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Summary

An accumulating body of evidence strongly
indicates a local tissue renin-angiotensin system
in the pancreas of a various species. In contrast
to the majority of tissues that primarily express
the angiotensin type 1 (AT1) receptor, the
pancreas is one of the few tissues that contain a
significant proportion of the AT2 subtype.
Moreover, our findings indicate a greater
distribution angiotensin II binding sites in the
exocrine pancreas. Although the physiological
aspects of a local pancreatic renin-angiotensin
system remain largely unexplored, recent
studies in our laboratory utilizing an acinar cell
model demonstrate both functional AT1 and
AT2 receptors. Indeed, we show that the AR42J
cell line expresses all components of an
angiotensin system including the mRNA for
renin, angiotensinogen, angiotensin converting
enzyme (ACE), AT1a, AT1b and AT2 receptors.
Thus, these cells may be of particular value to
study the interplay of the AT1 and AT2
receptors to regulate cell growth and potentially
exocrine function.

Introduction

In 1991, we published the first study
demonstrating key components that comprise
an intrinsic renin-angiotensin system (RAS)
within the canine pancreas [1, 2]. These studies
documented the expression of the bioactive
peptides angiotensin II, angiotensin III and
angiotensin-(1-7), both protein and mRNA
levels of the precursor angiotensinogen, as well

as the distribution of the AT2 and AT1 receptor
subtypes. Subsequent studies by other
investigators reported comparable findings in
the rat, mouse and human pancreas [3, 4, 5].
Indeed, in one of the few reports to study the in
vivo regulation of pancreatic angiotensin II
receptors, Ghiani and Massini [6] demonstrated
an increase in angiotensin II binding sites in the
pancreas of normotensive rats maintained on a
high-salt diet. Although angiotensin II receptors
were distributed throughout the pancreas, the
highest density of sites, at least in the dog and
monkey (see below), comprised the AT2
receptor subtype and localized to acinar cells
and the ductal epithelium [2, 7]. Indeed, the
pancreas is one of the few tissues that primarily
express the AT2 receptor subtype. At the time
of our initial report, the AT2 receptor had not
been cloned and no functional data had been
attributed to this receptor subtype. Only in the
last several years has a more complete
understanding of the functional role of the AT2
receptor emerged. In this brief review, we
assess the recent data on the AT2 receptor and
the potential influence on the functional aspects
of the exocrine pancreas. We also present
several novel aspects on the regulation and
function of the AT2 receptor utilizing the
AR42J acinar cell line.

Pancreatic Angiotensin II Receptor
Characterization

As shown in Figure 1 (top left panel), in vitro
receptor autoradiography of angiotensin II
receptors in the primate pancreas using the non-
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selective angiotensin ligand 125I-[Sar1,Thre8]-
angiotensin II (Sarthran) revealed the
distribution of sites throughout the tissue, but
with the highest density on acinar cells [7, 8].
The majority of Sarthran binding (>80%) was
attenuated by the AT2 selective antagonist
PD123319 (Figure 1, bottom left panel). High
resolution emulsion autoradiography of this
tissue revealed a very high expression of
Sarthran binding surrounding the islet cells and
a lower density of sites within the islet field
(Figure 1, top right panel); addition of the
PD123319 compound essentially abolished
binding (bottom right panel). These findings in
the monkey and those in the dog, demonstrating
the predominant expression of the AT2 subtype
in exocrine components of the pancreas,
prompted further investigation of angiotensin II
receptors and other components of the RAS in
an acinar cell model. We characterized

angiotensin II receptor binding in the AR42J
acinar cell line and reported a high density of
binding sites (>300 fmol/mg protein) [9].
Similar to monkey and dog tissues, the majority
of these receptors were the AT2 subtype with a
minority of sites (<15%) competed for by the
AT1 antagonist losartan. Although the
proportion of AT1 receptors expressed in the
AR42J cell line was small, application of
angiotensin II to cells loaded with the
fluorescent calcium dye Fura-2 resulted in an
immediate and significant increase in
intracellular calcium. The angiotensin II-
dependent rise in calcium was abolished by the
AT1 antagonist, but was not modified by AT2
antagonists [9]. Consistent with our data,
subsequent studies by others also reported AT1-
dependent changes in intracellular calcium by
angiotensin II [10]. The biochemical
characterization of the AT2 binding sites

Figure 1. In vitro receptor autoradiography of 125I-[Sar1,Thre8]-angiotensin II (Sarthran) binding in the monkey pancreas.
Top left panel: Total 125I-Sarthran binding indicates receptor sites throughout the tissue. Bottom left panel: Competition by
the AT2 antagonist PD123319 for 125I-Sarthran binding reveals that the majority of sites are the AT2 subtype. Top right
panel: High-resolution emulsion autoradiograph of 125I-Sarthran binding demonstrates a high density of sites surrounding
the islet cells of the monkey pancreas. Bottom right panel: The AT2 antagonist PD123319 competes for the majority of the
125I-Sarthran binding sites. Adapted from Chappell MC et al. [7, 8].
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utilized cross-linking of radiolabeled Sarthran
and SDS/PAGE fractionation. These studies
revealed an AT2 site with a molecular mass of
approximately 110 kilodaltons (kDa) that was
substantially greater than the predicted mass of
40 kDa based on the protein sequence of the
AT2 receptor. Analysis of the AT2 sequence
indicated a high number of glycosylation sites
which likely influences the larger molecular
mass observed in these cells, as well that
reported in other tissues [11]. Similar to other
reports, we could not demonstrate
internalization of the AT2 receptor, another
characteristic quite distinct from the rapid
down-regulation of the AT1 receptor subtype
following agonist binding [12].
Regarding the functional aspects of the AT2
receptor, several groups demonstrated a link to
activation of tyrosine phosphatase activity [13,
14]. In the AR42J cells, activation of
somatotostatin receptors increased tyrosine
phosphatase activity and inhibited cell
proliferation [15]. We find that in the presence
of AT1 blockade, angiotensin II increased
vanadate-inhibitable tyrosine phosphatase
activity as measured with para-nitrophenol
phosphate (Figure 2). In the presence of both
AT2 and AT1 antagonists, angiotensin II did not
change phosphatase activity. Interestingly,

these data are consistent with a recent report by
Elbaz et al. [16] who demonstrated an AT2-
dependent reduction in the phosphorylation of
the activated insulin receptor in intact AR42J
cells. These authors found that both the AT2
antagonist PD123319 and a tyrosine
phosphatase inhibitor abolished this response
[16]. Moreover, others reported that AT2
activation may contribute to the
dephosphorylation of the MAP kinases ERK1
and ERK2 [17, 18] . The activation of tyrosine
phosphatase activity may underlie the anti-
proliferative actions generally associated with
stimulation of the AT2 receptor [17, 19, 20].
Currently, we do not know whether angiotensin
II exerts proliferative or anti-proliferative
actions in these cells; the growth effects may
likely depend on the relative balance of both
receptor subtypes and the overall potency of
their cellular signals.
In the AR42J cells, we are investigating the
regulation of the AT2 receptor subtype. As
shown in Figure 3, treatment with the
glucocorticoid agonist dexamethasone resulted
in a significant decline in PD123319-sensitive
binding within six hours and a maximal
decrease in binding by 24 hours [21]. The
addition of cortisol also substantially reduced

Figure 2. Effect of angiotensin II (Ang II) on tyrosine
phosphatase activity (PTP) in the pancreatic acinar
AR42J cell line. Cells were treated with varying
concentrations of angiotensin II alone or with 1 µM of
the AT2 antagonist PD123319 for 15 minutes. Following
the angiotensin II incubation, cells were isolated and
phosphatase activity determined with para-nitrophenol
phosphate (pNPP) as described by Takahasi et al. [13].
Data are the mean + SEM from 3 separate experiments.

Figure 3. Effect of steroid treatment on AT2 binding in
the pancreatic acinar AR42J cell line. Cells were treated
with 1 µM of dexamethasone (DEX), cortisol,
aldosterone or 17beta-estradiol (estrogen) for up to 48
hours. AT2 binding was determined with 125I-
[Sar1,Thre8]-angiotensin II in the presence of the AT1
antagonist losartan in intact cells. Data are the
mean+SEM from 3 separate experiments. Adapted from
Chappell MC et al. [21].
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binding, but other steroid agents including
estrogen, and aldosterone had little or no effect
(Figure 3). Although not shown, saturation
analysis of the dexamethasone-induced
inhibition of the AT2 binding reflected a
decrease in the number of receptor sites (Bmax)
and no change in the relative affinity (KD) of
the receptor to the Sarthran ligand. Consistent
with the decrease in receptor number, the
assessment of AT2 mRNA levels by RT-PCR
revealed an almost complete inhibition of
mRNA expression by dexamethasone in these
cells (Figure 4). In contrast, estrogen treatment
had no effect on angiotensin II binding or AT2
mRNA expression. Further studies are
necessary to determine whether this reduction
in AT2 mRNA results from an attenuation in
transcriptional activity or decreased mRNA
stability. However, our results are quite

consistent with those of Kijima et al. [22] who
reported that dexamethasone treatment reduced
AT2 mRNA levels in the adrenomedullary
PC12 cell line. In their study, dexamethasone
treatment primarily reduced the message
stability to attenuate AT2 mRNA half-life [22].
In view of the contrasting actions of AT1 and
AT2 receptors, glucocorticoids are known to
increase AT1 binding and AT1 mRNA, as well
as ACE activity [23, 24]. Thus, glucocorticoid-
induced hypertension may comprise a shift in
the balance of effects between the AT1 and AT2
receptors in the presence of elevated levels of
angiotensin II. Glucocorticoid down-regulation
of the AT2 receptors may also be relevant to the
recent findings that endogenous glucocorticoids
suppress apoptosis in an induced- pancreatitis
model [25]. Leung and colleagues [26, 27]
demonstrated up-regulation of the pancreatic
RAS including increased expression of AT2
mRNA in a chronic model of hypoxia, as well
as augmented angiotensinogen in induced
pancreatitis. In this regard, perhaps the
activation of a pancreatic RAS, particularly the
AT2 receptor, may promote cellular apoptosis
and influence pancreatitis. Transient up-
regulation of the AT2 receptor has been
reported in other tissues such as brain and
kidney [12].
Finally, in view of our incomplete
understanding of the generation of angiotensin
II in the pancreas and other tissues such as the
kidney, heart and brain, we have begun to
investigate the expression of additional
components of the pancreatic RAS in the
AR42J cells. As shown in Figure 5, molecular
analysis using RT-PCR revealed that the AR42J
cells express mRNA for both AT1a and AT1b
isotypes, as well as that for renin,
angiotensinogen and ACE. Indeed, to our
knowledge this is the first demonstration that
this pancreatic cell line exhibits all components
of the RAS. Although the expression of these
components may result from the transformed
phenotype, the AR42J cells constitute a unique
cell model to explore the processing of
angiotensin II and angiotensin I. Indeed, these
cells may more closely model an autocrine

Figure 4. Effect of dexamethasone (DEX) and 17beta-
estradiol (estrogen) on AT2 mRNA concentration in the
pancreatic acinar AR42J cell line. Top panel:
Autoradiogram of the amplified products using primers
specific for the rat AT2 receptor and the elongation
factor-1alpha (EF1α). Data are from 3 sets of cells
untreated (Control, lanes 1-3), treated for 24 hrs with 1
µM estrogen (lanes 4-6) or 1 µM dexamethasone (lanes
7-9). Bottom panel: Densitometric quantification of the
AT2/EF1α mRNA; mean+SEM.
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system in which the local production of
angiotensin II or other active metabolites acting
through different receptor subtypes may
feedback to influence its tissue of origin. This
may be of particular relevance in hypertensive
patients as AT1 receptor blockers (ARBs) may
supplant ACE inhibitors and other anti-
hypertensive treatments. ARB treatment not
only blocks AT1 receptors, but significantly
increases angiotensin II levels (due to the
disinhibition of renin release) that may result in
greater activation of the AT2 and other receptor
subtypes. Furthermore, the acinar cell model
may be of relevance to study more novel
components of the RAS such as the AT4
receptor and the biologically active ligands,
angiotensin-(3-8) and angiotensin-(3-7); these
endogenous peptides exhibit high affinity for
the AT4 binding site [12, 28]. Although a high
density of AT4 sites are found in a number of
tissues including the heart, adrenal gland, and
the vascular endothelium, whether this site is
expressed on the exocrine or endocrine
elements of the pancreas is not known at this
time. In addition, numerous studies demonstrate
a functional role for angiotensin-(1-7) in the
vasculature, brain and kidney that is mediated
by a non-AT1,-AT2 receptor [29, 30]. Indeed,
elevated levels of angiotensin-(1-7) contribute
to the anti-hypertensive actions of ACE
inhibitors and AT1 receptor antagonists [31,

32]. Although we originally measured
significant angiotensin-(1-7) levels in the dog
pancreas, whether this peptide influences
pancreatic function is also unknown.

Future Perspectives

The RAS cascade has historically been viewed
as a key factor in the role of cardiovascular
regulation primarily to maintain arterial blood
pressure and water and sodium balance, with its
regulation and expression predominantly
controlled through the kidney. Although
relatively few studies addressed the role of
angiotensin II or other active fragments in the
regulation of endocrine or exocrine aspects of
the pancreas, substantial evidence indicates
local systems in other tissues that may exhibit
paracrine or autocrine actions. Indeed, the data
from other tissues provide a new understanding
that this important hormonal system is actually
a pleiotropic system encompassing both
vasopressor/depressor and proliferative/anti-
proliferative actions. Moreover, the regulation
of individual components of the system is tissue
specific and may be under the control of local
factors. Thus, the mechanisms of the
angiotensin system now include multiple
receptors, different ligands and a diverse
number of target tissues including the pancreas.
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Figure 5. RT-PCR analysis of the mRNA components of
the renin-angiotensin system in the pancreatic acinar
AR42J cell line. DNase-treated total RNA from AR42J
cells was transcribed with (+) or without (-) reverse
transcriptase (RT) and amplified with primers specific
for rat renin, angiotensinogen (Aogen), angiotensin
converting enzyme (ACE), and the angiotensin II
receptor subtypes AT1a, AT1b, and AT2.
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