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Abstract
This letter proposes a voice multiplexing system model based on the framework 
of Stochastic Fluid Model (SFM) with finite capacity buffer. Using the sample path 
truncation method, we first obtain a truncated stochastic process of the system 
model, and then the transition rate matrix is derived based on the probability 
matrix of First Passage Time (FPT). The exact expressions of the overflow and 
the idle probabilities of the packet voice multiplexing system are derived by the 
Matrix-Analytic Methodology. Finally, numerical example is performed to illustrate 
our theoretical results. As an application, given the maximum tolerable overflow 
probability, the two optimal system parameter settings are given.
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Introduction
With the development of the Internet, real-time voice 
transmission, such as Tencent meetings and DingTalk, has become 
an important part of people's real life. In such a packet voice 
switching system based on Asynchronous Transfer Mode (ATM), 
the packet voice signals are packaged into fixed-size voice packets 
and transmitted using a store-and-forward method. Telephone 
technology usually requires a bandwidth of more than 64 k bit/s, 
while the bandwidth required for the packet voice is usually 
less than 10 k bit/s, so packet voice technology is widely used 
in data communication systems and computer network systems. 
In the communication system, multiplexing technology combines 
multiple signals on a physical channel for transmission, which 
greatly improves the utilization of communication lines, and also 
saves the costs of the cable installation and maintenance. 

Multiple voice sources share a link through the multiplexer in the 
form of statistical multiplexing. The voice source generates voice 
data stream and enters a multiplexing buffer, it is necessary for 
the packet signal to wait in the buffer for the processing of the 
system, thus the configuration of the system affects the quality 
of service (QoS) of the system, such as the call delay, speech 
intelligibility and so on. 

The capacity of the multiplexing buffer is one of the important 
parts of the voice multiplexing system design [1]. Due to the 
randomness of the communication, the burst-scale queue 
phenomenon is always occurred in the voice multiplexing system 
[2], and this phenomenon is mainly related to the multiplexing 

buffer of the system. More specifically, if the buffer capacity is too 
large, it will affect the transmission delay of the voice stream and 
increase the cost of the system; if the buffer capacity is too small, 
the voice stream overflow possibility will increase, which will 
result in the problems such as the loss of voice information, the 
poor voice quality and so on. Obviously, the size of buffer makes 
an important impact on the QoS of voice transmission.

Starting from the pioneering work [3] of Anick, Mitra and Sondi 
in 1982, the Stochastic Fluid Model (SFM) has been widely used 
in various research fields. The stochastic fluid model can be 
defined as an input and output system, that is, SFM is modeled 
as a continuous fluid change process that enters and leaves the 
storage device (i.e. buffer) at a random changing rate. Anick et 
al. gave a stationary analytical solution of the SFM system [3]. In 
2008, the authors of [4] analyzed the voice multiplexing system 
based on the Markov Modulated Poisson Process (MMPP) model, 
and estimated the broadband demand on the multiplexing node. 
In 2010, [5] proposed two independent finite state birth-death 
processes to study the occupancy distribution of the infinite 
capacity buffer, and gave a steady-state occupancy distribution 
of the buffer. In 2013, [6] calculated the steady-state probability 
when the buffer is empty based on the M/PH/1 fluid queue of 
the infinite buffer. In 2015, [7] combined the traditional fluid 
model and the fluid model based on Markov-renewal method to 
study the voice traffic queue phenomenon in the packet voice 
multiplexing system, and proposed a new method to calculation 
the mean buffer Occupancy. The literature [5-8] studied various 
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performances of packet voice multiplexing systems by SFM 
modeling.

The main solution of the SFM system in the above literature is 
based on the spectral decomposition method [3-5]. This method 
gives a stationary analytical solution of the SFM system in an 
exponential form of the eigenvalue. However, the numerical 
calculation of this method is unstable when the eigenvalue is close 
to zero. Moreover, in practical applications, there may be a large 
number of system states in the system model, which will lead to 
various calculation difficulties and numerical algorithm problems 
[9]. On the other hand, in order to derive the performance 
metrics (such as overflow probability, etc.) of the system, this 
system is often approximated by the system model with the 
infinite capacity [6,7]. Obviously, this assumption is not unrealistic in 
practical problems, and this system model limits the accuracy of the 
performance in the practical application scenarios [8].

Motivated by these facts, in this paper, we analyze the packet 
voice multiplexing system based on the theoretical framework of 
the SFM. Compared to the literature mentioned above, and the 
main contributions of this paper are as follows: 

• This paper proposes finite capacity SFM to describe the 
packet voice multiplexing system, That is, instead of infinite 
buffer, the multiplexing buffer in the packet voice multiplexing 
system is directly set to a finite capacity, when the voice 
traffic entering the buffer is larger than the capacity of the 
buffer, voice stream overflow will be occurred. Obviously, the 
finite capacity buffer is more suitable for practical application 
scenarios, and the obtained analysis performance is more 
accurate.

• To analyze the packet voice multiplexing system under the 
finite capacity SFM framework, we use the method introduced 
in [10] in this paper. Firstly, the system path is truncated, and 
then based on which, Matrix-Analytic Methodology is used 
to derive the exact expressions of the overflow and idle 
probabilities. This method has stronger stability and faster 
convergence speed than spectral decomposition method. 
Based on the above performance metrics, we investigate 
the characteristics of overflow and idle probabilities of the 
buffer, we also discusses the parameter setting in packet 
voice multiplexing system, that is, the size of the buffer and 
the number of users that can be accommodated are analyzed 
numerically.

Model and Problem Formulation
Throughout this paper, we use the following notations. For 
a matrix A, denote its (i,j) -th element by Aij and let Aij be the 
block matrix of A. Assume that 0, I and 1 represent zero matrix, 
unit matrix and unit vector with an appropriate dimension, 
respectively.

Subsection 

voice sources, which are indexed by . Each voice 
source has two states: active (that is, voice call phase) and silent 
(that is, voice pause), and each voice source alternates between 

the two states. The voice stream generated by each voice source 
in the active period enters the data buffer at a constant rate. We 
assume that the capacity, which is denoted by , of the buffer in 
the system is finite. When the voice stream in the buffer reaches 
the upper bound , the newly entered voice stream will overflow 
and lead to the loss of voice information; when the buffer is 
empty and no new voice stream enters, then the system is idle.

Consider the voice source , denote its state 
space by , where represents the silent state and  
represents the active state. Suppose that the sojourn time of 
voice source  in state , is the exponential distributed 
with mean . Thus, the evolution process of the voice source

, which is denoted by , becomes a 
continuous time Markov chain (CTMC) on state space  with 
transition rate matrix:

The voice stream generated by  is injected into the buffer 
with time varying input rate. Specifically, at time , the voice 
stream input rate is denoted by . When the state of the 
voice source  is , there is no voice stream enters multiplexing 
buffer, and the input rate is . When the state of  is , 
then  input the voice stream into the buffer at rate . 
We denote , and  is referred to as input 
rate matrix of .

The voice stream in the multiplexing buffer is transmitted to the 
network system at a constant rate, which is denoted by , then 
the net input rate of  is . We let , and we 
call  the net input matrix of .

Now, define superposition process:

,

Where , and refer to  as the 
background process. In the packet voice multiplexing system, 
since  voice sources are independent of each other, then  is 
CTMC on state space:

With the transition rate matrix:

where 

For the convenience of presentation, the states in  are numbered 

Fluid model of packet voice multiplexing system.Figure 1:

Similar to literature [4,9]we consider a packet voice multiplexing
system as shown in Figure 1. There are N mutually independent

 is Kronecker sum [11].

[10]
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in sequence, and the state space is rewritten as 
. Obviously,  characterizes the evolution process of all voice 

sources in the system. Similarly, at time , the input rate and the 

net input rate of  are denoted by  and , respectively. 

Then  and . Thus, we can write the 

input rate and the net input rate matrices of  is:

net input rate matrix is:

Let  represent the amount (level) of voice stream in the 
multiplexing buffer at time t, we denote  by 
the evolution process of the voice stream in the buffer, then  
satisfies:

                  (1)

It can be seen from (1) that when , and the rate  is 
less than , the buffer continues to be empty; when , 
and the rate  is greater than , the voice stream in the buffer 
will remain; when  is between , the voice stream in the 
buffer changes at rate . Without loss of generality, for any 
state , we assume .

Let 

and it is easy to see that  is a SFM model and it is describe 
the packet voice multiplexing system model under consideration 
in this paper. In SFM , the level process  describes the 
change process of the voice stream level in the multiplexing 
buffer. Because the multiplexing buffer is finite, when the voice 
stream reaches the level , overflow will occur; when the voice 
stream level is reduced to 0, the multiplexing buffer is empty. The 

background process  describes the change of the voice source 
state, which affects the input rate of the voice multiplexing 
system, and controls the change of the voice stream level  in 
the multiplexing buffer.

In the packet voice multiplexing system, the multiplexing buffer 
size and the number of voice sources make an important impact 
on the performance metrics of the system. The main goal of this 
paper is to derive the exact expressions of overflow probability 
and idle probability of the packet voice multiplexing system 
, and investigate numerically the setting of the optimal buffer 
size and the optimal number of users that can be accommodated 
given the maximum tolerable overflow probability.

Results and Discussion
Model analysis
Before our analysis, we first give the following definitions.
In SFM , we define the stationary probability density and 
boundary probability 

, , ,

where:

According to the backward equation, the stationary probability 
(density) of SFM  satisfies:

                    (2)

where . Let

                     (3)

                    (4)

                       (5)

where , Then (2) can be rewritten as:

                    (6)

where , .

It can be seen from (6) that the SFM  is transformed into 
a new SFM with net input rate matrix  (that is, the net input 
rate is ), and the transition rate matrix . We denote this 

new SFM by . Now, we mainly study SFM , and the 

performance metrics of the original SFM  can be obtained 
based on (3-5).

According to the sign of the net input rate, the state space  is 
divided into two disjoint subsets: , where: 

Based on the division of the state, the matrices  and  can be 
written in the following block form accordingly:

Similarly,  and  can be written in block form: 
, .

When the voice stream in the buffer reaches the upper bound , 
and the net input rate is negative at this time, the voice stream in 
the buffer cannot be maintained at the upper bound, therefore, 

, and we call  the overflow probability; Similarly, 
when the multiplexing buffer is empty and the net input rate 
is positive, the voice stream in the buffer cannot be empty, 
therefore, , and we call  the idle probability.

To analyze the overflow probability and idle probability of the 
voice multiplexing system model, we define First Passage Time 
(FPT) as follows.
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We are interested in the two first passage times  and . 

That is,  is the first time epoch that the level process reaches 
the buffer upper bound  with initial level  before the buffer 
is empty; and  is the first time epoch that the level process 
starts from the buffer upper bound level , and first reaches the 
level  without returning level .

We define the following probability matrix of FPT as 
, and denote its -th elements by:

Obviously,  represents the probability that the SFM 
 starts from state , and arrives at  for the first 

time.

Similarly, we define matrix , and denote its 
-th elements by:

In order to simplify the calculation, the level-reverse process is 
denoted by: 

which is considered by [12,13]. The level-reverse SFM 
 has the same transition rate matrix of the SFM 

, but the net input rate of the state is exactly the opposite. 
That is, in , let the net input rate be 

.

For the convenience of description, a quantum  in  is 
correspondingly denoted by in the level-reverse process 

.

According to the division of state,  has the following matrix 
block form:

Because the level process  can only reach the level  for the 
first time in the state set , therefore:

The following lemma gives the expressions of  and 
.

 [14] For the SFM  with ,  
and  have the following expressions:

                    (7)

.                      (8)

Matrix  satisfies the following Riccati equation [12].

                  (9)

 
in the (9). It can be seen from the above expression that after  

and  are given, all the quantities are available.

Similarly, we have the following conclusions for the block matrices 
 and .

 [14] For the SFM  with , the following 
equation holds:

Based on the above two lemmas, we begin to derive the stationary 
boundary probability of the SFM .

As shown in Figure 2, we truncate  and only remain the 
path sample of the system on the boundary level  and the 
boundary level . The state space of the truncated process can 
be written as 

.

We consider the transition rate of the truncated process in the 
interval , let  be small enough. Let . At the 
time , we assume the state of the truncated process is 
, then two cases will be occurred when the truncation process 
transits to state  from state :

The truncated process transits directly from state  to state 
 with probability ;

 The truncation process transits from state  to state 
, where  with probability , and then the 
process starts from state  to state , while during the 
transition, the sample path cannot hits the level . From lemma 
2, the probability of this event is .

Thus, the transition rate matrix from  to  has the 
following form: .

Similarly, we can construct the transition rate of truncation 
process in the following block form:

                 (10)

At the same time, we notice that when the fluid queue is at the 
middle level, the time for upward transition is equal to the time 
for downward transition [10]. Therefore:

Truncate the SFM process.Figure 2:

The literature [15-17] gives an effective algorithm for solving
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where ,  are the stationary distributions of background 
processes, that is, we have  and .

Now we can solve the following equation to obtain the stationary 
boundary probability and :

               (11)

It can be seen from (2)-(5) that  and  
are proportional to each other, then we  have:

,                 (12)

                     (13)
Notice that:

Thus,  can be determined by the following equation:

From the above formula, we have:

                    (14)

Now, we obtain the overflow and idle probabilities of the buffer 

in the packet voice multiplexing system , we summary the 
corresponding algorithms in Algorithm 1 (Table 1).

Numerical example
In this section, we will give numerical examples to illustrate our 
analytical conclusions.

Numerical setting: Consider a small experimental scenario of 
multi-user voice stream transmission. We assume  identical 
and independent users , , in the scenario. The 
voice signal is transmitted to the channel at rate  kbit/s. 
Since the voice multiplexing system adopts the principle of 
frequency division multiplexing, the frequency range of the voice 
signal is 300-400 Hz, and the signal-noise ratio of the general link 

is 30 dB [18]. So by Shannon formula, the transmission rate of 
the voice signal to the network system is about  kbit/s. 
Suppose that the average sojourn time of the voice in state 
``active" is 3 min, and the average time in state ``silent" is 2 min. 
Then the transition rate matrix is :

the input rate matrix is , (Unit: Mbit/min), for 
. According to the theoretical findings developed in 

this paper, we obtain and describe the corresponding numerical 
results in the following figure.

Numerical analysis
Figure 3 shows the relationship between the overflow probability 
and the buffer size under different number of users. The abscissa 
represents the size of the buffer, and the ordinate represents the 
overflow probability of the packet voice multiplexing system. 
As can be seen from Figure 3, given the same buffer size, the 
overflow probability increases with the increasing the number 
of users. It can also be noticed that given the number of uses, 
the overflow probability decreases when the buffer capacity 
increases. However, as the buffer size becomes larger and larger, 
the impact becomes smaller and smaller. This observation 
suggests that simply increasing buffer size is not a suitable way to 
decrease the overflow probability, and the number of users need 
to be under consideration.

In Figure 4 we can see that given the number of users, when 

Overflow probability with respect to buffer size.Figure 3:

Idle probability with respect to buffer size.Figure 4:

S. No Algorithm 1  Overflow and idle probabilities algorithm of the 
packet voice multiplexing system

1 Step 1. Divide into , construct block matrix .

2 Step 2. Use (9) to obtain .

3 Step 3. Use lemma 1 to obtain  and .

4 Step 4. Use lemma 2 to obtain  and .

5 Step 5. Construct transition rate matrix  base on step 3 and 
step 4.

6 Step 6. Obtain  and  base on (11).

7 Step 7. Obtain  base on (14).

8 Step 8. Finally, obtain  and  base on (4)-(5).

Table 1: Overflow and idle probability algorithm of buffer in packet voice 
multiplexing system.
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the buffer size increases, as expected, the idle probability of 
the system decreases. This observation can be explained by the 
fact that as the buffer size increases, the overflow probability 
becomes smaller, and then the more voice information of the 
system has to process, so the idle probability decreases with the 
increasing of the buffer size. When given the buffer size, we can 
see that the idle probability decreases with the increasing of the 
number of users. This because as the number of users increases, 
the more voice stream in the buffer, and then the more voice 
information of the system has to process, so the idle probability 
decreases with the increasing of the number of users.

System parameter setting
Based on the above scenario settings, as an application, in the 

following we illustrate, given the maximum tolerable overflow 
probability, how to design the two important parameters of the 
packet voice multiplexing system, i.e., the buffer size and the 
maximum number of users that system can accommodate (Figure 
5). We should first determine the maximum number of users the 
system can accommodate, this because the overflow probability 
has not been significantly impacted by the changes of the buffer 
size (Figure 3).

Conclusion
This paper investigates the overflow and idle probabilities of the 
packet voice multiplexing system based on the framework of SFM. 
We truncate the system sample path, and derive the overflow 
and the idle probabilities by the matrix-analytic methodology. 
Numerical investigation of the theoretical results is performed, as 
an application, the optimal buffer size and the maximum number 
of users is investigated with the maximum tolerable overflow 
probability constraint. The theoretical findings in this paper are 
of important guiding significance for the design and management 
of the packet voice multiplexing systems. In future work, we can 
extend the system model proposed in this paper, and analyze the 
important performance metrics of the packet voice multiplexing 
system with priority.
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