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Introduction
Environmental diseases (ENVDs) are non-communicable 
diseases that result when people are chronically exposed to toxic 
environmental chemicals. Other contributory causes of ENVDs 
include radiation, pathogens, allergens and psychological stress. 
These other causative agents, however, are minor compared 
with the chemical ones, which are the primary focus of this 
review. ENVDs are generally late-onset, appearing only after 
numerous toxic exposures. In recent years, however, the age of 
onset has been trending lower [1]. For all the ENVDs discussed, 
it is appreciated that genetic as well as environmental factors 
contribute to the onset of these diseases. It has been shown, 
however, that incidences of ENVDs are greatly enhanced by 
exposures to toxic environmental chemicals, and that more than 
one exogenous agent may trigger any given disease. The World 
Health Organization estimates that as much as 24% of global 
disease is caused by environmental exposures [2]. It has also 
been shown that 40% of cancers world wide can be prevented by 
lifestyle choices [3]. 

Hundreds of diseases fall under the definition just offered [4]. It is 
beyond the scope of this writing to address them all. The ENVDs 
discussed here are those that have been extensively studied 
and written on, thus providing a basis for reaching reasonable 
scientifically certain conclusions. Table 1 contains a list of the 
ENVDs addressed here and representative references for these 
[5-15]. The reader is referred to these citations for additional 
reference material. 

All of the diseases in Table 1 have reached epidemic and pandemic 
proportions in the past two generations. The dramatic increase of 
environmental disease prevalence with time can be seen from 
plots of disease percent increases versus time, from the 1950's 

to the present time. Such plots for numerous diseases produce 
hyperbolic curves, with examples being autism and autism 
spectrum disorders [16], type 2 diabetes [17], and obesity [18] in 
the United States. The slopes of these curves exactly correspond 
to those of plots for chemical production and use versus time, 
as illustrated by data for synthetic chemical production [17], and 
increased pesticide use versus time, much of which is dictated 
by the increased use of genetically engineered crops and global 
warming [19,20]. Figure 1, which shows the increase in incidence 
of autism in the United States from 1975 to the present, is 
representative of these relationships. Other disease increase 
rates that follow this curve include; childhood cancers, onset 
of dementia, other neurological diseases, breast, prostate and 
numerous other cancers as well both male and female infertility 
[4]. World wide energy production from combustion of fossil fuel 
use and its resultant air and water pollution increases also follow 
the slope of the curve in Figure 1 [21].

The rapid increase in the incidence of ENVD occurred as a result of 
industrialization, changes in farming protocols and the increases 
in exposures to chemicals released into the environment as a 
result of these activities. Life style changes, including increased 
use of tobacco and the widespread introduction of processed 
foods also greatly contributed to the ENVD epidemics [4]. Before 
1950, largely agrarian China was largely shielded from dramatic 
increases in non-communicable diseases. In recent decades, 
however, with rapid industrialization and resultant environmental 
impact, the Chinese people have experienced the same ENVD 
acceleration as those in the Western industrialized nations have, 
but over a much shorter period of time [22]. Environmental 
pollution, tobacco use and the obesity rate, for example, have 
dramatically increased [23]. Thus the Chinese "experiment" has 
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served to highlight the cause and effect relationship between 
chemical exposure and environmental disease onset.

Chemical Toxicity
Historical
Acute exposures to high concentrations of toxic chemicals have 
been known for a long time to induce predictable deleterious 
health effects, but low concentrations of such chemicals have 
historically been believed to be benign to humans, In fact, 
regulatory agencies have assigned acceptable levels of exposure, 
known as permissible exposure levels (PELs) time weighted 
averages for 8 hours of exposure (TWAs) and no observed effect 
concentration values (NOECs) at which exposures presumably 
have no toxic effects [24]. 

Toxicity of Chemical Mixtures
Toxic effects of mixtures of chemicals with similar modes of action 
have been believed to be additive, while the effects of exposures 
to mixtures of chemicals with dissimilar toxic effects have been 
assumed to be benign as long as the concentrations of each was 
below established toxic levels. Synergistic and potentiated effects 
of dissimilar toxic chemicals have also been known for a long 
time. A review of the toxicological literature pre-2003 revealed 
that exposures to chemical mixtures had at times resulted in low 
concentration level toxicity, unpredicted target organ attack or 
greater than anticipated toxicity than from the known toxicology 
of individual chemical species in the mixtures. The studies that 
reported these unusual effects from exposures to chemical 
mixtures conceded that unknown factors were responsible for 
the observed effects [23]. 

Toxicity of Mixtures of Lipophilic and Hydrophilic 
Chemicals
Thus, health effects resulting from environmental exposures 
to toxic chemicals below regulatory agency established limits 
remained unexplained until 2003, when for the first time; it was 
shown that exposures to mixtures of chemicals containing at 
least one lipophilic and one hydrophilic species produced acute 
and chronic toxic effects even at very low level concentrations. 
In all of the chemical mixture exposure cases cited in the pre-
2003 literature and those reported for the first time in 2003 that 
described unusual and unpredicted toxic effects, the chemicals 

comprising the mixtures contained at least one lipophilic and 
hydrophilic component. It was hypothesized that the lipophilic 
component, which can penetrate mucous membranes, promoted 
the permeability of the hydrophilic species which would otherwise 
not permeate the lipophilic membranes. This hypothesis was 
supported by evidence from the literature in which it is shown 
that lipophilic chemicals are routinely added to hydrophilic 
pharmaceuticals that alone would not penetrate tissue at rates 
sufficient for clinical usefulness [25]. 

It was reported in 2003 that exposures to mixtures of lipophiles 
and hydrophiles produced enhanced toxicities at higher 
concentrations and, surprisingly, that such mixtures targeted 
organs and systems not known to be affected by the individual 
species and that different mixtures attacked different body organs 
and systems with each mixture acting as a unique toxic agent [25]. 
Though the original study focused on respiratory, central nervous 
system, liver, gastrointestinal and cardiovascular system effects, 
subsequent studies revealed that virtually every organ and 
system in the body is affected by low level exposures to mixtures 
of lipophilic and hydrophilic chemicals. Numerous examples, with 
no dissenting citations, were found in the literature to support 
these findings [24].  

Disease Clusters
Cancer Clusters
The study of disease clusters affecting non-related individuals 
offers the opportunity to relate toxic effects of environmental 
chemicals with the genetic components factored out. In 2004, 
it was reported that that previously unexplained cancer clusters 
could be attributed to chronic exposures to mixtures of lipophiles 
and hydrophiles. A study based on an analysis of 12 cancer 
clusters that had previously been reported in the literature, and 
were not predicted from a consideration of the etiologies of the 
individual chemicals of exposure, was undertaken. It was shown 
that in each instance the cluster that ensued was attributed to 
exposures to mixtures of lipophilic and hydrophilic environmental 
chemicals. The cancer clusters included childhood leukemia, 
prostate cancer, testicular cancer, brain cancer and intracranial 
neoplasms in the children of mothers and fathers who were 
exposed and colorectal cancer [26]. 

Sequential Absorption
Sequential Absorption of Lipophiles
It has been well established that high molecular weight lipophilic 
exogenous chemicals such as polychlorinated biphenyls (PCBs) 
and organochlorine pesticides (OCs) are retained in the body for 
as long as decades [27-30]. In 2012 it was reported that even very 
low molecular weight lipophilic hydrocarbons, such as propane 
and butane, are retained for relatively long periods of time (4-7 
days) and that constant exposure to these, via inhalation of 
polluted air, for example, can establish steady states of these 
compounds in the body [9]. It was further reported in that study 
and elsewhere [24] that due to the retention of lipophilic species 
in the body, absorption of both lipophile and hydrophile need not 
occur simultaneously. Rather, the absorption may be sequential, 
with the more slowly eliminated lipophiles absorbed initially 
followed by the subsequent absorption of hydrophiles to form 
the toxic mixtures. It is to be noted that hydrophilic chemicals are 
either not absorbed or are rapidly purged from the body in the 
absence of lipophilic species in which they are soluble [24]. 

Autism incidence per number of births in United States 
as a function of time, 1975-2014.

Figure 1
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Delayed Onset of Disease
The studies just discussed demonstrated that sequential 
absorption can account for the delayed onset of toxic 
consequences and led to the study of such induction of 
environmental disease. The first evidence for this was came in 
2012, when it was reported that statin use by postmenopausal 
women resulted in an elevated risk for type 2 diabetes (T2D) 
[31]. An analysis of the data in that study revealed that all of the 
Statins which were reported on were lipophilic species and that 
the only Statin in clinical use at that time which did not raise the 
incidence of T2D was a hydrophilic species. It was hypothesized 
that though the lipophilic Statins are not as long lived in the body 
as PCBs and OCs, they are taken on a regular basis and establish 
a steady state in the body thus enabling them to act in a similar 
manner to other, longer retained, lipophilic chemicals [32]. 

Diabetes
In a study reported on in 2013, the association of lipophilic 
chemical exposure as a cause of type 2 diabetes (T2D) was 
examined [33]. The results of that study revealed that exposures 
to numerous lipophilic chemicals can lead to the increased 
incidence of T2D and that the slow onset of disease is due, at 
lease in part, to the initial absorption and the establishment 
of a steady state of lipophiles in body serum, followed by the 
sequential absorption of the hydrophiles as these become 
available. The sequential absorption of hydrophilic chemicals can 
occur minutes to years after the initial absorption of lipophilic 
species [33]. In T2D, dose-response relationships between serum 
levels of lipophiles and prevalence of disease have been reported 
[34,35]. Dose-response relationships have also been reported for 
neurological disease, cardiovascular disease, respiratory disease 
and cancer [36-40].

Cardiovascular and neurological diseases
In studies subsequent the diabetes study, it was reported 
that exposures to the identical lipophilic chemicals that were 
associated with increased incidence of T2D also triggered 
the onset of cardiovascular disease (CVD) [41], neurological 
disease; neurodevelopmental disease, including autism and 
autism spectrum disorders (ASD), as well as attention deficit 
hyperactivity disorder (ADHD); and neurodegenerative disease, 
including Alzheimer's disease (AD), Parkinson's disease (PD) and 
amyotrophic lateral sclerosis (ALS) [42]. Many other environmental 
diseases, that affect virtually all body systems, are also associated 
with exposure to and retention of exogenous lipophilic chemical 
species. These include: immunological [43], musculoskeletal 
[44,45] and respiratory diseases [46-48]; obesity [13] and numerous 
cancers [49-51]. Table 2 lists lipophilic exogenous chemicals, 
exposure to which has been shown to increase the incidences of 
these environmental diseases [13,33-51]. 

It has been reported that individuals morbid with one of the 
ENVDs in Table 1 also have high incidences of co-morbidities of 
other ENVDs [52]. In the United States alone, half of all adults 
have at least one environmental disease and more than a quarter 
of the adult population suffers from two or more co-morbid 
environmental diseases [53-55]. Accordingly, it is likely that an 
individual ill with one ENVD is likely to develop additional ENVD 
illness.

Co-morbidity of environmental diseases
All of the diseases listed in Table 1 are co-morbid with other 

environmental diseases that are known to be triggered by 
exposures to lipophilic chemicals [52]. Table 3 lists co-morbid 
disease pairs and references for each pair. Figure 2 [52] reprinted 
with permission) shows the co-morbidities of the 11 types of 
these diseases with each other. It is of note that of the 55 binary 
combinations possible, 45 (82%) % have been shown to be co-
morbid to date. 

Though different diseases involve attacks on widely disparate 
organs and systems, co-morbidity rates are high when individuals 
are exposed to environmental lipophilic toxins [9,52]. The onsets of 
co-morbid diseases do not follow set patterns. Published studies 
show that individuals with two co-morbid diseases, e.g., T2D and 
hypertension, are just as likely to become ill with one first as the 
other first [56]. The wide prevalence of co-morbid environmental 
diseases and the lack of a pattern of onset strongly suggest 
the common cause for these diseases that has been previously 
reported on [33,41,42] and that each lipophile: hydrophile pair 
acts as an independent toxicant [57].

Obesity
Obesity as an environmental disease
Obesity is an environmental disease that is a predictor of human 
adipose tissue concentration of POPs [58]. This is consistent with 
the fact that obesity is usually associated with CVS, T2D and 
other diseases, as adipose tissue releases the lipophiles it holds 
to the blood stream. Obesity is itself caused by POPs, phthalates, 
bisphenol A, polynuclear aromatic hydrocarbons (PAHs) and 
other exogenous lipophiles [13,59-63]. Being obese and having 
high serum lipophiles contributes to the absorption of these 
exogenous chemicals [58,64]. 

Co-morbidities of chemically induced environmental 
diseases [52].

Figure 2

              

Obesity-lipophile-disease triangle [52].Figure 3
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Lipophilic species were defined as those with octanol: water 
partition coefficients (Kow) of 2.00 or greater and hydrophilic 
species were defined as those with Kow values of less than 2.00 
[24,25]. It was empirically determined that optimal transport of 
hydrophiles by lipophiles across lipophilic membranes, and hence 
toxic effects of mixtures, were greatest when the Kow differences 
between hydrophiles and lipophiles was between 2.00 and 3.00 
[25,57], and it was hypothesized that when Know differences 
were 5.00 or more, the solubility of hydrophile in lipophile was 
so low that no combined effect was observable [25]. Thus it 
was believed that metal ions, which are essentially insoluble in 
hydrocarbons, would act independently from hydrocarbons if 
exposure to both occurred simultaneously. As will be seen below, 
it has now been shown that metals are indeed transported across 
the body's lipophilic membranes by hydrocarbons when the 
hydrocarbons are planar aromatic species [87]. 

Metal transport
Some transition metals, iron and zinc, e.g., are required for 
body homeostasis. Yet, the onset of T2D, cardiovascular 
diseases, neurological diseases, neurodevelopmental diseases, 
neurodegenerative diseases, cancers and other ENVDs has been 
shown to be related to the action of elevated levels of Iron III ions 
(Fe+3) [73,88-94]. Until recently, it was mechanistically troubling 

Obesity-lipophile-disease triangle
An Obesity - Lipophile - Disease triangle has been described 
as follows [52]. Exogenous lipophiles cause environmental 
diseases and obesity [52,65-70]. Environmental diseases (T2D, 
for example) cause the absorption of exogenous lipophiles and 
cause obesity [66,68,71]. Obesity causes environmental diseases 
and the absorption of lipophilic chemicals [72,73]. The Obesity- 
Lipophile- Disease triangle [52] is shown in figure 3. 

Absorption of Metals and other 
hydrophilic chemicals
Metals
The causes for the onset of the diseases listed in Table 1 are not 
limited to the action of lipophilic chemicals alone. Exposures to 
heavy metals and metalloids, which are listed in Table 4, have 
also been shown to increase the incidence of type 2 diabetes, 
cardiovascular diseases, neurological diseases and other ENVDs 
[74-86]. 

Hydrophilic transport
As described above, prior to 2015, is known that the toxic action 
of hydrophiles was based upon their solution in lipophiles and 
transport by lipophiles across the body's lipophilic membranes. 

Disease
Metabolic: Type 2 diabetes (T2D)

Metabolic syndrome (MET-S)
Cardiovascular:  myocardial infarctionatherosclerosis

hypertension
coronary heart disease

peripheral heart disease
ischemic heart disease

cardiac autonomic function

 Neurodevelopmental: autism spectrum disorder (ASD)attention deficit hyperactivity disorder 
(ADHD)

Neurodegenerative: Alzheimer's disease (AD)
Parkinson's disease (PD)

Amyotrophic lateral sclerosis (ALS)

Neurological impairments:  

cognitive effects  
motor deficits 

  sensory deficits
peripheral nervous system effects

 Immunological: Allergic responses including chemical sensitivity
systemic sensitization

  autoimmune diseases
Musculoskeletal: Rheumatoid arthritis  

 osteoporosis
Respiratory: Asthma

chronic obstructive pulmonary disease (COPD)
Cancer: childhood leukemia

other childhood cancers
breast cancer

prostate cancer
kidney cancer

numerous other cancers

Table 1 Environmental diseases associated with chronic exposures to lipophilic exogenous toxicants and references for these [5-15]. References are 
to review publications. The reader is referred to the numerous references contained in these sources for primary material.
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Chemical       
Persistent organic pollutants:  
               polychlorinated biphenyls (PCBs) 
               organochlorine pesticides (OCs)
     DDT
 DDE
 dieldrin
 dioxins
 furans
 hexachlorobenzenes (HCBs)
 polybrominated biphenyls (PBBs)
 polybrominated diphenyl ethers (PBDEs)
Polynuclear aromatic hydrocarbons (PAHs)
      acenaphthene
 acenaphthylene
 anthracine
 benz[a]anthracine
 benzo[a]pyrene
 benzo[e]pyrene
 benzo[b]fluoranthrene
 benzo[g,h,i]perylene
 benzo[j]fluroanthene
 chrysene
 dibenzo[a,h]anthracene
 fluoanthene
 fluorine
 indeno[1,2,3-c,d]pyrene
 naphthalene
C-10 to C-20 alkanes
Perfluorinated compounds
Plastic formulation additives
 Phthalates
  diethylhexyl phthalate
  dibutyl phthalate
  di-n-pentyl phthalate
  dicyclohexylphthalate
  diallyl phthalate
  diissodecyl phthalate
  di-n-hexyl phthalate
  diisobutyl phthalate
  di-n-octyl phthalate
  diisononyl phthalate
  dihheptyl phthalate
bisphenol-A
bisphenol-S
Phthalates
Low molecular weight hydrocarbons (LMWHCs)
 C-1 to C-8 alkanes
 benzene
 ethyl benzene
 styrene
 toluene
 xylenes
Halogenated alkanes and alkenes
 vinyl chloride 
 trichloroethylene 
 tetrachloroethylene
 methylene chloride

Table 2 Lipophilic exogenous chemicals exposure to which has been 
shown to increase the incidence of numerous environmental diseases 
[13,33-51].

Disease Pair

T2D - CVD
T2D - NRD
T2D - NDV
T2D - NDG
T2D - MSK   
T2D - IMM
T2D - RES 
T2D - CMS
T2D - OBS
T2D - CAN
CVD - NRD
CVD - NDV
CVD - NDG
CVD - MSK
CVD - IMM
CVD - RES
CVD - CMS
CVD - OBS
CVD - CAN
NRD - NDV
NRD - NDG 
NRD - MSK
NRD - IMM
NRD - RES
NRD - CMS
NRD - OBS
NDV - RES
NDV - OBS
NDV - CAN
NDG - MSK
NDG - CAN
MSK - IMM
MSK - OBS 
MSK - CAN
IMM - RES     
IMM - CMS
RES - CMS
RES - OBS
RES - CAN
CMS - OBS
CMA - CAN
OBS - CAN

Table 3 References for environmental disease co-morbidity pairs, for 
individual pair references see [52]. 

as to how elevated levels of these metals permeate lipophilic cell 
membranes to enter body tissues. Recently, a physiochemical 
mechanism for ENVD onset based on the transport of metal ions 
through cell membranes via pi-bonding of metal ions to planar 
aromatic hydrocarbons was presented [87]. 

Cell Membranes
Membrane structure
Cell membranes are amphiphilic structures composed primarily 
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of phospholipid bilayers with embedded proteins. The bilayers 
contain hydrophilic heads and hydrophobic (lipophilic) tails 
which contain embedded proteins. This arrangement allows the 
membrane to be selectively permeable to metal ions and other 
polar molecules, at the head, and through ion channels as well 
as the passive diffusion of lipophilic species through the tail. 
The lipid bilayer contains acyl groups that vary with cell type 
and include saturated and unsaturated fatty acid chains, with 
the two layers bonded by covalent disulfide bridges and van 
der Waals forces [95]. Two types of proteins are embedded in 
the lipid bilayer. The first, integral membrane proteins, interact 
primarily in the hydrophobic tails of cell membranes via non-
polar bonding. The second, peripheral proteins, interact primarily 
in the hydrophilic heads of cell membranes, via electrostatic and 
hydrogen bonds [96-99]. This variability allows particular cell 
membranes to selectively permit entry and egress of molecular 
species essential to their functioning. Thousands of different, 
unique membrane phospholipid structures have been identified. 
Each is characterized by the length and degree of saturation of 
its acyl chain, and all vary in membrane thickness, membrane 
fluidity, curvature and surface charge [98-100]. The differences in 
chemical composition and physical structure account for varying 
permeability’s of membranes. 

Membrane permeability by lipophiles
Cell membranes are permeable to lipophilic exogenous 
chemicals. Such permeable lipophiles include but are not 
limited to: volatile and semi-volatile aliphatic hydrocarbons, 
single ring and polynuclear aromatic hydrocarbons (PAHs); 
phthalates; bisphenol-A; persistent organic pollutants such as 
polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs) 
and polybrominated diphenyl ethers (PBDEs) fire retardants used 
in clothing; as well as food preservatives and disinfectants such as 
butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), 
triclosan and parabens [24,25].

Effects of membrane permeation by lipophiles
Exogenous lipophilic chemicals (low molecular weight 
hydrocarbons, PAHs, pesticides and PCBs permeate through all 
cell membrane structures found in the human body, including the 
blood brain barrier (BBB) [101-106]. These chemicals penetrate 
into the hydrophobic tails of phospholipid cell membranes and 
accumulate there, leading to changes in membrane structure 

[107-109]. Such changes include: swelling of the membrane lipid 
bilayer, and thereby an increase in membrane surface area; and 
increase in membrane fluidity; inhibition of primary ion pumps; 
and an increase in proton and metal ion permeability [102-105]. 
These changes also bring about inhibition of embedded enzyme 
activity and the accumulation of exogenous lipophiles in the 
interior of the affected membranes [100,110]. 

Metal Toxicity
Metal absorption
As discussed above, Fe+3 is vital for cell homeostasis and is 
absorbed naturally via the polar heads and ion channels in healthy 
cells. Other vital transition metal ions are similarly absorbed. 
There are, however, two other routes by which Fe+3 and other 
transition metal ions may be absorbed through cell membranes. 
Firstly, cells with badly compromised lipid bilayers may cease to 
be barriers to hydrophilic species and permit direct passage of 
metal ions into the interior of cells [93,111]. Lipid bilayers can 
be compromised by the action of exogenous lipophiles or by 
surfactants that have polar ends which can bond to metal ions 
and non-polar ends which act as lipophiles and permeate cell 
membranes resulting in the transport of metal ions into cell 
interiors [115-117]. Secondly, cells that do not have previously 
damaged lipid bilayers may also be permeated by metal ions via pi-
bonding of metals with planar aromatic molecular structures and 
co-passage of such metal/hydrocarbon complexes through the 
lipid bilayer. Pi-bonding of metal ions to aromatic ring structures is 
well established and the passage of metal-PAH complexes through 
lipophilic cell membranes has been previously reported [93]. 
Support for this hypothesis comes from the known toxic effects 
of mixtures of metals and aromatic hydrocarbons [118] as well as 
from consideration of the absorption of metal ions on the planar 
geometric shapes of PAHs, PCBs, phthalates, bisphenol-A, and 
mononuclear aromatics just described [93,114]. Metal ion/arene 
bonds arise from metal ion/pi-electron complexes which, due to 
the lipophilicity of the hydrocarbon component of the complex 
can permeate through the membrane lipid bilayer in a manner 
analogous to the permeation of lipophile/soluble hydrophile 
mixtures, as described above [24,25]. Following the penetration 
of the complex through the lipid bilayer, the complex dissociates, 
with the metal ions dissolving into the hydrophilic parts of the cell 
[93]. Both absorption routes lead to concentrations of metal ions 
that are toxic to cells. 

Toxic consequences of metal absorption
Trivalent iron (Fe+3) can activate non-enzymatic blood 
coagulation resulting in the formation of parafibrin via a hydroxyl 
radical-catalyzed reaction that generates reactive oxygen species 
(ROS), which, in turn initiates oxidative stress [79,88,89]. Ferric 
ions cause the concomitant generation of hydroxyl radicals and 
polymerization of purified fibrinogen (FBG) [88]. In addition to 
iron, other transition metals have also been reported to generate 
hydroxyl radicals and thereby induce disease in humans. These 
metals, which include; silver, copper, vanadium, zinc, cobalt, 
mercury, lead, cadmium, arsenic, manganese and chromium are 
listed in Table 4 [74-78,80,89]. As is discussed below, production of 
ROS/RNS is the trigger of environmental disease.

Arsenic 
Cadmium 
Chromium

Cobalt
Copper

Iron
Lead 

Manganese
Mercury

Nickel 
Silver 

Tungsten
Vanadium 

Zinc

Table 4  Transition metal ions known to induce environmental disease 
[74-81]. 
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Sequential absorption of metals
Essential metals are continually absorbed and desorbed into 
and out of healthy cells. Yet, as is the case with iron, excessive 
concentrations of these can lead to toxic consequences [88,89,90]. 
Non-essential metals such as cadmium, mercury, lead and 
chromium are toxic at very low concentration levels and have 
long half-lives in the human body with that of cadmium being 
on the order of 20-30 years. These transition metals are non-
biodegradable and can accumulate in the body with time [119]. 
The association between the sequential exposure to exogenous 
lipophilic chemicals and the onset of diabetes, cardiovascular 
disease, neurological disease, cancer and other diseases was 
discussed above [33,41,42]. Exposures to metals (including 
arsenic, cadmium, mercury lead, nickel, manganese, copper, zinc 
and chromium) are also known to induce all these diseases via 
the generation of ROS initiated oxidative stress [92-94,120-123]. 
Exposures to metals need not occur in one event and sequential 
exposures can, over time, generate toxic levels in the body 
[87]. It has also been reported that toxicity need not be due to 
a single metal ion species, but that total metal ion load may 
responsible for toxic effects [87]. This effect is complementary to 
the sequential absorption of lipophilic species and the reliance 
on total lipophilic load as indicative of prediction of permeability 
through lipophilic barriers and the onset of type 2 diabetes, 
cardiovascular disease, neurological diseases and co-morbidities 
[33,41,42,55]. Also, sequential absorption and accumulation in the 
body of both lipophiles and metal ions means that the body can 
be exposed to very low levels of both toxins and these toxins can 
accumulate in the body over time until critical levels are reached. 

Total lipophilic and metal loads
It was also reported that both the lipophiles and the transition 
metal ions must be present in sufficiently high concentrations to 
induce disease onset [87]. At times, high concentrations of metal 
ions alone may be present and at times high concentrations 
of lipophiles alone may be present. Since all environmental 
exposures inevitably include absorption of metals and lipophilic 
chemicals, it is difficult to ascribe the onset of disease to metal 
or lipophile alone. Each alone, however, may not induce disease 
since the body continually metabolizes and/or eliminates both 
lipophiles and/or metals. Only when both species are present at 
critical levels, often involving sequential absorption, is disease 
triggered. It was additionally reported that total lipophilic load 
and total transition metal ion load, irrespective of the chemical 
nature of the individual species, are critical; since all lipophiles 
can permeate cell membrane lipophilic bilayers and numerous 
transition metal ions can pi-bond to a wide spectrum of planar 
aromatic hydrocarbons. Support for this dual chemical hypothesis 
comes from a consideration of the published health effects 
of both lipophilic chemicals and heavy metals. Both species 
have been shown to cause diabetes, cardiovascular disease, 
neurological disease (including neurological impairments, 
neurodevelopmental disorders and neurodegenerative diseases), 
immunological disease, obesity, cancer and act as endocrine 
disruptors. It is to be noted that although numerous studies have 
been published on the effects of a wide spectrum of individual 
lipophilic chemicals and heavy metals, only recently have the 
effects of mixtures of lipophiles and heavy metals been reported 
on [87]. Yet, it is essentially impossible for a human being living 
anywhere on the globe today not to be impacted by both 
lipophiles and transition metals at all times [124,125].

Body Protective Defenses
Metabolism and elimination
As discussed above, the human body naturally metabolizes and 
excretes exogenous toxic chemicals. Volatile and semi-volatile 
organic compounds are readily metabolized and eliminated. 
Though persistent organic pollutants, such as PCBs, PBBs, PBDEs, 
dioxins and furans are retained in adipose tissue for decades [27-
30], they slowly but continually partition into the blood stream 
from whence they can be absorbed by polyunsaturated oils, such 
as olive oil, and excreted [126-129]. Metals are also eliminated 
naturally via the action of natural chelating agents contained in 
spices, tea and other foods, for example [130-131]. In addition, the 
body has the ability to adapt to and repair damage caused by toxic 
chemicals [10]. These factors delay the onset of environmental 
disease. The liver and kidneys play vital roles in metabolism and 
elimination of toxic chemicals. A thorough discussion of these is, 
however, beyond the scope of this paper. The reader is referred 
to the literature for a fuller treatment of this subject. 

Oxidative Stress
Oxidative stress can be induced in numerous ways. These include; 
exposure to exogenous toxic chemicals, including  low molecular 
weight hydrocarbons, polynuclear aromatic hydrocarbons, 
chloro- and bromo- water disinfection by-products, phthalates, 
bis-phenol A, heavy metal ions; pharmaceuticals; exposure 
to radiation; as a result of environmental disease or infectious 
disease illness; psychological stress; sensory offensive agents; 
ingestion of certain foods and food additives; and obesity [6-
8,25,55,87].

Chemical causes of Oxidative Stress
It is widely accepted that in vivo damage of biological molecules 
is initiated by reactive oxygen species (ROS) as well as by reactive 
nitrogen species (RNS) via oxidative stress (OS). It is believed and 
that elevated OS is responsible for a wide spectrum of diseases 
via molecular level toxic effects include lipid peroxidation, DNA 
attack, adduction, enzyme inhibition, oxidative attack on the 
central nervous system and cell signalizing, all of which have 
been linked to ENVDs including neurodegenerative diseases 
(Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral 
Sclerosis), cancer, cardiovascular disease, diabetes, and others 
[132-135]. Electron transfer (ET) and the resultant formation of 
ROS can proceed via the reactivity of the metabolites of lipophilic 
molecules or via the action of metal ions to produce hydroxyl 
radicals [134,136].  

Benzene serves as an example of a lipophilic molecule that 
undergoes a series of chemical reactions in the body to ultimately 
produce ROS. Benzene is metabolized to phenol, which is 
converted to catechol which is in turn oxidized to quinone [134]. 
Benzo[a]pyrene (BaP), a polynuclear aromatic hydrocarbon 
found in petroleum products and tobacco smoke and a known 
carcionogen, is another such example. It is the diol-epoxide of 
BaP, rather than BaP itself, that is the actual tumerogen [25].

Iron serves as an example of metal ion reactivity producing 
hydroxyl radicals. Molecular oxygen in the body can undergo a 
single electron reduction to form the superoxide radical anion, 
which in turn reacts with 2 protons to produce hydrogen peroxide 
(H2O2). H2O2 then reacts with divalent iron (Fe+2) to produce 
trivalent iron (Fe+3) and hydroxyl radical (OH*) via the Fenton 
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reaction. Fe+3 may be converted back to Fe+2 via reaction with 
superoxide radical anion via the Haber-Weiss reaction. The 
net result is reaction of superoxide with hydrogen peroxide to 
produce hydroxyl radical [134].  

All of the diseases listed in Table 1 as well as genitourinary, skin, 
hematological diseases and endocrine disorders including male 
and female infertility [137-149] have been associated with the 
generation of ROS. In addition, OS has also been shown to induce 
epigenetic effects [150-154].

The chemicals known to induce ROS are those listed in Tables 2 
and 4. These include lipophilic species [155-160] and transition 
metal ions [161-164]. In addition, it has been reported that other 
chemical species, fructose for example, also induce oxidative 
stress [165]. 

Radiation
The parts of the electromagnetic spectrum (EMR) that induce 
oxidative stress include; ionizing, ultraviolet (UV), microwave 
and radiofrequency frequencies. It is well known that ionizing 
radiation causes oxidative stress [150]. UV radiation [166-168], 
microwave radiation [169-171] and radiofrequency radiation [172-
175] have also been associated with OS. 

Biological stimuli
Biological stimuli that induce OS include; endogenous enzymes 
[176,177] and phagocytes [178,179], plant and animal allergens 
[180-183], and pathogens including bacteria, viruses and fungi 
[184-189]. 

Psychological stress
Chronic psychological stress (CPS) results in a prolonged state 
of oxidative stress, impairs the body's immune system response 
to anti-inflammatory signals [190] and results in the elevated 
secretion of glucocorticoids, a biomarker for which is cortisol 
[191,192]. CPS has been associated with increased risk of many 
diseases. These include; cardiovascular disease, diabetes, 
respiratory infections, autoimmune diseases, neurological 
diseases, including depression and psychiatric disorders, 
musculoskeletal disease, gastrointestinal and endocrine 
disorders, obesity and accelerated aging [192-199]. 

Aging
A discussion of OS as it relates to ENVDs requires attention to 
the part played by aging in the production of ROS. A widely 
held theory holds that, as part of aging, OS within mitochondria 
damages the mitochondria, which in turn leads to the production 
of increased quantities of ROS which cause further damage. Once 
it starts, this cycle leads to further damage and corresponding 
aging [200].  Oxidative stress has also been associated with the 
acceleration of telomere shortening and accelerated aging [201]. 
It is beyond the scope of this paper to fully explore the subject of 
aging. Numerous papers have been written on this subject, with 
the following representative of these [202-203].

Combined effects
The combination of CPS and stress induced by exogenous chemical 
exposure has been shown to produce additive OS effects [204-206]. 
These points out the need to consider all sources of stress - chemical, 
radiation, biological, aging as well as the social and psychological 
environment when evaluating total oxidative stress. 

Environmental Disease Prevention
Absorption and ROS/RNS formation
As discussed above, two distinct events must occur for exogenous 
environmental chemicals to trigger disease: absorption and ROS/
RNS production. Prevention of ENVD prevalence can be reduced 
by limiting these events. That said, preventing chemically induced 
environmental disease, completely, is impossible, given the 
omnipresence of toxic chemicals everywhere on the globe. There 
are, however, steps that can be taken to significantly reduce the 
incidences of ENVDs. Proactive measures to prevent disease 
have been elucidated and are reviewed here. It is to be noted, 
however, that the preventative steps that are presented here 
cannot always be accomplished.

Individual actions
Exposure limiting steps that can be undertaken include those 
the individual can act on and those that society must take. One 
can control one's own lifestyle by addressing diet; immediate 
environment (home and work); avoiding the use of toxic 
chemical-containing products, avoiding the use of pesticides, 
avoiding the use of tobacco and tobacco smoke and secondary 
exposure to smoke, avoiding foods and personal care products 
that contain phthalates, bisphenol A and lipophilic preservatives 
such as triclosan, butylated hydroxy anisole (BHA), butylated 
hydroxy toluene (BHT) and parabens and limiting, to the extent 
that is medically advisable, the use of lipophilic pharmaceuticals. 
The individual can also choose to restrict the use of plastics 
containing phthalates and bisphenol A.  

Societal actions
Steps that society can take include; educational programs and 
regulatory control of tobacco use, pesticides, persistent organic 
pollutants, plastics that exude phthalates and BPA and foods 
and personal care products that contain toxic components such 
as preservatives and solvents [25,207,208].  The development of 
green, non-polluting energy can greatly reduce toxic exposures 
by eliminating the release of lipophilic hydrocarbons, mercury, 
cadmium and other metals as well as by preventing global 
warming. Warmer environmental temperatures enhance the 
volatilization of POPs, pesticides and other organics into the air, 
require increased use of pesticides in farming, increase the rates 
of chemical reactions that lead to higher levels of ozone and 
secondary air pollutants and increase the risk of wildfires which 
spew large quantities of polluting species into the air [209,210].

Limitations to prevention
The measures to prevent ENVDs just discussed cannot always be 
implemented. Ignorance, socioeconomic status, lifestyle, peer 
pressure and economic interests of chemical manufacturers and 
polluters act counteractively to prevent the limiting of chemical 
exposures and ROS and RNS formation. There are also conflicting 
situations where well meaning people on both sides of an issue 
can reasonably disagree. Two examples of such situations serve 
to illustrate this point. DDT and its metabolite DDE are persistent 
organic pollutants that are causative of the ENVDs in Table 1. 
DDT, however, is still being used in parts of the world to control 
mosquitoes that carry malaria and other infectious diseases 
[211,212]. Water is routinely disinfected with chlorine and 
thus spares millions of people from exposures to water borne 
pathogens. Yet, the chlorinated and brominated hydrocarbon, 
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haloketone and haloacetic acid byproducts of chlorination are 
human toxins [213,214]. These examples illustrate the often 
difficult choices that need to be made with regard to the use and 
subsequent human exposures to toxic chemicals. 

Mediterranean diet
Reduction of ROS and RNS formation in the body can be readily 
accomplished through diet adherence to the Mediterranean 
diet, so named because it is the diet adhered to by populations 
bordering the Mediterranean Sea. This diet is rich in antioxidant 
phytochemicals, including phenolics, alkaloids, nitrogen-
containing compounds, organosulfur compounds, phytosterols 
and carotenoids. More than 5,000 dietary phytochemicals have 
been identified in fruits, vegetables, whole grains, legumes, red 
wine, nuts and vegetable oils. An excellent review of the sources 
and benefits of dietary phytochemicals is presented by Liu [215]. In 
addition to the consumption of foods containing phytochemicals, 
the Mediterranean diet includes an increase in fish consumption, 
rich in antioxidant omega fatty acids, and a reduction of red meat 
consumption, a major source of serum triglycerides in which 
exogenous lipophiles accumulate. 

Olive oil, and particularly extra virgin olive oil (EVOO), which 
is rich in phenolics, is the most representative food of the 
Mediterranean diet. Tree nuts are another major component 
of the diet. Both have been shown to reduce inflammation, 
oxidative stress and lower the risk of developing many ENVDs. 
These diseases include; Alzheimer's disease, Parkinson's disease, 
hypertension, diabetes, coronary heart disease and other 
cardiovascular diseases, obesity various cancers, anxiety and 
other central nervous system disorders [215-236]. 

Other preventive measures
The long onset times for ENVDs present opportunities to detoxify 
and otherwise protect the body of absorbed lipophiles and metals. 
Sauna has been demonstrated to reduce body levels of POPs and 
other lipophilic species and to lead to a relief of disease symptoms 
[237-239]. Detoxification by isolating patients in non-polluting 
environmental chambers along with diet control has been shown 
to result in reduced blood levels of volatile organic hydrocarbons 
as well as in the relief of disease symptoms [10,240]. Heavy metals 
can be removed via chelation by dietary components. Vitamins 
B1, B6, C and E have been shown to chelate heavy metals, as 
have garlic, ginger, onion, green tea, curry, tomatoes and other 
foods [241]. Selenium is an essential metal in the human body. 
When ingested in its selenite oxidation state, it has been shown 
to protect against metal induced neurotoxicity, renal toxicity and 
various cancers [242-244]. 

Lipophilic toxicity
Aromatic versus aliphatic compounds
The discussion presented here points out the need to avoid 
exposures to aromatic hydrocarbon-based lipophiles. It is well 
established that aromatic hydrocarbons are more toxic than 
aliphatic hydrocarbons of equal carbon number [245-247]. This 
may be seen from a comparison of blood: air partition coefficient 
(PC) and permissible exposure level (PEL) data. A higher PC 
indicates a greater propensity to absorb into blood and a lower 
PEL is indicative of greater toxicity. Table 5 demonstrates this by 
comparing PC and PEL data for C6-C8 hydrocarbons [87], reprinted 
with permission]. As can be seen from the data, aromatic 

hydrocarbons are more readily absorbed into blood and are 
more toxic than aliphatic hydrocarbons of equal carbon numbers. 
In addition, aromatic species, unlike aliphatic ones, can pi-bond 
with transition metals and thus facilitate their absorption.

It is has been hypothesized [87] that the greater toxicity of the 
aromatic compounds is due to two factors. Firstly, their higher 
solubility in blood, from which these compounds can partition 
into membrane lipid bilayers. Secondly, the transport of 
transition metal ions dissolved in blood into cell structures via 
metal: pi-bonding with the planar aromatic species, as described 
above. Transition metal ions are always present in blood. Iron 
and some other transition metal ions, as also described above, 
are essential and naturally absorbed by the body form healthy 
foods. Non-essential transition metal ions enter the blood stream 
via inhalation, ingestion and dermal absorption. Accordingly, 
when aromatic hydrocarbons are absorbed into the blood, 
they can complex with the transition metals via pi-bonds and 
the complexed species absorbed through cell membranes, as 
described above, with resultant higher toxicity than is observed 
for aliphatic compounds which do not complex with transition 
metals.

Predicting environmental disease onset
Symptoms
ENVDs are, to a great extent, silent illnesses, in that in many 
instances, they are devoid of symptoms in their early stages 
which would alert the individual and/or the physician of the need 
to take action. As was seen above, dose response relationships 
between lipophilic body loads as well as between transition 
metal body load are associated with ENVD onset. For example, 
serum levels of POPs, including PCBs and OCs, associated with 
T2D have demonstrated a dose-response relationship between 
serum concentrations of these and the onset of disease 
[34,35,248,249]. Safe serum levels of these toxins, however, are 
yet to be established. Adipose tissue POPs concentrations have 
also been associated with the onset of T2D in a dose-response 
relationship [250]. These data, however, do not predict at what 
levels these pollutants in blood and adipose tissue are safe. These 
data also do not take into account the blood concentrations of 
other exogenous lipophilies nor transition metal concentrations. As 
was seen above, the chemicals associated with the onset of ENVDs 
are ROS/RON producing species, as are radiation, pathogens, aging 
and psychological stress. Accordingly, it is hypothesized here that 
total OS in the body is a better predictor of the potential for the onset 
of ENVDs than concentrations of individual chemical species alone 
and that biomarkers for total ROS are expected to better predict a 
person's likelihood of the onset of illness. 

Carbon

number
Compound PC PEL 

6 benzene 7.8 1
cyclohexane 1.3 300

7 toluene 15.6 300
n-heptane 1.9 500

8 p-xylene 28.4 100
n-octane 3.1 500  

Table 5 Blood: air partition coefficient (PC) and permissible exposure 
level (PEL) data (given in parts per million) for C6-C8 hydrocarbons. The 
aromatic compound is listed first in each carbon number pair [87]. 
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Biomarkers
Numerous biomarkers have been identified as indicators of 
exogenous toxic chemical-induced oxidative stress and have been 
related to the onset of cardiovascular, respiratory, autoimmune, 
musculoskeletal, liver, kidney and gastrointestinal diseases, 
as well as to diabetes, obesity and nervous system disorders 
[160,251-264]. Table 6 lists some of these biomarkers. Research 
to identify a single or combination of several biomarkers that 
would accurately predict increased probabilities of disease onset 
is ongoing in molecular epidemiology, a discipline devoted to the 
application of biomarkers to epidemiological studies [254].

Future Challenges
New disease causative agents
New chemical causes of oxidative stress are constantly arising. 
Examples are: rare earth exposure as a result of the widespread 
use of these elements in electronic components [265]; and 
nanoparticle exposures as new uses for these are found on an 
almost daily basis [266,267]. 

Pharmaceuticals
The dramatic increase in the use of pharmaceuticals, in no 
small part, due to the exponential growth of ENVD prevalence, 
in itself contributes to the increase of the incidence of ENVDs. 
Two examples illustrate this point. Statins are widely prescribed 
to protect against cardiovascular disease. However, the most 
commonly prescribed Statins are themselves lipophiles which 
have been associated with the increased onset of type 2 diabetes 
[268,269]. Second-generation antipsychotic drugs are widely 
prescribed for children with attention deficit hyperactivity 
disorder (ADHD). These lipophilic drugs have been associated 
with an increased incidence of metabolic syndrome in children 
who have taken Quetiapine and Risperidone [270]. 

Global warming
No discussion of OS would be complete without a consideration 
of the effects of global warming on it. It is beyond the scope of 
this review to thoroughly examine this topic. Following, however, 
are some of the OS implications of global warming, which is a 
major contributor to OS for several reasons. First: elevated 
temperatures increase the solubility of PAHs and other lipophiles 
in water and also increase the vaporization of these species 
and hence result in higher air concentrations [271]. Second: 
elevated environmental temperatures accelerate the absorption 
of toxicants through respiratory, cutaneous and gastrointestinal 
routes and hence increase toxicity [210,271-273]. Third; elevated 
temperatures increase thermal stress, impair heat stress response 
and delay unfolded protein recovery [274-276]. Finally, warmer 
temperatures increase PAH-containing smoke from wildfires, 
airborne pollen and mycotoxin-producing molds, all of which 
stimulate OS [209,277]. 

Summary 
The onset of environmental disease requires the penetration of 
toxicants through lipophilic cell membranes. Exogenous lipophilic 

chemicals not only accomplish this step, but also facilitate 
absorption of hydrophiles which serve as solvents and carriers. 
Lipophiles which have flat aromatic structures with pi-electron 
clouds also act as carriers for transition metal ions which pi-bond 
to these species. Disease results from OS due to the action of ROS/
RNS formed via the action of absorbed hydrophiles, hydrophilic 
metabolites of lipophiles and/or metals. Late onset of ENVDs is 
due to the slow deterioration of the body's immune system with 
age and the need for a buildup of sufficient lipophilic, hydrophilic 
and/or metal ion loads to overwhelm the body's ability to 
metabolize and eliminate such exogenous chemicals and to 
repair cellular damage. Absorption of lipophiles and metals need 
not be one-time events. These can be absorbed sequentially over 
time to build critical load levels. Sequential absorption points 
out the need to severely limit exposures to exogenous toxicants 
and for the drastic lowering of permissible levels of exposure to 
these chemicals. Exposures to aromatic hydrocarbons, which can 
undergo metal to pi-cloud bonding, and hence are more toxic 
than aliphatics hydrocarbons, should be severely restricted. 

OS, which is the ultimate cause of ENVD, results not only from 
toxic chemical exposure, but also of the action of pathogens, 
exposure to radiation, aging and psychological stress. These 
causes are additive and when addressing OS, the total of all of 
these causes require consideration.

Globally, human exposures to exogenous chemicals are growing 
at exponential rates. This is manifest by not only increased 
prevalence of ENVDs, but also by increasingly lower ages of onset for 
type 2diabetes, obesity and cardiovascular diseases among others. 

There are steps that can be taken to lower the incidence of ENVDs, but 
complete prevention of ENVDs is impossible, given the wide spread 
distribution of the causative chemicals and genetic predispositions. 
Biomarkers that determine total OS in the body would provide 
predictive indicators of increased vulnerability to the onset of ENVD 
and enable individuals to act to reduce total OS and hence disease.

Homocystine
Total glutatione

Oxidized low density protein
Conjugated dienes

White blood cell count
Cortisol 

C-reactive protein
Fibrinogen

Malondialdehyde
Diminished glomerular filtration rate

Increased ceatinine
Elevated fasting glucose

Low LDL cholesterol
High LDL cholesterol

Urinary aromatic hydrocarbon metabolites
Urinary phthalate metabolites

Bisphenol A metabolites

Table 6 Partial list of biomarkers those are indicative of oxidative stress 
[251-262].
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