Research Article

iMedPub Journals www.imedpub.com Biochemistry & Molecular Biology Journal ISSN 2471-8084 **2021** Vol.7 No.2:6

DNA Barcoding of Mountain Crabs (Potamidae) from Phetchabun Mountains of Thailand: The First Report of Endemic and Endangered Species

Abstract

This study aims to examine the efficiency of mt-DNA (cytochrome c oxidase I) for the identification of freshwater crabs. One hundred thirty-eight fresh crabs were collected from 15 locations in five provinces in the Phetchabun Mountains (Loei, Phetchabun, Nongkhai, Udonthani, and Chaiyaphum) of Thailand. DNA extraction (claw tissue) of individual crab was amplified using PCR by *COI* primers. The PCR products were examined for nucleotide sequence before the genetic analysis. The result indicated there are 32 haplotypes. The phylogenetic tree showed a clear separation of three main clades. Clade A was classified to be Indochinamon bhumibol, Indochinamon ahkense, and Indochinamon mieni. Clade B was classified to be lomon nan and *Vietopotamon* phuluangense. Clade C was classified of *Larnaudia* chaiyaphumi. This study is the first report of the genetic sequences of all 6 mountain crabs species.

Keywords: DNA barcoding; Potamidae; COI gene; Mountain crabs; Phetchabun Mountains

Wanniwat Suthamrit and Bungorn Thaewnon-Ngiw*

Department of Biology, Faculty of Science, Mahasarakham University, Thailand

*Corresponding author: Bungorn Thaewnon-Ngiw

ttbungorn@hotmail.com

Department of Biology, Faculty of Science, Mahasarakham University, Thailand.

Tel: 0816019519

Citation: Suthamrit W, Thaewnon-Ngiw B (2021) DNA Barcoding of Mountain Crabs (Potamidae) from Phetchabun Mountains of Thailand: The First Report of Endemic and Endangered Species. Biochem Mol Biol Vol.7 No.2:6

Received: December 29, 2020; Accepted: February 11, 2021; Published: February 18, 2021

Introduction

The mountain crabs are big group of freshwater crabs which have habitat in fresh water streams on mountains in Indochina region [1]. Their population play important role in food chain the mountain stream ecosystem. The freshwater crabs will survive in large enough natural forest areas to maintain the good water quality of the original streams [2]. Previously, almost mountain crabs were identified in the genus Potamon because of the similarity of external characters. After that they were divided into many genera later by the reason that there are much different types of habitats and continents [3]. Presently, the study of freshwater crabs (Potamidae) in Thailand found 94 species in 25 genera. Phetchabun Mountains have a high biodiversity, and various endemic creatures especially mountain crabs [4]. Most of their habitat is distributed in the tropical and sub-tropical on the mainland [5]. The mountain crabs play an important role in the source of food and income for the local people. The development of anthropogenic activities is rapidly increasing such as tourism activities, deforestation, agricultural chemicals, Overconsumption and others. On the other hand,

The number of mountain crabs is rapidly declining. In addition, local communities and organizations still lack in biodiversity and genetics information and clear management resources strategies.

Now-a-days, mitochondrial DNA (mt-DNA) is widely accepted that it is a highly accurate technique of identifying organism. There are many of partial mt-DNA genes that are used to be taxonomical to animals (COI), plants (matK, rbcL, psbaA-trnH, ItS), bacteria (COI, rpoB, 16S, RIF, gnd), fungus (ITS, RPB and 18S), and protists (ITS, COI, rbcL, 18S and 28S) [6]. COI gene is especially popular in classify various animals around the world such as shrimp Macrobrachium lanchesteri [7], freshwater prawn [8] sea cucumbers [9], worms (Pomphorhynchus tereticollis) [10], insect [11], gastropod [12], mud crab (Scylla serrata) [13] etc. This study intends to use morphology and applies the COI gene to identify mountain crabs family Potamidae. Studying genetics to accurately identify of mountain crabs species can be very helpful in the selection of mountain crab breeders. Breeding to selling will support local income. It also help reduce catching of crabs out of the wild. Finally, it is supporting of sustainable conservation of mountain crabs to stay together in the natural forest.

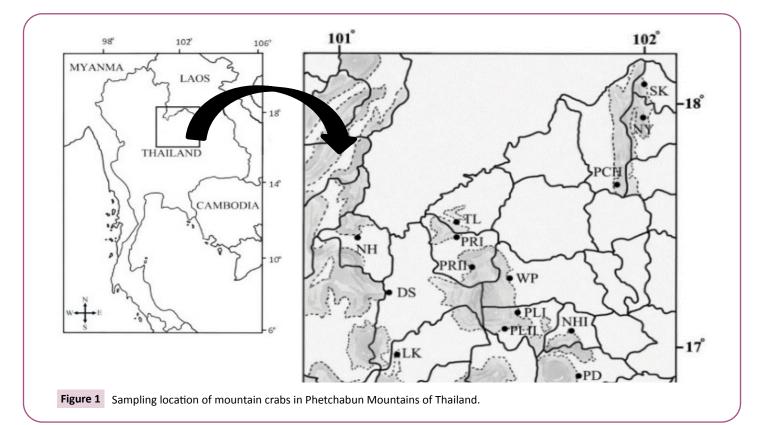
Materials and Methods

Collecting specimen and identification

The fresh specimens were collected from 15 locations in five Provinces in Phetchabun Mountains of Thailand: (I) Loei Province (Phuruea=PRI, PRII, Dansai=DS, Thali=TL, Phuluang=PLI, and PLII, Nahaew=NH, Nonghin=NHI, Pakchom=PCH, Wangsaphung=WP, Phukradueng=PD); (II) Phetchabun Province (Lomkao=LK); (III) Nongkhai (SangKhom=SK); (IV) Udonthani (Nayoong=NY), and (V) Chaiyaphum Province (Phakdichumphon=PHD) (**Figure 1**). The specimens were frozen at -20°C at the Molecular Biology Laboratory, Faculty of Science Mahasarakham University until used.

Morphology

External morphological study from these characters of first gonopod (G1), second gonopod (G2) and others. In this study, using the methods of Brandis et al. [14], Chuensri et al. [15], Yeo et al. [3], Pramual et al. [16], Naiyanetr et al. [17-19], Brandis et al. [14], Supajantra et al. [20], Guinot et al. [21], and Naruse et al. [22].


Genetic analysis

Genomic DNA was extracted using the Genomic DNA kit GF-1 and stores at -20°C. By using UV spectrophotometer of optical density at 260nm (OD 260) and 280nm (OD 280) to checked the DNA concentration. We used polymerase chain reaction (PCR) methods with the primers LCO1490 (F) 5'-GGT-CAA-CAA-ATC-ATA-AAG-ATA-TTG-G-3' and HCO2198 (R) 5'-TAA ACT TCA GGG TGA CCA AAA AAT CA-3', which were developed by Folmer et al. [23]. The PCR was conducted with 50 ul: 5 µL 10X buffer, 2 MgCl₂, 0.05mM dNTPs, both 0.5 mM COI primer of forward and reward, 0.3 µL Taq DNA polymerase and 3.5 μ L DNA samples. The PCR consisted four steps: (I) initial denaturation of 2 min at 94°C, (II) stand at 10 cycles of 30 sec at 94°C, 40 sec at 50°C and 10 min at 72°C (III) stand at 35 cycles of 40 sec at 94°C, 40 sec at 50°C and 1.10 min at 72°C (IV) stand at 7 min of 72°C and stand at -4°C. Then, the PCR product was determined by electrophoresis technique (1% agarose gel). To determine DNA sequence (forward and reward of the COI gene), the PCR product was sent to 1st BASE sequencing service (Malaysia these sequences were analyzed and the genetic differentiations (Intra-genetic divergence) were obtained and constructed the phylogenetic tree diagram: Neighbor-Joining (NJ). We use to get phylogenetic tree diagram using the MEGA-X program to get the genetic differentiations and phylogenetic tree [24-26]. Lastly, using the Arlequin 3.5 program, we analyzed the inter-specific genetic divergence [24,27,28].

Results

Collecting specimen and morphology

A total of 138 crabs (103 males and 35 females) were collected from Phetchabun mountain ranges (latitudes 101-102, longitude 16.5-18.30) between 310 and 845 m high above sea level (**Table 1**). Their habitat is digging holes beside muddy streams or hides in between rocky streams. The external morphological study was identified by the first gonopod and other physically characters found that there were six species of mountain crabs: (I) *Indochinamon bhumibol* was dark-purple and dark-brown, (II) *Indochinamon ahkense* was brown-orange, (III) *Indochinamon mieni* was onyx-dark-blue, (IV) *Iomon nan* was dark-brown-olive,

Table 1 Details of the six Potamidae species from collecting location and GenBank accession number are tabulated below.										
	Species/Locality	GPS co-ordinates	Elevation (m)	Number sequence (N)	Name of sequence					
	A) Indochinamon bhu	umibol (Naiyanetr, 2001)		14						
L	Phuruea District Loei Province (PRI)	17 23'09.4"N 101 29'20.1"E	733	3	RPI1					
					PRI2					
		101 29 2011 2			PRI5					
2	Phuruea District Loei Province (PRII)	17 28'55.88″ N 101 23'04.45″ E	789		PRII1					
				3	PRII2					
					PRII3					
3	Dansai District Loei Province (DS)	17 15'01.70" N 101 08'24.99" E	414		DS1					
				3	DS2					
					DS5					
ŀ	Thali District	17 32'09" N	829	2	TL1					
	Loei Province (TL)	101 19'41" E			TL3					
5	Phuluang District	17 06'04" N			PLI1					
	Loei Province (PLI)	101 33'28" E	845	3	PLI3					
	D) to de altimum a history	2)	2	PLI4						
	B) indochindmon ankense	(Naruse, Chia and Zhou, 201	8)	3	1//2					
5	Lomkao District, Phetchabun Province (LK)	17 06'25.94" N	602	3	LK3 LK4					
		101 19'06.62" E	002	5	LK5					
	C) Indochinamor	9								
	Pakchom District Loei Province (PCH)	17 02'50" N 101 50'56" E	720	3	PCH3					
,					PCH5					
					PCH6					
	Sang-Khom District Nongkhai Province (SK)	18 12'05.01" N 102 06'39.51" E	369	3	SK1					
3					SK2					
					SK3					
	Noveona District I Identhani Drovince	18 28'5 N	473	3	NY1					
)	Nayoong District Udonthani Province (NY)	102 87'7 E			NY2					
	()	102 07 7 2			NY3					
	D) <i>Iomon nan</i> (Ng	3								
_	Nahaew district	17 18'16.90'N	795		NH1					
0	Loei province (NH)	101 05'49.93'E		3	NH2 NH4					
	E) Vistopotamon nh	8	INП4							
	E) <i>Vietopotamon ph</i> Nonghin District	0	NHI1							
1	Loei Province (NHI)	17 02'50" N 101 45'40" E	594	2	NHI5					
	Phuluang District	17 05'29.37" N								
2	Loei Province (Plii)	101 34'11.31" E	461	1	PLII1					
3	Wangsaphung District Loei Province (WP)	17 16'16″ N 101 34'42″ E	411		WP1					
					WP2					
					WP5					
4	Phukradueng District	16 50'15.59" N	310	2	PD1					
•	Loei Province (Pd)	101 49'42.49	510	2	PD2					
	F) Larnaudia chaiyap	3								
	Phakdichumphon District Chaiyaphum Province (PHD)	16 08'42.42" N 101 27'49.23" E	462		PHD1					
5				3	PHD2					
					PHD3					
				Total=40						
					., .					

Table 1 Details of the six Potamidae species from collecting location and GenBank accession number are tabulated below.

(V) *Vietopotamon phuluangense* was dark-brown or brownyellow (VI) *Larnaudia chaiyaphumi* was bark-brown-orange [29].

Genetic analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The 40 specimens from 138 specimens were selected for genetic

study. The 40 aligned sequences of Potamidae was analyzed by 590 bp *COI* gene and blasted with Genbank DNA sequence. The result of the nucleotide blast did show not any match with Genbank. There was not a single similar DNA sample. We then analyse the haplotype (H) frequency by Arlequin 3.5 which showed 32 unique haplotypes and there were four sharing haplotypes. The compositions were 18.53% C, 38.07% T, 25.82% A and 17.59% G. The highest of GC-content was In. bhumibol at 37.01%. The lowest of GC- content was L. chaiyaphumi at 33.56%. The mean of variation in GC-content was 36.43% (33.56-37.01%). The highest of the intra-genetic distance was V. phuluangense which had a mean of 4.17% (0.53-8.27%), followed by mean of In. bhumibol of 2.03% (0-3.79%). There was almost no genetic differentiation within species of Io. nan and L. chaiyaphumi (Table 2). The topologies of the phylogenetic tree were constructed by the NJ method. The tree was divided into three main clades: clade A, B and C. The clade A shows three sister taxon of genus Indochinamon consisting taxa A= In. bhumibol, B= In ahkense and C= In. mieni. The average of genus Indochinamon's Intragenetic divergence was 6.50%. The inter-genetic distance within the genus showed In. bhumibol relate closely with In ahkense as 82.02% Fst value (Table 3). The clade B (taxa D and E) were classified to be Io. nan and V. phuluangense respectively. The clade C, was classified to be L. chaiyaphumi. (Figure 2). From the tree, found genetic differences within the species that were split into multiple groups base on sampling location such as In. bhumibol, In. mieni and V. phuluangense. The DNA barcoding of partial COI genes of six mountain crab species were submitted on The National Center for Biotechnology Information (NCBI). The detail of GenBank Accession No. was showed in Table 1.

Discussion

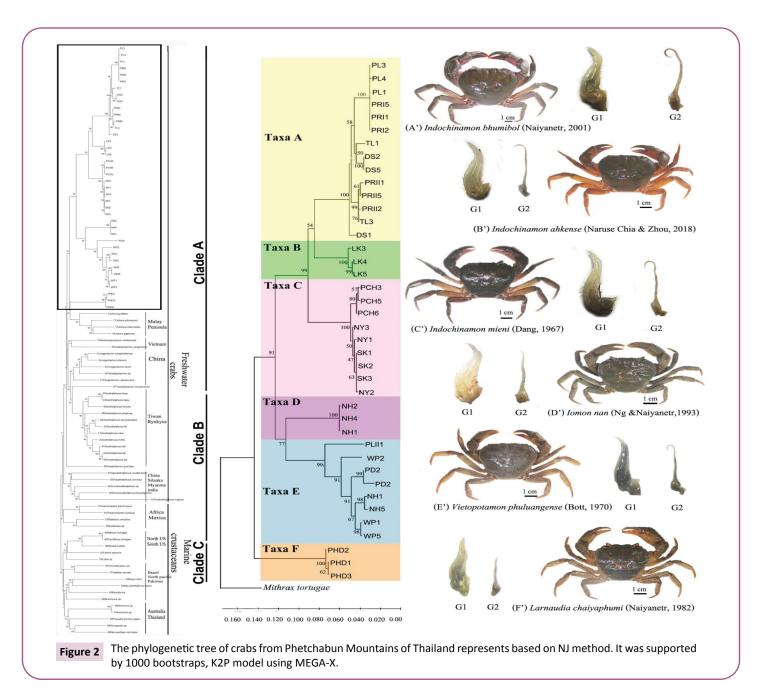

In the last centuries, Asean countries have done very few studies of freshwater crabs especially the mountain crabs which almost all of them are endemic species. The study of crab in the Indochina region is based on external characters. For this reason, it causes the misidentification of the species. In addition, there may be various species that are still unknown. That means that we still lack biological knowledge to manage the mountain crabs. The current biological diversity study has improved the morphology together with the genetic information of the mountain crabs. DNA barcoding is a high effective technique to help to confirm species in a short time [6]. The comparison of Genbank by nucleotide blast does not show any match with any species. There is only a few genetic data (16S gene) on the genus of the study such as Indochinamon kimboiense, Indochinamon ou, Indochinamon tannanti, Larnaudia beusekomae [30]. In this study, we provide the first sequence of the COI genes of these six mountain crabs in Indochina habitat (Phetchabun Mountains, Thailand). The 32 unique haplotypes show high genetic diversity. The mean of intra-genetic distance shows high value in V. phuluangense (4.17%), and In. bhumibol (2.03%) and In. mieni (0.91%). The phylogenetic tree shows that within the same species, there is branching to multiple groups based on the samples' locations. This can be explained by the geographic factors. The geographical barriers like streams, large rocks may have a significant role in supporting of inbreeding by preventing the mobility of the crabs, and thus the genes' movements as well [31,32]. Most of their activities are finding food, mating, spawning, and digging holes for its nests beside the streams. The reproductive isolate was the obstacle to the gene flow mechanism. This is supported by the studies of various animals show the importance of reproductive isolation force and sympatric divergence such as river crabs (Potamonautidae) [33], birds and mammals [34], gastropod (Littorina saxatile) [35], insect Rhagoletis pomonella [36]. The clade A shows three sister taxon of genus Indochinamon (taxa A, B, and C) and monophyletic grouping that was supported by highvalue NJ bootstrap 99%. Three species of Genus Indochinamon are very similar in morphology, and slightly in different colors. In. bhumibol and In. ahkense have close relationships supported by NJ bootstrap 54%. The clade B (taxa D and E) was classified to be

Table 2 Details of the six Potamidae species from genetic samples (K2P) and nucleotide frequencies are tabulated below.

Type value	Number of crabs (N)	number of haplotypes (Nh)	Intraspecific genetic divergence K2P (%) (mean)	C%	Т%	А%	G%	CG-content
A) In. bhumibol	14	10	0.00-3.79 (2.03)	19.15%	37.29%	25.70%	17.86%	37.01%
B) In. ahkense	3	2	0.00-0.71 (0.47)	18.70%	38.42%	26.05%	16.84%	35.54%
C) In. mieni	9	8	0.00-1.97 (0.91)	17.59%	38.76%	25.93%	17.72%	35.31%
DV. phuluangense	8	8	0.53-8.27 (4.17)	18.50%	38.29%	25.41%	17.80%	36.30%
E) <i>Io. nan</i>	3	1	0.00-0.00 (0.00)	19.32%	37.63%	25.42%	17.63%	36.95%
F) L. chaiyaphumi	3	3	0.18-0.53 (0.35)	17.51%	39.15%	27.29%	16.05%	33.56%
Total	40	32	Average	18.53%	38.07%	25.82%	17.59%	36.43%

Table 3 Interspecific genetic divergence of K2P.

species	Α	В	С	D	E	F
A) In. bhumibol	-					
B) In. ahkense	82.02%	-				
C) In. mieni	86.01%	89.06%	-			
D) V. phuluangense	84.36%	81.82%	85.63%	-		
E) Io. nan	89.98%	98.40%	94.08%	77.06%	-	
F) L. chaiyaphumi	90.87%	97.21%	94.69%	79.93%	98.58%	-

Io. nan and *V. phuluangense* supported by NJ bootstrap 77%. The clade C was classified to be *L. chaiyaphumi*. The Clade A is crosser with the clade B than the clade C (**Figure 2**).

The average of the GC-content of these six mountain crabs (33.56-37.01%) corresponds to the study of Costa FO [37] that found the mean value of GC-content of *Uca annulipes* and *Uca perlexa* was 39.8±1.42%, and the study of Costa et al. [38] show that the 617 species of crustaceans shows GC-content 29.9% to 49.6%. The phylogenetic tree of the partial *COI* gene shows accurately the agreeable relationship between morphology and genetic distance of each species, but it difficult to identify without a specialist. These partial *COI* genes of these crabs studies can be distinguished from the other region freshwater crabs such as genus *Johora* from Malay Peninsula [39], genus *Geothelphusa* from Ryukyus (Taiwan), genus *Neotiwaripotamon* from Vietnam

[40], genus *Longpotamon, Tenuilapotamon, Parapotamon* from China [41], *Potamonautes* from South Africa [42]. It also clearly distinguished from the marine crabs, genus *Mithrax, Libinia* and *Lybia* from USA and European Union [43,44].

From the assessment of IUCN Red List, it was found that the 27% of threatened fauna's extinction is crustaceans. This study also found the report of mountain crabs that is considered to be: 1) Endanger are: *Indochinamon bhumibol and Iomon nan;* 2) Vulnerable such as *Indochinamon mieni;* 3) Leat Concern such as *Larnaudia chaiyaphumi;* 4) Data Deficient such as *Vietopotamon phuluangense;* 5) No Data such as *Indochinamon akkense* [44]. Therefore to conserve the wild fauna, conservationists and Non-Government Organizations have to apply the biodiversity information and co-operate with the local people to achieve sustainable results [45].

Conclusion

The results of the study's partial COI gene have become a tool of identification (DNA barcoding) of mountain crabs in the Indochina region and also taxonomical tool to be use in the biodiversity information. However, the studying only the partial *COI* gene might be not enough to infer genetic relationship of the genus. Therefore, many more mt-DNA genes need to be studied to increase the accuracy.

References

- 1 Siamensis. "Potamidae," (2010) http://www.siamensis.org/species_ index?nid=794#794--Family: Potamidae.
- 2 Yeo DC, Ng PK, Cumberlidge N, Magalhaes C, Daniels SR, et al. (2008) Global diversity of crabs (Crustacea: Decapoda: Brachyura) in freshwater. Hydrobiologia 595: 275–286.
- 3 Yeo DC, Ng PK (2008) On the genus 'Potamon' and allies in Indochina (Crustacea: Decapoda: Brachyura: Potamidae). Raffles Bull Zool 56: 469.
- 4 Office of National Park, "National Park," 2563. https://portal.dnp. go.th/Content/nationalpark?contentId=673 (Accessed Feb. 23, 2020).
- 5 Purty RS (2016) DNA Barcoding: An Effective Technique in Molecular Taxonomy. Austin J Biotechnol Bioeng 3: 1.
- 6 Khanarnpai R, Thaewnon-Ngiw B, Kongim B (2019) Genetic variation of Macrobrachium lanchesteri (De Man, 1911) in Northeastern Thailand. Cogent Biol 5: 1677126.
- 7 Udayasuriyan R, Bhavan PS (2017) Journal of Genes DNA Barcoding of Freshwater Prawn Species of Two Genera Macrobrachium and Caridina Using mt-COI Gene. Journal of genes and proteins 1: 1–9.
- 8 Derek RJ, Skillings J, Bird CE (2011) Gateways to Hawaii: Genetic Population Structure of the Tropical Sea Cucumber Holothuria atra. J Mar Biol 16.
- 9 Špakulová BN, Perrot-Minnot MJ (2011) Resurrection of Pomphorhynchus tereticollis (Rudolphi, 1809) (Acanthocephala: Pomphorhynchidae) based on new morphological and molecular data. Helminthologia 48: 268–277.
- 10 Luca Picciau AA, Hoch H, Asche M, Tedeschi R (2016) The genus Cixius Latreille, 1804 (Hemiptera, Fulgoromorpha, Cixiidae) in Lebanon with the description of two new species. Zootaxa 4093: 85–102.
- 11 Martinez-Orti A, Elejalde MJ, Gomez-Moliner B (2008) Morphological and DNA-based taxonomy of Tudorella P. Fischer, 1885 (Caenogastropoda: Pomatiidae). J Conchol 39: 553–567.
- 12 Cyrus Rumisha MK, Huyghe F, Rapanoel D, Mascaux N (2017) Genetic diversity and connectivity in the East African giant mud crab Scylla serrata: Implications for fisheries management. PLoS One 12: 1–18.
- 13 Brandis B (2000) The taxonomical status of the freshwater crab genus. Senckenb Biol 80: 57–100.
- 14 Chuensri C (1974) Freshwater Crabs of Thailand. J Fish Environ 7: 14–40.
- 15 Pramual T (1990) Taxonomy of Rice-Field Crabs and Charaters of Gonopod ommatidia by scanning Electron Microscopy. Chulalongkorn University, Thailand.

Acknowledgements

This project received funding from The Promotion of Talented Science and Mathematics Teacher Unit (PSMT) and The Graduate Student Development (master's degree) income budget year 2020. Moreover, we would like to thank Mr. Ewe Choon Lee, BSc (Hons), MBA for proof reading the manuscript.

- 16 Naiyanetr P (1993) Potamon bhumiboln. sp., A new gaint freshwater crab from Thailand (Decapoda, Brachyura, Potamidae). Crustaceana 65: 1–7.
- 17 Ng PN (1995) Pudaengon, a new genus of terrestrial crabs (Crustacea: Decapoda: Brachyura: Potamidae) from Thailand and Laos, with descriptions of seven new species. Raffles Bull Zool 43: 355–376.
- 18 Perter Ng, Naiyanetr P (1968) Zoologische Verhandelingen: new and recently described freshwater crabs (Crustacea: Decapoda: Brachyura: Potamidea, Gecarcinucidae and Parathelphusidae) from Thailand, no. december 1968. 2003.
- 19 Supajantra S (2002) Taxonomy of Freshwater Crabs in The North-Eastern Thailand. Chulalongkorn university.
- 20 Ng PP, Guinot D (2008) Systema Brachyurorum: Part 1. An Annotated checklist of extant brachyuran crabs of the world. Raffles Bull Zool 17: 1–286.
- 21 Naruse J, Chia E, Zhou X (2018) Biodiversity surveys reveal eight new species of freshwater crabs (Decapoda: Brachyura: Potamidae) from Yunnan Province, China. Peer J 6: e5497.
- 22 Folmer RL, Black M, Hoeh W (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–299.
- 23 Saitou MN (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
- 24 Nei M (1978) The theory of genetic distance and evolution of human races - The Japan societyof human genetics award lecture. Jpn J Hum Genet 23: 341–369.
- 25 Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549.
- 26 Stumpf MP (2004) Haplotype diversity and SNP frequency dependence in the description of genetic variation. Eur J Hum Genet 12: 469–477.
- 27 Weir BS (1984) Estimating F-statistics for the analysis of population structure. Evolution 6: 1358–1370.
- 28 Suthamrit W, Thaewnon-Ngiw B (2019) Morphometry of mountain crabs (Crustacea : Decapoda : Brachyura : Potamidae) from Phetchabun Mountains Thailand. Interdiscip Res Rev 15: 24–31.
- 29 NCBI. "Taxonomy Browser." https://www.ncbi.nlm.nih.gov/ taxonomy
- 30 Santorelli CS, Magnusson WE (2018) Most species are not limited by an Amazonian river postulated to be a border between endemism areas. Sci Rep 8: 1–8.
- 31 Mallet J (2001) Gene flow in Insect movement: mechanisms and consequences. IProceedings of a Symposium at the Royal Entomological Society, London 337–360.

- 32 Savel LB, Daniels R, Stewart BA (2001) Geographic patterns of genetic and morphological divergence amongst populations of a river crab (Decapoda, Potamonautidae) with the description of a new species from mountain streams in the Western Cape, South Africa. Zool Scr 30: 181–197.
- 33 Grinnell J (2014) Barriers to Distribution as Regards Birds and Mammals Author (s): Joseph Grinnell Source : The American Naturalist. Am Soc Nat 48: 248–254.
- 34 Roger JW, Butlin K, Galindo J (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc 363: 2997–3007.
- 35 Feder JL (2003) Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc Natl Acad Sci 100: 10314–10319.
- 36 Apreshgi KP, Dhaneesh KV, Radhakrishnan T, Kumar AB (2016) DNA barcoding of fiddler crabs Uca annulipes and U. perplexa (Arthropoda, Ocypodidae) from the southwest coast of India. J Mar Biol Assoc India 58: 101–104.
- 37 Costa FO (2007) Biological identifications through DNA barcodes: The case of the Crustacea. Can J Fish Aquat Sci 64: 272–295.
- 38 Yeo DC, Shih HT, Meier R, Ng PK (2007) Phylogeny and biogeography of the freshwater crab genus Johora (Crustacea: Brachyura: Potamidae) from the Malay Peninsula, and the origins of its insular fauna. Zool Scr 36: 255–269.

- 39 Shih HT, Do VT (2014) A new species of Tiwaripotamon Bott, 1970, from northern Vietnam, with notes on *T. vietnamicum* (Dang & Ho, 2002) and *T. edostilus* Ng & Yeo, 2001 (Crustacea, Brachyura, Potamidae). Zootaxa 3764: 26–38.
- 40 Shih H, Huang C, Ng PK (2016) A re-appraisal of the widely-distributed freshwater crab genus Sinopotamon Bott, 1967, from China, with establishment of a new genus (Crustacea: Decapoda: Potamidae). Zootaxa vol 4138: 309–331.
- 41 Louisa SR, Wood E (2016) Genetic and morphological evidence for a new mountain-living freshwater crab species (Decapoda : Potamonautidae : Potamonautes) from the Western Cape Province of South Africa. Invertebr Syst 30: 219–230.
- 42 Windsor AM, Felder DL (2009) Re-evaluation of species allied to mithrax hispidus (Decapoda: Brachyura: Majoidea: Mithracidae) based on three mitochondrial genes. Zootaxa 2302: 61–68.
- 43 Plaisance L, Knowlton N, Paulay G, Meyer C (2009) Reef-associated crustacean fauna: Biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28: 977–986.
- 44 IUCN (2019) The IUCN red list of threatend species. https://www. iucnredlist.org/
- 45 Barman S (2018) DNA barcoding of freshwater fishes of indomyanmar biodiversity hotspot. Sci Rep 8: 1-12.