a	large	enough	k.	For	instance,	if	during	decoding	the	second	piece	m2	suffers	from	a	
deletion	at	position	3	(after	majority	decoding),	then	the	decoding	routine	will	recompute	the	following	ID2=0022101122012:	It	does	
not	end	in	the	desired	k ≥ 5	1s	and	the	error	is	detected.

According	to	[5],	it	does	not	matter	what	type	and	how	many	errors	occur.	Most	importantly	in	order	to	obtain	the	desired	string	of	
k	1's,	the	entire	message	m̃i needs	to	be	recomputed	correctly;	this	is	known	as	“all-or-nothing"	security.	In	order	to	recover	m̃i,	one	
must	recover	both	parts	of	m̃i in	their	entirety.	The	first	part	is	required	to	recover	ri	from	the	second	part,	and	ri	is	required	to	recover	
m̃i	from	its	first	part.	Since	any	changed	bit	of	a	cryptographic	hash	completely	changes	the	result,	the	entire	part	of	m̃i must	both	be	

2017
Vol. 7 No. 3:19

10 This article is available from: www.imedpub.com/european-journal-of-experimental-biology/

European Journal of Experimental Biology
ISSN 2248-9215

completely	recovered.	Above,	R=3 allows	the	correction	of	single	substitution	errors	during	majority	voting.	The	extra	security	feature	
testing	for	the	k	1's	provides	an	additional	feature	that	 identifies	any	type	of	error	that	escaped	detection,	 including	substitution,	
deletion,	or	insertion	errors.	It	gives	a	guarantee	for	those	strings	that	are	recovered	in	their	entirety.	The	list	of	abbreviations	is	given	
in	the	Table 4.	

Conclusion
A	multistep	algorithm	is	presented	based	on	cryptographic	features	that	increase	precision	and	security.	Two	main	ingredients	are	
randomization	and	secure	data	integrity.	The	method	is	flexible	and	allows	for	increased	levels	of	security,	depending	on	demand,	and	
identifies	approaches	to	detect	and	correct	errors.	This	is	based	on	the	number	of	DNA	blocks	required	to	be	encoded	within	each	
generated	sequence	of	DNA	(as	represented	by	R),	or	how	many	need	to	be	sequenced	(as	represented	by S).	In	contrast,	the	Illumina	
protocol	[2]	focuses	on	the	average	curve	of	the	sequencing	depth.	In	worst	case	scenarios,	i.e.,	when	certain	nucleotide	bases	are	
consumed	during	the	encoding	process,	algorithm	will	detect	the	loss	of	these	data.

Our	approach	is	applicable	to	in vitro	and	in vivo	approaches	of	DNA	storage	and	sequence	analysis.	Key	for	both	is	adequate	randomness	
in	the	encoding	algorithm.	In vitro	approaches	require	sufficient	redundancy	to	prevent	detrimental	DNA	sequence	and	structure.	In
vivo	approaches	must	avoid	the	existence	of	the	same	or	similar	copies	of	DNA	within	a	single	cell.	The	required	level	of	randomization	
is	achieved	by	tools	derived	from	cryptography	that	do	not	rely	on	knowledge	or	transmission	of	secret	keys	or	randomization	data.	
Another	potential	application	of	our	algorithm	is	for	the	identification	of	genetically	modified	organ-isms.	Effectiveness	and	accuracy	
require	multiple	copies	of	a	trademark	DNA	 label	or	"barcode"	containing	authentication	and	tracking	 information	 inside	a	single	
cell.	This	challenge	can	be	efficiently	addressed	based	on	the	randomization	techniques	described;	each	individual	segment	of	DNA	
represents	the	same	information,	but	is	randomized	before	being	encoded	in	DNA.

As	the	algorithm	can	be	applied	to	validate	and	verify	the	correctness	of	the	individually	decoded	pieces,	without	knowing	the	original	
data,	a	certificate	can	be	generated	that	confirms	that	the	obtained	data	are	exactly	like	the	original	ones.	This	has	applications	to	DNA	

Any error(s) corrected during majority decoding Reconstructed m2 (after majority voting)
 0 1 0 1 1 0 1 1 1 1 . . . 0 0 2 0 2 1 1 2 1 0

Reconstructed check string
"1111111111"

Example	of	substitution	error 						0	1	2	1	1	0	1	1	1	1	.	.	.	0	0	2	0	2	1	1	2	1	0 "2002202000"
Example	of	insertion	error 						0	1	2	0	1	1	0	1	1	1	1	.	.	.	0	0	2	0	2	1	1	2	1 "0110120120"
Example	of	deletion	error 						0	1	1	1	0	1	1	1	1	.	.	.	0	0	2	0	2	1	1	2	1	0 "0020122120"

Table 3 Advanced	error	detection	and	correction	via	the	use	of	cryptography.	A	clearly	defined	check	routine	identifies	those	reads	that	are	error	
free.	Here,	these	are	exactly	those	for	which	the	check	string	contains	a	desired	number	of	1's.	This	check	will	identify	all	types	of	errors	and	identify	
only	those	reads	that	are	correct.	Details	of	the	implementation	and	a	worked	example	for	correct	decoding	is	given	in	the	example	in	the	text.

Table 4:	List	of	Abbreviations.

Short form Full form
l0 Largest	length	of	segments	chosen	that	are	amenable	to	manipulation

l The	actual	block	length	of	each	sequence	that	is	sequenced.	l≤ l0	is	chosen	according	to	some	technical	requirements	depending	
on	the	required	number	of	repetitions	within	each	block

R The	number	of	repetitions	of	the	same	sequence	inside	each	sequenced	block.	R	is	chosen	such	that	R/l is	an	integer	and	
according	to	some	additional	technical	requirements	detailed	below	to	ensure	a	required	hamming	distance

lid Length	of	the	identifier	for	each	message	block
lr Length	of	the	input	string	r
IDi Concatenation	of	the	file	identifier	and	the	internal	counter
S Sequencing	depth.	A	Parameter	that	identifies	the	number	of	sequences	to	be	recovered
M Original	message
M1||M2 Concatenation	of	strings	M1	and	M2

M̃ M	appended	and	padded	with	additional	0's,	resp.,	the	message	length,	to	allow	unique	decoding.	The	length	of	M̃ is	a	multiple	
of id

l l
R
− 	(basic	scheme)	or	of	 id r

l l l
R
− − (enhanced	scheme)

M̃i The	equal	length	blocks	within	M̃
mi, m̃i The	individual	message	blocks	with	their	identifiers,	after	incorporation	of	the	respective	cryptographic	steps
r, ri Pseudorandom	string	of	length	lr

e(ri) A	cryptographic	expansion	function	that	takes	a	short	random	string	ri	and	outputs	a	longer	random	string	e(ri)

m̃i⊕3 e(ri)||ri Random	string	ri	of	length	lr	chosen	from	data	m	and	direct	summed	⊕3	modulo	3	with	m.	Each	of	these	has	length	 l
R

H(M) Hash	value	of	M
k Security	parameter	underlying	the	cryptographic	OAEP	scheme
z Last	k	digits	in	m̃i.	These	k	strings	are	checked	for	a	specific	pattern.	Used	in	STEP	5	to	ensure	authenticity	of	the	individual	segments

11© Under License of Creative Commons Attribution 3.0 License

2017
Vol. 7 No. 3:19

European Journal of Experimental Biology
ISSN 2248-9215

steganography,	sequence	alignment,	and	fast	identification	of	correct	reads	in	next	generation	sequencing.

Acknowledgments
This	work	was	supported	by	NSF-40243.

References
1 IACR	(2015)	International	Association	for	Cryptologic	Research.

2 Illumina	 (2016)	 An	 introduction	 to	 next-generation	 sequencing	
technology.

3 Ailenberg	 M,	 Rotstein	 O	 (2009)	 An	 improved	 Huffman	 coding	
method	 for	 archiving	 text,	 images,	 and	music	 characters	 in	 DNA.	
Biotechniques	47:	747-754.

4 Andrews	S	(2010)	Fast	QC:	A	quality	control	tool	for	high	throughput	
sequence	data.	Babraham	bioinformatics.	

5 Bellare	 M,	 Rogaway	 P	 (1995)	 Optimal	 asymmetric	 encryption.	
EUROCRYPT	950:	92.	

6 Buchmann	J	(2004)	Introduction	to	Cryptography.	Springer	Verlag.

7	 Church	 GM,	 Gao	 Y,	 Kosuri	 S	 (2012)	 Next-generation	 digital	
information	storage	in	DNA.	Science	337:	1628.

8	 Cox	JP	(2001)	Long-term	data	storage	in	DNA.	Trends	Biotechnol	19:	
247-250.

9	 Gibson	DG,	Benders	GA,	Andrews-Pfannkoch	C,	Denisova	EA,	Baden-
Tillson	H,	et	al.	(2008)	Complete	chemical	synthesis,	assembly,	and	
cloning	of	a	mycoplasma	genitalium	genome.	Science	319:	1215.	

10	 Goldman	N,	Bertone	P,	Chen	S,	Dessimoz	C,	LeProust	EM,	et	al.	(2013)	
Towards	 practical,	 high-capacity,	 low-maintenance	 information	
storage	in	synthesized	DNA.	Nature	494:	77-80.

11 Haughton	D,	Balado	F	(2013)	BioCode:	two	biologically	compatible	
Algorithms	for	embedding	data	in	non-coding	and	coding	regions	of	
DNA.	BMC	Bioinformatics	14:	121.

12 Heider	 D,	 Barnekow	 A	 (2007)	 DNA-based	 watermarks	 using	 the	
DNA-Crypt	algorithm.	BMC	Bioinformatics	8:	176.

13 Kiltz	E,	OeNeill	A,	 Smith	A	 (2010)	 Instantiability	of	 rsa-oaep	under	
chosen-plaintext	attack.	CRYPTO	2010:	295.	

14 Leier	A,	Richter	C,	 Banzhaf	W,	Rauhe	H	 (2000)	Cryptography	with	
DNA	binary	strands.	Biosystems	57:	13-22.

15 Li	H,	Durbin	R	(2009)	Fast	and	accurate	short	read	alignment	with	
Burrows-Wheeler	transform.	Bioinformatics	25:	1754-1760.

16 Liss	M,	 Daubert	 D,	 Brunner	 K,	 Kliche	 K,	 Hammes	 U,	 et	 al.	 (2012)	
Embedding	permanent	watermarks	in	synthetic	genes.	PLoS	One	7:	
e42465.

17	 Mollin	RA	(2010)	An	Introduction	to	Cryptography.	CRC	Press.	

18	 Roman	 S	 (1997)	 Introduction	 to	 Coding	 and	 Information	 Theory.	
Springer.	

19	 Schneier	B	(1996)	Applied	Cryptography.	2nd	John	Wiley	and	Sons,	Inc.	

20	 Shimanovsky	B,	Feng	J,	Potkonjak	M	(2003)	Hiding	data	in	DNA.	In	
Information	Hiding.

21 Smith	GC,	Fiddes	CC,	Hawkins	JP,	Cox	JP	(2003)	Some	possible	codes	
for	encrypting	data	in	DNA.	Biotechnol	Lett	25:	1125-1130.

22 Stinson	DR	(2006)	Cryptography:	Theory	and	Practice.	CRC	press.	

23 Yachie	N,	Ohashi	Y,	Tomita	M	(2008)	Stabilizing	synthetic	data	in	the	
DNA	of	living	organisms.	Systems	and	Synthetic	Biology.	

24 Yachie	 N,	 Sekiyama	 K,	 Sugahara	 J,	 Ohashi	 Y,	 Tomita	 M	 (2007)	
Alignment-based	 approach	 for	 durable	 data	 storage	 into	 living	
organisms.	Biotechnol	Prog	23:	501-505.

