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Abstract
DNA storage of information is emerging as the next-generation approach to 
archiving vast amounts of data. Various sophisticated approaches for data storage 
in DNA have been proposed. Herein we present a multistep algorithm designed to 
detect and/or correct errors introduced at any stage of the DNA storage process, 
including those during message DNA generation, and propose refinements 
designed to ensure authenticity and correctness of each individual encoded DNA 
block. In addition, the algorithm allows authentic decoding without a reference 
sequence or message meaning. The algorithm is designed based on principles 
underlying provably secure cryptographic systems. Importantly, our new algorithm 
compares favorably with current ones in terms of ease of implementation and 
message expansion. In cases where reads are error-free, our algorithm should be 
faster than current alignment techniques. Without knowing the original data, a 
certificate is generated that confirms that the obtained data are exactly the same 
as the original. Our algorithm has applications to DNA steganography, sequence 
alignment, fast identification of correct reads in next generation sequencing and 
to message security. 
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Background
The potential of DNA has been realized for various information-theoretic protocols, including DNA steganography for the identification 
of genetically modified organisms [12,21,23] hiding of messages in DNA [9,11,16,20] and long-term data storage in DNA [3,7,8,10,14,21]. 
These applications require mechanisms to validate, ensure, and possibly verify message accuracy. This is particularly important when 
correctness of the retrieved data is not variable by a reference sequence or other means such as a comparison with a meaningful 
text template. DNA is a typical code and so are all the information theoretic algorithms that utilize it. However, what is seen by the 
receiver of the message might not be the same as what was initially sent or encoded. Thus, it is critical that processes using DNA for 
data storage have dependable and precise error correcting or detecting features.

Storing messages in DNA was first demonstrated in 1988 and the largest project to date encoded about 750 kilobytes of data, including 
text, tables, photos, and video [10]. As with any computer code, DNA coding approaches are susceptible to errors during construction 
of the code, storage, and read-out. Relative to these issues, algorithms to develop in vivo [23] and in vitro [7,10] based approaches to 
utilizing DNA as a framework for archiving large data sets have been developed.

Two of the most promising approaches for information archiving in DNA use in vitro algorithms and next-generation DNA synthesis 
and sequencing [7,10]. Both approaches [7,10] rely on the sequencing of multiple oligonucleotides (nt) per message component. In 
Ref. 7 they reported an average of ≈3000-fold coverage of each recovered nucleotide base. However, there were message sequences 
with only single coverage from amplification procedures and these contributed to process errors. The work in Goldman et al. [10] 
relied on the sequencing of ≈107 copies for each DNA string. Given that the sequencing reaction consumed ≈0.1% of the DNA of the 
initial library, two components were not sequenced at all and had to be specifically sequenced with manual techniques [10]. This 
result was suggested to be due to specific self-complementary regions that led to hybridization and sequencing failure. Although both 
projects report a significant average coverage, neither was sufficient for complete error protection.
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To address these issues Church et al. [7] relied on multiple message copies to identify errors, and Goldman et al. [10] employed 
additional explicit error correcting features. However, with current approaches it is still difficult to consistently ensure appropriate 
coverage of every single nt that is necessary for correction of errors generated due to message mutation, especially if there is no 
reference for determining if the obtained reads reflect the authentic message. This is, in turn, is dependent on the length and quality 
of continuous sequences that provide appropriate alignment of overlapping reads.

Similar error correction issues impact next generation DNA sequencing technologies. Current alignment programs developed to handle 
the numerous individual reads use three main approaches (see [15] and the references therein): (i) “hashing” the read sequences and 
scanning through the reference sequence: (ii) “hashing" of the reference genome and (iii) merge-sorting of the reference subsequences 
and read sequences.

Herein, we present a multistep algorithm that increases the reliability and precision of existing approaches without negatively 
impacting efficiency and effectiveness. In particular, our algorithm establishes a significant guarantee of message validity, authenticity 
and integrity. It also can be applied for the archiving of vast data sets, in optimization of DNA sequencing algorithms, and in precisely 
tagging genetically modified organisms (GMOs). Our solution also specifically identifies which reads are correct prior to majority 
voting and prior to knowing the message meaning. Given appropriate reads this approach allows pooling of the correct sequences and 
facilitates rapid and accurate decoding.

Examples of errors in DNA storage protocols are summarized in Tables 1 and 2. Analysis of the robustness of current algorithms under 
single sequence coverage [7] identified significant distortions of encoded text, video, or pictures from sequence errors which may 
render decoding totally untranslatable. The most complete algorithm to date in terms of error correction is that of Goldman et al 
[10]. Analysis of [10] identified a potential problem during assembly of the decoded sequence reads where two specific regions were 
not recovered from any sequenced read. Repeats of this motif had a self-reverse complementary pattern and it was hypothesized 
that long, self-complementary DNA fragments might not be readily sequenced using the Illumina process [2] or other next generation 
sequencing protocols. It had previously been determined [7] that individual sequences, especially those containing large GC content 
or long self-complementary regions are difficult to accurately read or synthesize.

Church et al. [7] were the first to suggest that choosing bases randomly (A or C for 0 and T or G for 1) while disallowing homopolymer 
runs greater than three [7] may overrule any sequence properties that are detrimental to sequencing. Based upon analysis of potential 
sequencing failure encountered during decoding, Goldman et al. [7] suggested development of a code with no long self-complementary 
regions [9,10]. They suggested an additional step during encoding [10] whereby the initial message les could be pre-processed either 
by a one-time pad [19] or other stream cipher [17] with a standard or known key stream. This would lead to DNA segments having 
random properties [10], but would be difficult to implement practically. While introducing randomness can be crucial, the problem is 
how to do this in a way such that accurate decoding can be done without access to the reference message. A one-time pad requires a 
random key equal to the length of the encoded message [17] and any key stream that is used during message DNA generation needs 
to be available during decoding. This leads to the problem of how the random key can be made available to the decoding party. As 
a result, a sophisticated cryptographic scheme would be required to achieve randomness in the stream cipher further requiring a 
process to store and pass to the decoder a very long key. For long-term data storage these options may limit application.

True randomness is not needed to prevent detrimental structure that impact DNA synthesis and sequencing. In cryptography it is 
generally important to use good random-number generators but not as important as using good encryption algorithms and key 
management procedures [19]. In practice, therefore, crypto-graphic techniques use secure pseudo-number generators or keystreams 
[19]. We employ this approach in our multiscale algorithm described below. 

Main Text
The key features of this algorithm can be subdivided into 5 steps. A glossary of abbreviations is given below. These features include 
(1) Generation of each block as a sequence of nt's that occurs at least R•S-fold and that is randomized by number 7 in STEP 1. This 
prevents any detrimental structure that would interfere with sequencing. (2) Randomization is only a function of the base 2 to base 4 
conversion and hence, does not require a random key during decryption as it is not a stream cipher or a one-time pad. (3) Each block 
represents information about data as well as the address and is then further randomized. The code represents each (randomized and 
expanded) message block mi exactly R times within each DNA segment. 

encoded message [17] and any key stream that is used during message DNA generation needs to be available

during decoding. This leads to the problem of how the random key can be made available to the decoding

party. As a result, a sophisticated cryptographic scheme would be required to achieve randomness in the

stream cipher further requiring a process to store and pass to the decoder a very long key. For long-term

data storage these options may limit application.

True randomness is not needed to prevent detrimental structure that impact DNA synthesis and sequenc-

ing. In cryptography it is generally important to use good random-number generators but not as important

as using good encryption algorithms and key management procedures [19]. In practice, therefore, crypto-

graphic techniques use secure pseudo-number generators or keystreams [19]. We employ this approach in

our multiscale algorithm described below.

Main Text

The key features of this algorithm can be subdivided into five steps. A glossary of abbreviations is

given below. These features include (1) Generation of each block as a sequence of nt’s that occurs at least

R · S-fold and that is randomized by number 7 in STEP 1. This prevents any detrimental structure that

would interfere with sequencing. (2) Randomization is only a function of the base 2 to base 4 conversion

and, hence, does not require a random key during decryption as it is not a stream cipher or a one-time pad.

(3) Each block represents information about data as well as the address and is then further randomized.

The code represents each (randomized and expanded) message block mi exactly R times within each DNA

segment.

m1||m1|| . . . ||m1︸ ︷︷ ︸
⇓Repeated R times

Encoded as nt’s

, . . . mn||mn . . . ||mn︸ ︷︷ ︸
⇓Repeated R times

Encoded as nt’s

DNA segment DNA1︸ ︷︷ ︸
⇓Amplif. & Sequ. to

, . . . DNA segment DNAn︸ ︷︷ ︸
⇓Amplif. & Sequ. to

sequ. (DNA1)1, . . . , sequ. (DNA1)S̃ . . . sequ. (DNAn)1, . . . , sequ. (DNAn)S̃

(4) The above is essentially an R · S repetition code. Each of the recovered ≥ S sequences (DNAi)j is

made up of a collection of R blocks of mi. (5) The choice of R is dictated by the parameter S as well as the

anticipated and required security. Both R and S work in concert. The larger R is, the more “expensive” in

terms of message expansion but is more secure (Figure 2). In [7], there was no repetition and some sequences

were only recovered once, increasing the probability of error introduction.
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(4) The above is essentially an R•S repetition code. Each of the recovered ≥ S sequences (DNAi)j is made up of a collection of R blocks 
of mi. (5) The choice of R is dictated by the parameter S as well as the anticipated and required security. Both R and S work in concert. 
The larger R is, the more “expensive" in terms of message expansion but is more secure (Figure 1). In [7], there was no repetition and 
some sequences were only recovered once, increasing the probability of error introduction. 

As in [7,10] oligonucleotide library is sequenced using next-generation sequencing technologies. The decoding scheme identifies each 
base of encoded information based on a majority vote of all the read bases corresponding to its position. The final decoding into the 
message file from the sequencing reads is obtained by exactly reversing the encoding process.

STEP 1-Encoding 
The original text or data are subdivided into equal length blocks. Each block contains both the data part and the corresponding 
addressing information. Combining both into one block before repetition and sequencing helps to ensure proper placement during 
decoding.

1.	 Represent the original message M in binary and let len(M) be the length (in characters) of the binary representation of M.

2.	 Let lM be the representation of len(M) in binary, as appropriate pre-pend with zeros to give a fixed length, generate the fixed length 
binary block M̃=M||0…0||lM by adding in zeros so that the length of M̃ is a multiple of l/R-lid.

3.	 Divide M̃ into pieces M̃i of equal length l/R-lid. 

As in [7], [10], the oligonucleotide library is sequenced using next-generation sequencing technologies.

The decoding scheme identifies each base of encoded information based on a majority vote of all the read

bases corresponding to its position [10]. The final decoding into the message file from the sequencing reads

is obtained by exactly reversing the encoding process.

STEP 1. Encoding: The original text or data are subdivided into equal length blocks. Each block

contains both the data part and the corresponding addressing information. Combining both into one block

before repetition and sequencing helps to ensure proper placement during decoding.

1. Represent the original message M in binary and let len(M) be the length (in characters) of the binary

representation of M .

2. Let lM be the representation of len(M) in binary, as appropriate pre-pend with zeros to give a fixed

length, generate the fixed length binary block M̃ = M ||0 . . . 0||lM by adding in zeros so that the length

of M̃ is a multiple of l/R− lid.

3. Divide M̃ into pieces M̃i of equal length l/R− lid.

M̃ = M̃1︸︷︷︸
of length l/R − lid

|| M̃2︸︷︷︸
of length l/R − lid

||...|| M̃n︸︷︷︸
of length l/R − lid

. (1)

This exactly incorporates all of M̃ .

4. Let IDbin be a (fixed length) binary string identifying the original file and unique with a given ex-

periment. For each counter i obtained in step 2, find the binary representation of i. Let IDi be the

concatenation of IDbin and the binary representation of i. If needed, pre-pend the latter with zeros to

give the fixed length lid for each IDi.

5. Incorporate the identifier IDi into each block of M̃i to get

m = M̃1||ID1︸ ︷︷ ︸
of length l/R

|| M̃2||ID2︸ ︷︷ ︸
of length l/R

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R

. (2)

This divides m into equal size blocks m = m1||m2|| . . . ||mn where mi = M̃i||IDi.

6. Represent each block R times which will give the individual DNA segments of length l, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

5

Sequence of 
Steps Main Features Comment

STEP 1, STEP 2 Detection of substitution errors To detect t substitution errors, choose R such that R•S ≥ 2t + 1

STEP 3, STEP 2 Improved randomization

The randomization function number 7 in STEP 1 may lead to self-
complementary patterns, e.g., when encoding consecutive 1's. Simple 
cryptographic techniques yield a higher degree of randomness to 

prevent self-complementarity and other harmful patterns

STEP 3, STEP 4, 
STEP 2

Detection of any errors, including those during message 
DNA preparation

Authenticity is established via a cryptographic hash value that is 
appended to the message part before sequencing. This enables the 

choice of the correct reads (provided at least one exists, i.e., that S>0)
STEP 3, STEP 5, 

STEP 2 Proof of Authenticity of the individual segments Similar to previous steps, but more efficient

Table 1: Algorithm STEPS and their Main Features.

Summary of potential errors in storing data in DNA with existing approaches 
Type of problem Previous approaches Our approach

Efficient generation de-novo of DNA 
according to predetermined design

Generation of short DNA 
segments with small potential 

for errors
Same as [7,10]

Individual pieces require correct 
identification and alignment during decoding

Segmentation into both data 
and addressing info Same as [7,10]

ID and address of individual segments needs 
to be included in the code

Parity check to test obtained 
indexing identification Included as part of robustness features of algorithm techniques

Sequences with specific properties or 
structure cannot be sequenced

Reverse-complementation, 25 
bp of set the homopolymer 
rule, manual correction, 

randomization

Refined randomization

Errors can occur in each individual step of 
the Algorithm

Coding theory and ampli cation 
and/or sequencing of many 

strings
Tools derived from provably secure crypto systems

Errors that occur early cannot be identified 
or corrected. Manual intervention Proof of correctness of obtained strings and Proof of completeness 

of recovered data via a simple cryptographic solution

Table 2: Primary potential for errors when using DNA as data storage. This table provides a comparison of type. of problems that can arise when using 
DNA as data storage, the previous approaches in dealing with these problems and our approach. In combining the strengths of the existing methods 
via coding theory with our proposed cryptographic solutions, the algorithm is simplified and made more efficient. The last step utilizes a specific 
optimal scheme from cryptography (Optimal Asymmetric Encryption Padding) which is probably the most efficient way to ensure correctness of the 
entire string along with adequate randomization.
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4.	 This exactly incorporates all of M̃.

5.	 Let IDbin be a (fixed length) binary string identifying the original file and unique with a given experiment. For each counter i obtained 
in step 2, find the binary representation of i. Let IDi be the concatenation of IDbin and the binary representation of i. If needed, pre-
pend the latter with zeros to give the fixed length lid for each IDi.

6.	 Incorporate the identifier IDi into each block of Mi to get 

As in [7], [10], the oligonucleotide library is sequenced using next-generation sequencing technologies.

The decoding scheme identifies each base of encoded information based on a majority vote of all the read

bases corresponding to its position [10]. The final decoding into the message file from the sequencing reads

is obtained by exactly reversing the encoding process.

STEP 1. Encoding: The original text or data are subdivided into equal length blocks. Each block

contains both the data part and the corresponding addressing information. Combining both into one block

before repetition and sequencing helps to ensure proper placement during decoding.

1. Represent the original message M in binary and let len(M) be the length (in characters) of the binary

representation of M .

2. Let lM be the representation of len(M) in binary, as appropriate pre-pend with zeros to give a fixed

length, generate the fixed length binary block M̃ = M ||0 . . . 0||lM by adding in zeros so that the length

of M̃ is a multiple of l/R− lid.

3. Divide M̃ into pieces M̃i of equal length l/R− lid.

M̃ = M̃1︸︷︷︸
of length l/R − lid

|| M̃2︸︷︷︸
of length l/R − lid

||...|| M̃n︸︷︷︸
of length l/R − lid

. (1)

This exactly incorporates all of M̃ .

4. Let IDbin be a (fixed length) binary string identifying the original file and unique with a given ex-

periment. For each counter i obtained in step 2, find the binary representation of i. Let IDi be the

concatenation of IDbin and the binary representation of i. If needed, pre-pend the latter with zeros to

give the fixed length lid for each IDi.

5. Incorporate the identifier IDi into each block of M̃i to get

m = M̃1||ID1︸ ︷︷ ︸
of length l/R

|| M̃2||ID2︸ ︷︷ ︸
of length l/R

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R

. (2)

This divides m into equal size blocks m = m1||m2|| . . . ||mn where mi = M̃i||IDi.

6. Represent each block R times which will give the individual DNA segments of length l, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

5

7.	 This divides m into equal size blocks m=m1||m2|| ... ||mn where mi=M̃ i||IDi.

8.	 Represent each block R times which will give the individual DNA segments of length l, i.e., let 

As in [7], [10], the oligonucleotide library is sequenced using next-generation sequencing technologies.

The decoding scheme identifies each base of encoded information based on a majority vote of all the read

bases corresponding to its position [10]. The final decoding into the message file from the sequencing reads

is obtained by exactly reversing the encoding process.

STEP 1. Encoding: The original text or data are subdivided into equal length blocks. Each block

contains both the data part and the corresponding addressing information. Combining both into one block

before repetition and sequencing helps to ensure proper placement during decoding.

1. Represent the original message M in binary and let len(M) be the length (in characters) of the binary

representation of M .

2. Let lM be the representation of len(M) in binary, as appropriate pre-pend with zeros to give a fixed

length, generate the fixed length binary block M̃ = M ||0 . . . 0||lM by adding in zeros so that the length

of M̃ is a multiple of l/R− lid.

3. Divide M̃ into pieces M̃i of equal length l/R− lid.

M̃ = M̃1︸︷︷︸
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|| M̃2︸︷︷︸
of length l/R − lid

||...|| M̃n︸︷︷︸
of length l/R − lid

. (1)

This exactly incorporates all of M̃ .

4. Let IDbin be a (fixed length) binary string identifying the original file and unique with a given ex-

periment. For each counter i obtained in step 2, find the binary representation of i. Let IDi be the

concatenation of IDbin and the binary representation of i. If needed, pre-pend the latter with zeros to

give the fixed length lid for each IDi.

5. Incorporate the identifier IDi into each block of M̃i to get

m = M̃1||ID1︸ ︷︷ ︸
of length l/R

|| M̃2||ID2︸ ︷︷ ︸
of length l/R

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R

. (2)

This divides m into equal size blocks m = m1||m2|| . . . ||mn where mi = M̃i||IDi.

6. Represent each block R times which will give the individual DNA segments of length l, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

59. 	 In the basic scheme we use standard methods to achieve randomization. This is generated by the base-2 to base-4 conversion. 
Generally, given the binary string s=s1s2 ... sn, this gives one of the four values A, C, G, T according to A or C randomly, if si=0 and 
T or G randomly if si=1 for each i. This randomization is applied here to t=t1, t2,..., tn but with the stronger restriction of avoiding 
homopolymer runs of length ≥ 2. This gives the base four oligos f1=F (t1), f2=F (t2),..., fn=F (tn) in terms of the four nts A, C, G, T.

STEP 1 may be improved via a 7 step process outlined below. The original DNA sequence along with the addressing information is 
subdivided into blocks of length l. Instead of amplifying and sequencing each block as it contains the base four representation of the 
data along with their identifiers that might lead to sequencing errors, each of the blocks are masked by some randomizing features. 
The key to code and decode this randomization is appended to each block. Consequently, both the original part containing the nt and 
the appended randomizer convert each block into arbitrary sequences with (pseudo) random properties. As random strings, they can 
be amplified and sequenced. Since representation in base 3 is somewhat more efficient than in base 2, base 3 representation is used, 
with base 3 to base 4 (i.e., DNA) representation accomplished via the algorithm [10].

1.	 Represent the original message M as a concatenation of base 3 strings that are obtained via the Huffman algorithm and append 
enough zeros to M to get M̃=M0 ... 0 so that the length of this is a multiple of l/R-lid-lr. The Huffman step adds further efficiency and 

Figure 1 Error correction in our basic encoding scheme. The Error Probability during the entire protocol, synthesis 
and sequencing, versus optimal R value for different S. To correct t substitution errors the Hamming 
distance of the code, R•S must be ≥ 2t+1. Once S is known, R is chosen accordingly. The figure gives 
examples of such choices for which all errors in synthesis and sequencing can be corrected. The optimal 
R value (left) is the R value that maximizes the largest available effective message length, i.e. the length 
of each segment M̃i. The plot on the right shows the result for our basic encryption scheme, where this 
length is l/R-lid: In these plots, lid=15 and l=200.
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uniqueness in decoding. Without it, the length of M, lM needs to be appended, as above (see the example below).

2.	 Split M̃ into pieces M̃i of equal length l/R-lid-lr. 

7. In the basic scheme we use standard methods to achieve randomization. This is generated by the

base-2 to base-4 conversion. Generally, given the binary string s = s1s2 . . . sn, this gives one of the

four values A,C,G, T according to A or C randomly, if si = 0 and T or G randomly if si = 1 for each

i. This randomization is applied here to t = t1, t2, . . . , tn but with the stronger restriction of avoiding

homopolymer runs of length ≥ 2. This gives the base four oligos f1 = F (t1), f2 = F (t2), . . . , fn = F (tn)

in terms of the four nts A,C,G, T .

STEP 1 may be improved via a 7 step process outlined below. The original DNA sequence along with

the addressing information is subdivided into blocks of length l. Instead of amplifying and sequencing each

block as it contains the base four representation of the data along with their identifiers that might lead to

sequencing errors, each of the blocks are masked by some randomizing features. The key to code and decode

this randomization is appended to each block. Consequently, both the original part containing the nt and

the appended randomizer convert each block into arbitrary sequences with (pseudo) random properties. As

random strings, they can be amplified and sequenced. Since representation in base 3 is somewhat more

efficient than in base 2, base 3 representation is used, with base 3 to base 4 (i.e., DNA) representation

accomplished via the algorithm in [10].

1. Represent the original message M as a concatenation of base 3 strings that are obtained via the

Huffman algorithm and append enough zeros to M to get M̃ = M0 . . . 0 so that the length of this is

a multiple of l/R − lid − lr. The Huffman step adds further efficiency and uniqueness in decoding.

Without it, the length of M , lM needs to be appended, as above (see the example below).

2. Split M̃ into pieces M̃i of equal length l/R− lid − lr.

M̃ = M̃1︸︷︷︸
of length l/R − lid − lr

|| M̃2︸︷︷︸
of length l/R − lid − lr

||...|| M̃n︸︷︷︸
of length l/R − lid − lr

. (3)

By step 1.) this exactly divides out all of M̃ .

3. Let IDter be a (fixed length) base-3 string identifying the original file and unique with a given exper-

iment. For each counter i obtained in step 2, let IDi be the concatenation of IDter and the base-3

representation of i, the latter pre-pended with zeros as needed to give the fixed length lid for each IDi.

4. Incorporate the identifier IDi into each block of M̃i to get

m̃ = M̃1||ID1︸ ︷︷ ︸
of length l/R − lr

|| M̃2||ID2︸ ︷︷ ︸
of length l/R − lr

||...|| M̃n||IDn︸ ︷︷ ︸
of length l/R − lr

. (4)

6

By step 1 this exactly divides out all of M̃.

3.	 Let IDter be a (fixed length) base-3 string identifying the original file and unique with a given experiment. For each counter i obtained 
in step 2, let IDi be the concatenation of IDter and the base-3 representation of i, the latter pre-pended with zeros as needed to give 
the fixed length lid for each IDi.

4.	 Incorporate the identifier IDi into each block of M̃i to get the below sequence. 
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i. This randomization is applied here to t = t1, t2, . . . , tn but with the stronger restriction of avoiding
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random strings, they can be amplified and sequenced. Since representation in base 3 is somewhat more

efficient than in base 2, base 3 representation is used, with base 3 to base 4 (i.e., DNA) representation

accomplished via the algorithm in [10].
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||...|| M̃n︸︷︷︸
of length l/R − lid − lr

. (3)

By step 1.) this exactly divides out all of M̃ .

3. Let IDter be a (fixed length) base-3 string identifying the original file and unique with a given exper-

iment. For each counter i obtained in step 2, let IDi be the concatenation of IDter and the base-3

representation of i, the latter pre-pended with zeros as needed to give the fixed length lid for each IDi.

4. Incorporate the identifier IDi into each block of M̃i to get

m̃ = M̃1||ID1︸ ︷︷ ︸
of length l/R − lr

|| M̃2||ID2︸ ︷︷ ︸
of length l/R − lr

||...|| M̃n||IDn︸ ︷︷ ︸
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6 	 This divides m̃ into equal size blocks m̃=m̃1||m̃2|| ... ||m̃n.

5.	 For each piece in m̃ chose a random string ri of constant length lr and compute.

This divides m̃ into equal size blocks m̃ = m̃1||m̃2|| . . . ||m̃n.

5. For each piece in m̃ chose a random string ri of constant length lr and compute

m = m̃1 ⊕3 e(r1)||r1︸ ︷︷ ︸
of length l/R

|| m̃2 ⊕3 e(r2)||r2︸ ︷︷ ︸
of length l/R

||...|| m̃n ⊕3 e(rn)||rn︸ ︷︷ ︸
of length l/R

. (5)

Here, ⊕3 denotes direct sum modulo 3. This divides m into equal size blocks m = m1||m2|| . . . ||mn

where mi = m̃i ⊕3 e(ri)||ri.

6. Represent each block R times, i.e., let

t = m1||m1|| . . . ||m1︸ ︷︷ ︸
represented as R copies

, m2||m2|| . . . ||m2︸ ︷︷ ︸
represented as R copies

, . . . , mn||mn|| . . . ||mn︸ ︷︷ ︸
represented as R copies

.

= t1︸︷︷︸
has length l

, t2︸︷︷︸
has length l

, . . . , tn︸︷︷︸
has length l

.

7. Represent DNA as A,C,G, T (rather than base 3) using the base-3 to DNA encoding [10].

While STEP 1 is very easy to apply, the randomization step number 7 in STEP 1 may not always provide

sufficient random effect to avoid any detrimental structures and properties of the obtained nt sequence.

Number 7 in STEP 1 by itself is random, but for longer sequences of, for example, 0’s, may still give rise to

AC repeats, violating the desired homopolymer condition.

STEP 2. Generation of DNA:

1. Determine the code as a collection of DNA segments G(f) = G(f1), . . . , G(fn), where G denotes the

physical representation and synthesis of DNA corresponding to the design given in segment ti of length

l (oligo library synthesis).

2. Perform the characterization algorithms (e.g., [4], see [10]) to validate the correctness of the synthesized

library.

3. Amplify and sequence a sufficient number of copies (i.e., S̃ times) to ensure that each base of the

original message will be recovered at least S times.

STEP 3: Improved Encoding: A cryptographic randomization function is chosen as follows to ensure

sufficient randomness in number 7 in STEP 1: Select a cryptographic expansion function e that takes as

input short random strings r and outputs longer (for the algorithm in [10] - ternary) strings e(r) that are

random. Select lr the length of the input string r and let the output length be l/R− lr.
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7	 Represent DNA as A, C, G, T (rather than base 3) using the base-3 to DNA encoding [10].

While STEP 1 is very easy to apply, the randomization step number 7 in step 1 may not always provide sufficient random effect to avoid 
any detrimental structures and properties of the obtained nt sequence [17]. Number 7 in step 1 by itself is random, but for longer 
sequences of, for example, 0's, may still give rise to AC repeats, violating the desired homopolymer condition.

STEP 2-Generation of DNA
1.	 Determine the code as a collection of DNA segments G(f)=G(f1): ... :G(fn), where G denotes the physical representation and 

synthesis of DNA corresponding to the design given in segment ti of length l (oligo library synthesis).

2.	 Perform the characterization algorithms (e.g., [4], see [10]) to validate the correctness of the synthesized library.

3.	 Amplify and sequence a sufficient number of copies (i.e., Š times) to ensure that each base of the original message will be 
recovered at least S times.

STEP 3-Improved encoding 
A cryptographic randomization function is chosen as follows to ensure sufficient randomness in number 7 in step 1-Select a 
cryptographic expansion function e that takes as input short random strings r and outputs longer (for the algorithm in [10] - ternary) 
strings e(r) that are random. Select lr the length of the input string r and let the output length be l/R-lr.

For the improved encryption scheme, the repetition also results in a R.S repetition code. The main difference is the randomization via 
m̃i⊕3e(ri)||ri which makes each component completely (pseudo)-random. This step could be realized in binary (as above), or designed 
in combination with other codes from coding theory [18]. The Huffman code that we apply has several additional robustness features. 
The decoding is the reverse of coding protocol. In addition, each m̃i needs to be recovered in (5) by recovering ri and recomputing e(ri). 
This allows the computation of m̃i from the first part of each mi. Continuing as above this yields M. The original data length does not 
have to be included but may be. Rather, decoding follows from properties of the Huffman table. Beginning at the first part of M̃ find 
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the corresponding Huffman text words of length 5 or 6 (whichever is found in the Huffman table). Because there is no Huffman code 
word in the table that consists only of zeros the process terminates when the next block of length 5 or 6 are all zeros.

Using a Huffman code as in [10] has independent advantages, in addition to what is needed for error correction. It leads to shorter 
average text lengths than for fixed length codes. Moreover, Huffman code words that are tabulated give additional protection against 
errors. Indeed, there are a total of 35 +36 ternary words of length 5 or 6, but only a few hundred of these are words used in the table. 
Finally, it automatically offers additional robustness via the individual word lengths, e.g., the original text length follows from the 
individual Huffman codewords and does not need to be included explicitly in M̃.

The randomization step provides true pseudo-randomness that should provide adequate scrambling of the nt's to prevent detrimental 
DNA structure and formation. Each component in the message is a completely random string. Nonetheless the randomization key is 
automatically obtained during decoding and does not require any additional steps (e.g., sending the key to the decoder) [19]. Different 
ri's are chosen to avoid the presence of the same part r. Randomization provides a mechanism to identify mutations in living systems. 
Algorithms described for in vitro applications can be extended to in vivo approaches like [24].

Throughout it is assumed that both R and S are ≥ 1. Thus, after sequencing each original base is recovered at least once, and each 
block is repeated R ≥ 1 times. As in [10], the decoding scheme identifies each base of encoded information based on a majority vote 
of all the read bases corresponding to its position. As each base of encoded information is represented R times, due to their minimal 
base coverage S, each will be represented R•S time in our R•S repetition code. From this it follows that the minimum distance of our 
encoding scheme is R•S [18]. Practically, the distribution of the mean number of times each base of encoded information is sequenced 
and the base coverage follows a normal distribution. In both [7] and [10], the mean is quite large. The limiting issue is the minimum of 
these, termed S. Quality control and evaluation of current sequencing algorithms dictates how many sequences need to be generated 
(i.e., how large Š needs to be) to obtain S>1. These do not correct situations where S=0. This occurred in Ref. 10 and required manual 
intervention.

STEP 4-Detection of any errors, including those during message DNA preparation 

Using an R•S-fold repetition code as above, allows the detection and correction of many substitution errors during sequencing, storage, 
and decoding, but it cannot correct errors due to insertion or deletion, or if the error occurred earlier [20], i.e., during message DNA 
preparation, even when R or S is large. Alternatively, if S=0 for some message bases, as was the case in [10] where the sequencing 
reaction destroyed two regions of nt's, then the data are lost and cannot be recovered.

In fact, [21] argued that unfortunately there is no system that would provide security and protection against errors that are introduced 
at the level of message DNA preparation. Such errors cannot be fixed by the synthesis of enough oligos. These types of errors may lead 
to inaccurate decoding and change the meaning of the recovered message. This would be extremely harmful in situations when the 
change of meaning is not obvious or when there is no way to assign meaning, as with a cryptographic key or access code.

In such a case it would be desirable, at least, to be aware of such errors. Goldman et al. [10] employed some quality control mechanisms 
after DNA synthesis, library preparation, and sequencing. They compared the GC content and the k-mer frequencies along the reads 
with the designed DNA strings. This approach may not be able to detect data loss during the sequencing reaction. It would also not 
identify errors made during initial message DNA generation. For instance, faulty oligos can mimic a desired GC content and thereby 
pass the checking routine [10]. The following approaches will address these issues.

1.	 During encoding, append the hash value H(M̃) to M̃.

2.	 During decoding recompute the hash value of the rst part of M̃ and compare it to the given hash value. These values can only agree 
if no errors had occurred.

In information theory, cryptographic hash functions are a means for ensuring authenticity. For example, they are used to check 
whether a le has been changed. The hash value of the le is stored separately and the integrity of the le is checked by computing the 
hash value of the actual le and comparing it with the stored hash value. If the hash values are the same, then the le is unchanged. 
Secure hash functions have been developed that are mathematically strong in a range of situations [1,6,22].

This step improves the previous algorithms by providing proof if errors occurred during message DNA generation. Practically, hash 
functions generate a very short output, so the cost in message expansion via H(M̃) is minimal. While it is easy to appended the hash 
value to M̃, the added number of strings impacts efficiency. Effectively, the available message length is shortened by whatever length 
the hash value requires. Below, a more efficient approach is described.

STEP 5-Establishing authenticity of the individual segments 
In order to achieve this without knowledge of the message meaning two modifications to the above scheme are needed during 
encoding.

1.	 Choice of security parameter and identifiers: Let k be a small number, e.g., k=10 or 15 (this will be further described below). Modify 
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number 3 in STEP 3 as follows. Let IDi=IDter||1k||0 ... ||0i3, where i3 is the base- 3 representation of i, prepended with zeros so that 
IDi is of fixed length lid: The difference to above is that k 1’s are inserted in each identifier. This special structure will be used during 
a verification step during decoding.

2.	 Computation of m: Update equation (5) as follows:

impacts efficiency. Effectively, the available message length is shortened by whatever length the hash value

requires. Below, a more efficient approach is described.

STEP 5. Establishing authenticity of the individual segments : In order to achieve this without

knowledge of the message meaning two modifications to the above scheme are needed during encoding.

1. Choice of security parameter and identifiers: Let k be a small number, e.g., k = 10 or 15 (this will

be further described below). Modify number 3 in STEP 3 as follows. Let IDi = IDter||1k||0 . . . ||0i3,

where i3 is the base- 3 representation of i, prepended with zeros so that IDi is of fixed length lid.

The difference to above is that k 1′s are inserted in each identifier. This special structure will be used

during a verification step during decoding.

2. Computation of m: Update equation (5) as follows:

m = m̃1 ⊕3 e(r1)||r1 ⊕3 H(m̃1 ⊕3 e(r1))︸ ︷︷ ︸
of length l/R

|| . . . || m̃n ⊕3 e(rn)||rn ⊕3 H(m̃n ⊕3 e(rn))︸ ︷︷ ︸
of length l/R

. (6)

As above, this dividesm into equal size blocksm = m1||m2|| . . . ||mn, where nowmi = m̃i⊕3e(ri)||ri⊕3

H(m̃i ⊕3 e(ri)).

During decoding, each mi is validated for correctness by itself, as follows:

1. Define the first l/R− lr digits in mi as m̃i ⊕3 e(ri).

2. Compute the hash value.

3. Define ri as the last lr digits in mi subtracted bitwise modulo 3 from the value in step (2).

4. Compute e(ri).

5. Obtain m̃i via e(ri) from the value obtained in step (colorgreen 1).

6. Obtain M̃i and IDi from each m̃i according to their respective lengths.

7. Define z as the k digits in IDi immediately following the (fixed length) identifying info IDter in IDi.

Check if z is a string of k 1’s. If so, return i, M̃i and IDter. Otherwise report an error.

STEP 5 relies on verifying the final product and proves that this is the original encoded data. Without

knowing what the original data are, the algorithm can verify whether the original and final data are the

same. The algorithmic security check (number 7 in STEP 5) will only pass for blocks that are entirely

10

As above, this divides m into equal size blocks m=m1||m2|| ... ||mn , where now mi=m̃i⊕3 e(ri)||ri ⊕3 H(m̃i⊕3 e(ri)).

During decoding, each mi is validated for correctness by itself, as follows:

1.	 Define the first l/R- lr digits in mi as m̃i⊕3e(ri).

2.	 Compute the hash value.

3.	 Define ri as the last lr digits in mi subtracted bitwise modulo 3 from the value in step (2).

4.	 Compute e(ri).

5.	 Obtain m̃i via e(ri) from the value obtained in step (1).

6.	 Obtain M̃i and IDi from each m̃i according to their respective lengths.

7.	 Define z as the k digits in IDi immediately following the (fixed length) identifying info IDter in IDi.

Check if z is a string of k 1's. If so, return i, m̃i and IDter. Otherwise report an error.

STEP 5 relies on verifying the final product and proves that this is the original encoded data. Without knowing what the original data 
are, the algorithm can verify whether the original and final data are the same. The algorithmic security check (number 7 in STEP 5) will 
only pass for blocks that are entirely correct. This includes correctness for the data as well as the addressing component. In particular, 
any nucleotide errors as well as wrong placement will lead to an error message. To find which one is correct, only one string needs to 
be identified. This idea has been used for various cryptographic applications [1,6,22]. It was originally designed for achieving provable 
optimal asymmetric encryption [5]. That context requires the additional feature of maintaining secrecy. We adapted the underlying 
premise of this approach to our algorithm. A formal proof of security is given in [5]. In essence, it is impossible to get a valid cipher 
text, other than starting with the message (i.e., the data to be encoded) and encoding it with the above algorithm.

A necessary condition for the security check in number 7 in STEP 5 is that all of the encoded part of the block is obtained and decoded 
correctly. Any error during decoding will almost certainly lead to a decoded value of z that is not all 1's. This is based on the fact that if 
the decoded value of e(r) or of H(m̃i⊕3e(ri)) and the original value are not the same, then it is unlikely that the random cryptographic 
functions will result in the desired value of z. A more refined proof (relative to plaintext-awareness) is given in [5].

Any possible error during the entire synthesis process will be detected but may not be corrected at this point. This includes errors during 
message DNA preparation, or if the sequencing depth for some bases is zero, i.e., if some data were consumed during the process. 
In our algorithm, the message part contains both the original data component as well as its corresponding indexing information. The 
check guarantees validity of the data part and establishes that the addressing information will be obtained correctly as the check 
applies to both; thus, wrong placement is impossible. In particular, the algorithm can verify if the decoded message is the same as 
the original message, and any nt error or wrong placement will lead to an error message. Typically, with next generation sequencing, 
there will be numerous correct reads. Even though the original message is never seen, it can be verified as correct. Thus, alignment 
and comparison are not necessary. When one correct string has been identified, the process of identifying the next correct string can 
proceed. Finally, on average, this should be a great saving over current alignment based techniques to identify correct strings. Only 
one correct string needs to be identified. If there is no single correct string, this will be identified quickly by the algorithmic check, in 
which case majority voting needs to be applied for each base individually.

The price for this security check is the number k of 1's added to IDi. In provably secure cryptographic systems there is considerable 
uncertainty regarding acceptable limits to k [1,6,13,22]. We suggest k=10 or 15 should be large enough such that a block of 1's is 
unlikely to be present by chance. The length of k effectively defines the possible length of M̃ and of IDi.

Figure 1 summarizes examples of choices for R and S, illustrating the strengths of the described algorithm steps above without the 
use of cryptography. Small values of S are included to reflect poor sequencing quality. In reality, S should be much larger, making the 
schemes more robust. With current technologies, the probability of errors for a DNA sequence is about 1/500 during synthesis, and 
1/1000 during sequencing. In [10], the mean error rate per base at the level of sequencing reads was 1/250, which was higher than 
the combined synthesis and sequencing error rate reported above because of additional errors that were introduced by incorrect 
indexing.



2017
Vol. 7 No. 3:19

8 This article is available from: www.imedpub.com/european-journal-of-experimental-biology/

European Journal of Experimental Biology
ISSN 2248-9215

In information theory, cryptographic hash functions are a means for providing authenticity. Secure hash functions have been developed 
that are mathematically strong in a range of situations. For example, they are used to check whether a file has been changed. The hash 
value of the file is stored separately and the integrity of the le is checked by computing the hash value of the actual file and comparing 
it with the stored hash value. If the hash values are the same, then the file is unchanged.

The incorporation of hash functions improves the previous algorithms by providing proof as to whether errors occurred during message 
DNA generation. Practically, hash functions generate a very short output, so the cost in message expansion via H(M̃) is minimal.

With current technologies, synthesis and sequencing results in a large pool of correct oligos, or strings. This was confirmed in [10] 
where after amplification and sequencing the read duplication level was high, providing many reads covering any single string.

Modern sequence alignment algorithms have several challenges. The two most important relate to the enormous amount of short 
reads generated by next generation DNA sequencing technologies and the appropriate choice of the reference genome, allowing 
for mismatches and gaps. Contrary to algorithms developed for sequence alignment for DNA, encoding the decoder has no known 
reference sequence. A large number of reads are received, many with errors. Currently, majority voting for each individual base is 
used to inform decision making regarding the most likely correct base [24]. The main problem with this approach is the enormous 
amount of data that need to be stored, compared and evaluated, as well as the problem of systemic errors. We present a solution 
that does two things. First, it identifies one complete correct sequence among the many assuming that at least one complete correct 
sequence exists. The main task is to differentiate it from the many without having to analyze enormous numbers of comparisons. 
Second, we add randomization to deter any systemic errors.

Example: Generally, the value if R is chosen such that R.S is bigger than a required Hamming distance (Figure 1). Here, we use an 
example for R=3 to illustrate application of the algorithm. If l=198 is the largest integer less or equal to l0=200 for which l/R=66 is an 
integer. In the example our le identifier has fixed length 3, ternary string IDter:= 021.

Let the message be given in ternary as M=2200212002222221021010011022210122111100211201-
121111210120202212221101001112220000200022101111021012100102120002002001102101212211112021100-010020212000
12000111200210212101110210100112001000220122220112210012110. The length of this is 210 and can be written in ternary as 
l3:= 210=(21210)3.

Choice of parameters and encoding 
•	 Let lr=5 be the length of the randomizers ri.

•	 Let lid=17 be the length of the identifier, i.e. the addressing information for each message component.

•	 Let the fixed length of the ternary representation of lM be lb=8. Recall that lM is l3 prepended with zeros to give this desired length. 
Here, lM=00021210.

•	 To obtain M̃, one has to append exactly p zeros to M, such that the length of M plus lb plus p is divisible by (l/R-lid-lr)=44. Here, 
210+8+2=220=5.44 shows that p=2. Therefore, M=M||0000021210, where M is as above in ternary. 

•	 Then n:=len(M̃)=(l/R-lid-lr) is the number of blocks that will have to be sequenced. Here, len(M̃) is the length of the ternary 
representation of M and therefore n=220/44=5.

•	 Let the length of the ternary representation of the internal counter i be 10. This is the counter of the blocks, i.e., i=1,….,n.

•	 Let the size of the security parameter k be 10. This is the number of, say, 1s that is appended to the counter i inside of each 
identifier.

This results in n=5 identifiers ID1=02111111111110001, ..., ID5=02111111111110012 which are obtained from IDter=021, appended 
with the k 1s and the counter i (in ternary) with internal padding to give the fixed length of each IDi to be lid=17.

Specifically,M̃=2200212002222221021010011022210122111100211201121111210120202212221101001112220000200022101111021012100102120002002 
001102101212211112021100010020212000120001112002102121011102101001120010002201222201122100121100000021210 
(which is of length 220). Further, when incorporating the specific identifiers including the string of the k 1s, the n=5 internal blocks m̃i 
are m̃1=2200212002222221021010011022210122111100211202111111111110001, ..., m̃5=01001120010002201222201122100121
10000002121002111111111110012. Each of these has length l/R-lr=61. 

Let r1=02000, ...., r5=11211 random ternary strings of length lr=5.

`The expansion function e may be computed via the internal hash function of Maple, by computing the hash of these ri. The output of 
the hash function is a hexadecimal string of length 32 that can be converted into the corresponding ternary string. To find the e(ri), the 
ternary representation of hash of ri, H(ri), is chosen for only the first 61=len(m̃i) ternary digits. For instance, H(r1)=82fc813ae79eea7e
3c24af961f59e6cf and therefore e(r1)=1120002022021210101202212012212121211020111122111010120010021.Bitwise addition 
modulo 3 of m̃i and e(r1) results in 0020211021210101122212220001122210022120022021222121201120022 which is the first part 



9© Under License of Creative Commons Attribution 3.0 License         

2017
Vol. 7 No. 3:19

European Journal of Experimental Biology
ISSN 2248-9215

of m1.	which	is	the	first	part	of	m1.

Analogously,	the	hash	of	this	is	now	computed	via	the	hexadecimal	hash	of	Maple	converted	to	ternary	and	then	truncated	the	desired	
length	lr=5.	Again,	the	hash	is	added	bitwise	modulo	3	to	ri	to	give	the	second	part	of	the	mi.	For	instance,	H(m̃i⊕3e(r1))⊕3r1=12200. 
Therefore,	e.g.,	m1=002021102121010112221222000112221002212002202122212120112002212200.

The	 ti	 are	 constructed	 by	 repeating	 each	 of	 the	 mi	 exactly	 R=3	 times.	 E.g.,	 t1=00202110212101011222-
122200011222100221200220212221212011200221220000202110212101011222122200011222100221200220212-
2212120112002212200002021102121010112221222000112221002212002202122212120112002212200.	Each	of	 the	 ti	has	 length	
3	66=198	which	is	l,	as	desired.	Finally,	each	of	these	is	represented	in	base	four	via	the	base-3	to	DNA	encoding	([10],	Table 1)	by	
avoiding	homopolymers.

Overall,	the	result	of	the	encoding	part	is	a	list	of	n=5	DNA	segments,	e.g.,	the	first	being	DNA1=CGCGCTCGCTGACTAGATGCTGCAC
GTCTGCAGTATGATACATATCATGATCACTCAC-GCAGCACGTATATCTATCAGTCGAGCATCATGTACTCATGACGCAGCGTGCGCTGCAGCTGT-
CTGTATGATGTACGCGCTCGCTGACTAGATGCTGCACGTCTGCAGTATGATACATATCATGATCACTCACGCAGCACG.

Decoding 
Each	of	the	n	segments	of	the	DN	Ai	is	reconverted	into	their	base-3	equivalents.

For	 example:	 DNA1	 becomes	 00202110212101011222122200011222100221200220212221212011200221220000202110212-
10101122212220001122210022120022021222121201120022122000020211021210101122212220001122210022-
12002202122212120112002212200	 (which,	 if	 correct,	 is	 t1).	 Each	 of	 these	 n	 recovered	 segments	 are	 then	 divided	 into	 R	
subcomponents	of	 equal	 size.	 For	 instance,	 the	first	 component	 gives	 the	 three	 subpieces	0020211021210101122212220001122
21002212002202122212120112002212200;	 002021102121010112221222-000112221002212002202122212120112002212200;	
0020211021210101122212220001122210022120022021222-12120112002212200:	These	should	all	be	the	same	strings,	 repeated	
R=3	times.	During	decoding,	a	simple	majority	vote	will	compare	each	of	the	entries	in	these	R	subpieces	and	return	the	most	likely	
entry	for	each	individual	digit.	Here,	since	there	were	no	errors,	only	one	of	these	(same)	substrings	is	computed.	Doing	this	for	all	the	
n=5	recovered	DNA	strings	yields	the	original	strings	m1,…,m5.

This	concludes	the	part	of	the	method	that	utilizes	repetition	codes.	However,	this	part	may	not	detect	all	possible	errors.	The	next	
steps	illustrate	how	the	additional	components	derived	from	cryptographic	methods	address	this	issue.

Each	of	the	recovered	blocks	(which	should	be	the	mi	and	which	for	simplicity	are	termed	mi	although	it	still	must	be	confirmed	that	
they	are	the	same	as	the	original	mi)	is	by	itself	validated	for	correctness,	as	detailed	in	STEP	5	as	follows.

Let	 Yi	 be	 the	 last	 l/R-lr=61	 digits	 for	 each	 of	 the	 recovered	 blocks	 mi.	 For	 instance,	 the	 Yi	 recovered	 from	 mi	 is	 "0020211
021210101122212220001122210022120022021222121201120022".	 The	 hash	 value	 for	 this	 gives	 "19e30bb67ee7486
df967389903d1487b".	 This	 allows	 for	 the	 recomputation	 of	 the	 r1=02000.	 The	 expansion	 function	 applied	 to	 this	 yields	
e(r1)=11200020220212101012022120122121212110201111221110-10120010021.	 Subsequently,	 m̃1	 is	 recovered	 as	
220021200222222102101001102221012211110021120211111-1111110001.

The	crucial	step	is	done	via	recovering	the	IDi  and	testing	if	they	are	of	the	correct	form,	i.e.	with	a	desired	number	of	1's.	For	instance	
ID1	is	recovered	as	02111111111110001.	The	first	three	digits	yield	IDter=021	and	the	next	k=10	digits	are	crucial.	If	there	is	no	error,	
the	string	will	be	1111111111,	i.e.,	the	test	string	z of k=10	consecutive	1's.	If	this	test	is	passed,	the	entire	component	mi	is	therefore	
proven	to	be	correct	[5].	If	all	the	mi	are	validated	then	this	gives	the	original	message	m	along	with	a	proof	that	the	recovered	m	is	
the	same	as	the	original.

Error detection and correction 
The	internal	repetition	into	R	segments	constitutes	a	classic	repetition	code	with	straight	forward	error	correcting	properties.	A	simple	
majority	vote	will	identify	less	then	(R-1)/2 substitution	errors.	Internal	R	fold	repetition	is	achieved	and	is	demonstrated	above	to	
illustrate	the	choice	of	the	parameters.	However,	the	strength	of	our	method	does	not	rely	on	this	part	and	indeed	one	could	achieve	
strong	security	even	for	R=1,	due	to	the	cryptography	part	integrated	in	STEP	4	and	STEP	5.

If	the	size	of	the	security	parameter	k	is	large	enough	then	any	category	of	error	will	be	identified	during	decoding	(Table 3).	In	case	
of	any	error,	the	security	check	will	not	pass	for	a	large	enough	k.	For	instance,	if	during	decoding	the	second	piece	m2	suffers	from	a	
deletion	at	position	3	(after	majority	decoding),	then	the	decoding	routine	will	recompute	the	following	ID2=0022101122012:	It	does	
not	end	in	the	desired	k ≥ 5	1s	and	the	error	is	detected.

According	to	[5],	it	does	not	matter	what	type	and	how	many	errors	occur.	Most	importantly	in	order	to	obtain	the	desired	string	of	
k	1's,	the	entire	message	m̃i needs	to	be	recomputed	correctly;	this	is	known	as	“all-or-nothing"	security.	In	order	to	recover	m̃i,	one	
must	recover	both	parts	of	m̃i in	their	entirety.	The	first	part	is	required	to	recover	ri	from	the	second	part,	and	ri	is	required	to	recover	
m̃i	from	its	first	part.	Since	any	changed	bit	of	a	cryptographic	hash	completely	changes	the	result,	the	entire	part	of	m̃i must	both	be	
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completely	recovered.	Above,	R=3 allows	the	correction	of	single	substitution	errors	during	majority	voting.	The	extra	security	feature	
testing	for	the	k	1's	provides	an	additional	feature	that	 identifies	any	type	of	error	that	escaped	detection,	 including	substitution,	
deletion,	or	insertion	errors.	It	gives	a	guarantee	for	those	strings	that	are	recovered	in	their	entirety.	The	list	of	abbreviations	is	given	
in	the	Table 4.	

Conclusion
A	multistep	algorithm	is	presented	based	on	cryptographic	features	that	increase	precision	and	security.	Two	main	ingredients	are	
randomization	and	secure	data	integrity.	The	method	is	flexible	and	allows	for	increased	levels	of	security,	depending	on	demand,	and	
identifies	approaches	to	detect	and	correct	errors.	This	is	based	on	the	number	of	DNA	blocks	required	to	be	encoded	within	each	
generated	sequence	of	DNA	(as	represented	by	R),	or	how	many	need	to	be	sequenced	(as	represented	by S).	In	contrast,	the	Illumina	
protocol	[2]	focuses	on	the	average	curve	of	the	sequencing	depth.	In	worst	case	scenarios,	i.e.,	when	certain	nucleotide	bases	are	
consumed	during	the	encoding	process,	algorithm	will	detect	the	loss	of	these	data.

Our	approach	is	applicable	to	in vitro	and	in vivo	approaches	of	DNA	storage	and	sequence	analysis.	Key	for	both	is	adequate	randomness	
in	the	encoding	algorithm.	In vitro	approaches	require	sufficient	redundancy	to	prevent	detrimental	DNA	sequence	and	structure.	In 
vivo	approaches	must	avoid	the	existence	of	the	same	or	similar	copies	of	DNA	within	a	single	cell.	The	required	level	of	randomization	
is	achieved	by	tools	derived	from	cryptography	that	do	not	rely	on	knowledge	or	transmission	of	secret	keys	or	randomization	data.	
Another	potential	application	of	our	algorithm	is	for	the	identification	of	genetically	modified	organ-isms.	Effectiveness	and	accuracy	
require	multiple	copies	of	a	trademark	DNA	 label	or	"barcode"	containing	authentication	and	tracking	 information	 inside	a	single	
cell.	This	challenge	can	be	efficiently	addressed	based	on	the	randomization	techniques	described;	each	individual	segment	of	DNA	
represents	the	same	information,	but	is	randomized	before	being	encoded	in	DNA.

As	the	algorithm	can	be	applied	to	validate	and	verify	the	correctness	of	the	individually	decoded	pieces,	without	knowing	the	original	
data,	a	certificate	can	be	generated	that	confirms	that	the	obtained	data	are	exactly	like	the	original	ones.	This	has	applications	to	DNA	

Any error(s) corrected during majority decoding Reconstructed m2 (after majority  voting) 
 0 1 0 1 1 0 1 1 1 1 . . . 0 0 2 0 2 1 1 2 1 0

Reconstructed check string 
"1111111111"

Example	of	substitution	error 						0	1	2	1	1	0	1	1	1	1	.	.	.	0	0	2	0	2	1	1	2	1	0 "2002202000"
Example	of	insertion	error 						0	1	2	0	1	1	0	1	1	1	1	.	.	.	0	0	2	0	2	1	1	2	1 "0110120120"
Example	of	deletion	error 						0	1	1	1	0	1	1	1	1	.	.	.	0	0	2	0	2	1	1	2	1	0 "0020122120"

Table 3 Advanced	error	detection	and	correction	via	the	use	of	cryptography.	A	clearly	defined	check	routine	identifies	those	reads	that	are	error	
free.	Here,	these	are	exactly	those	for	which	the	check	string	contains	a	desired	number	of	1's.	This	check	will	identify	all	types	of	errors	and	identify	
only	those	reads	that	are	correct.	Details	of	the	implementation	and	a	worked	example	for	correct	decoding	is	given	in	the	example	in	the	text.

Table 4:	List	of	Abbreviations.

Short form Full form
l0 Largest	length	of	segments	chosen	that	are	amenable	to	manipulation

l The	actual	block	length	of	each	sequence	that	is	sequenced.	l≤ l0	is	chosen	according	to	some	technical	requirements	depending	
on	the	required	number	of	repetitions	within	each	block

R The	number	of	repetitions	of	the	same	sequence	inside	each	sequenced	block.	R	is	chosen	such	that	R/l is	an	integer	and	
according	to	some	additional	technical	requirements	detailed	below	to	ensure	a	required	hamming	distance

lid Length	of	the	identifier	for	each	message	block
lr Length	of	the	input	string	r
IDi Concatenation	of	the	file	identifier	and	the	internal	counter
S Sequencing	depth.	A	Parameter	that	identifies	the	number	of	sequences	to	be	recovered
M Original	message
M1||M2 Concatenation	of	strings	M1	and	M2

M̃ M	appended	and	padded	with	additional	0's,	resp.,	the	message	length,	to	allow	unique	decoding.	The	length	of	M̃ is	a	multiple	
of id

l l
R
− 	(basic	scheme)	or	of	 id r

l l l
R
− −  (enhanced	scheme)

M̃i The	equal	length	blocks	within	M̃ 
mi, m̃i The	individual	message	blocks	with	their	identifiers,	after	incorporation	of	the	respective	cryptographic	steps
r, ri Pseudorandom	string	of	length	lr

e(ri) A	cryptographic	expansion	function	that	takes	a	short	random	string	ri	and	outputs	a	longer	random	string	e(ri)

m̃i⊕3 e(ri)||ri Random	string	ri	of	length	lr	chosen	from	data	m	and	direct	summed	⊕3	modulo	3	with	m.	Each	of	these	has	length	 l
R

H(M) Hash	value	of	M
k Security	parameter	underlying	the	cryptographic	OAEP	scheme
z Last	k	digits	in	m̃i.	These	k	strings	are	checked	for	a	specific	pattern.	Used	in	STEP	5	to	ensure	authenticity	of	the	individual	segments
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steganography, sequence alignment, and fast identification of correct reads in next generation sequencing.
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