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A B S T R A C T 

In this work, we present and analyze amathematical epidemiological model for Vibrio cholerae 
(Cholera) with an incorporated control strategy.  Cholera is regarded generally as a disease of the 
poor and it affects areas that lack access to safe drinking water and sense of hygiene. An 
epidemiological mathematical model for the transmission dynamics of cholera, with control 
strategies is formulated in this paper. The epidemiological model formulated is designed into 
compartments which lead to a system of differential equations for the transmission dynamics of 
cholera with a control strategy of water treatment being proposed. It was assumed in the model 
that cholera in contracted when an individual comes into contact and ingest contaminated water. 
The equilibrium points of the model are found and their stability is investigated. The results 
showed that the disease free equilibrium is locally asymptotically stable under suggested 
conditions on the parameters given in the model (i.e. cholera can be eradicated under such 
conditions in time bound). It was then concluded from the results that treatment of water is an 
effective method of controlling and eradicating cholera as well as public education on the 
disease. The numerical simulations and graphical solutions of the differential equations were 
carried out with Matlab application software. 

Keywords: Mathematical model, Cholera, Control strategy, Epidemic, Differential equations, 
Numerical simulation. 

 
INTRODUCTION

Dynamics of a disease are a result of 
the interactions of complex systems in 

complicated ways. The epidemiological 
experiments can be difficult and expensive 
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though, mathematical modeling is an 
important tool for the understanding of their 
complex dynamics1,2. Mathematical 
modeling enables us to characterize the 
general and specific behavior of these 
systems analytically and to understand 
which aspects contribute the most to the 
observed dynamics as well as making policy 
decisions for preventive measures and 
control strategies. 

The application of differential 
equations in the transmission dynamics of 
infectious diseases have been extensively 
used in several papers3-8. The analysis of 
these models predicted and suggested 
several control strategies for the control and 
eradication of the infections (diseases). 
Some the control strategies being suggested 
were early detection and reporting, 
vaccination and mass immunization, 
therapeutic treatment and good sanitation 
practices. It is therefore important that 
adequate attention is paid to stopping the 
spread of such diseases by using effective 
control strategies and measures. 

Many infectious diseases  are  as  a 
direct result of poor hygienic conditions and 
contact  between  an  infectious  person  and  
a  susceptible person.  Cholera, according to 
reference9, has been a persistent epidemic 
and continues to be a global world health 
issue. Despite the studies of this disease for 
over one hundred years, it is estimated that 
approximately 120,000 people die from 
cholera annually9. 

Studies have attributed utmost 
environmental issues for the ability of the 
disease to desolate communities and 
households. Cholera is an infectious disease 
of which it outbreak leads to the death of 
millions of individuals. The outbreak of 
Cholera present a serious public health 
burden in the affected regions as enormous 
amount of money is needed to control and 
eradicate it, and this have sparked 
computational modeling efforts to forecast 

the dynamics of ongoing outbreaks, assess 
and predict  intervention strategies10-14. 

According to15, Cholera is an acute 
intestinal infectious disease caused by the 
bacterium Vibrio cholerae characterized by 
extreme diarrhea and vomiting. It is deadly 
water – borne disease which usually results 
from poor hygienic conditions and sanitation 
and untreated water. The human body is 
dehydrated and prevented from absorbing 
liquids and this is caused by toxins produced 
by the Cholera bacteria, Vibrio cholerae. 
Contaminated drinking water and food are 
the channels through which the bacteria are 
transmitted.  Individuals who are not treated 
may die from severe dehydration two or 
three hours of the infection and this is due to 
the relatively short incubation period of the 
disease (usually two to five hours), which 
will eventually result into an outbreak if it is 
not controlled and eradicated. 

Reference9 ascertained that, 
increasing the protection against the disease 
can be gained by improving sanitation and 
hygiene. Though it is life threatening, 
controlling and prevention is achieved if 
proper sanitation practices are followed. 
Most cases of cholera currently occur in 
developing countries such as Peru, 
Bangladesh, India and some of the coastal 
regions of South America recent cholera 
outbreaks. Recent cholera outbreaks in Haiti 
(2010–2011), Nigeria (2010), Kenya (2010), 
Vietnam (2009), Zimbabwe (2008–2009), 
etc., continue leading to a large number of 
infections and receiving worldwide 
attention16,17. 

Currently, Ghana is faced with 
prevalent cases of cholera infections, 
especially in the capital Accra and it 
surroundings, thereby it being declared a 
health emergency and an outbreak. Records 
available at the Ghana Health Service18 have 
hit a record high in the regions, with most 
health centres in the various regions 
recording about 300 cases daily and a 
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weekly tally of about 1000 cases. Earlier 
commemoration has it that, there were 823 
cases in 2008 with no deaths; 431 recorded 
in 2009 with 12 deaths; 2010 had no death 
from a record of seven cases; there were 
over 9000 cases with 72 deaths in 2011; in 
2012, there was close to 7,000 cases with 48 
deaths recorded; no deaths were recorded in 
2013 out of 22 cases.2014 has at least 6,179 
reported cholera cases and these figures are 
rising by the day, with a total of over 67 
deaths and this has called for it being 
declared an outbreak. 

According to reference19, 
transmission dynamics of cholera involve 
multiple interactions between human host, 
the pathogen, and the environment. In an 
attempt to gain deeper understanding of the 
dynamics of cholera, several mathematics 
models have been established20-26. 
Reference27 is of the view that, 
mathematical modeling provides a unique 
approach to gain basic knowledge in cholera 
dynamics13. Effective prevention, prevention 
and control strategies have been designed 
based on this knowledge and the 
assumptions, variables and parameters are 
clarified in the formulation of the 
mathematical model. These results can help 
health workers understand and predict the 
spread of an epidemic and evaluate potential 
effectiveness of the different control 
measures to be used. 

There have been a number of studies 
on mathematical models of cholera 
transmission, but actual modeling of cholera 
transmission was started by28, they studied 
the cholera epidemic which occurred in the 
Mediterranean in 1973, with the proposal of 
a simple deterministic model. Following 
this, there were several studies, which 
primarily focused on different control 
strategies. Reference29 formulated a SIR 
compartmental transmission model which 
divided the population as susceptible, 
infected and infectious, to the other 

individuals. Recovered or otherwise were 
removed from risk to further infection. Their 
assumption was that cholera could  be 
transmitted  through  either contaminated  
water  or  close  contact  with  the infective  
but  that water borne transmission was a far 
more important method of transmission. 
They added a water compartment to the 
model. 

Other models such as that of21, is of 
a more general form which took into 
consideration, the infectious stages for the 
transmission of Vibrio Cholerae. The model 
comprised five equations which described 
the dynamics of a susceptible,  infectious  
and  removed  human  population  and the  
dynamics  of  a  hyper  infective  state  and  
lower  infective states of  Vibrio cholerae  
population and also assumed that the total 
population N, is constant with a constant 
birth and death rate. 

Ref12 formulated a model which had 
human – to – human factor incorporated into 
the model. The basic reproductive number 
(R0) for 2008 – 2009 cholera outbreaks in 
Zimbabwe was estimated in their model. 
Their model conformed to the situation in 
the nature of the Zimbabwe situation that 
resulted in the epidemic. 

On a broader perspective, most 
mathematical models of cholera 
transmission on the global level have 
proposed control strategy for the control and 
eradication of the disease. Reference20 
formulated a model which had an 
environmental component (Vibrio cholera 
concentration in water supply). The 
interaction between the human host and the 
environmental pathogen were studied and 
analyzed in their model for the utmost 
understanding of the transmission dynamics 
of cholera (SIR – B, with B denoting the 
concentration of Vibrio cholerae in the 
water supply). Based on this idea on the 
understanding of this transmission 
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mechanic, there has been the development 
of other models such as12,21,27. 

In this paper, we aim to give a better 
understanding of the effects of control 
measures coupled with the transmission 
dynamics of cholera and this will in diverse 
ways help gain practicable and efficient 
preventive strategies for the control of the 
cholera pandemic. Water treatment is the 
most basic and fundamental strategy for 
controlling cholera and it is for this reason 
that we incorporate water treatment as the 
control strategy in our model. Sensitivity 
analysis of the parameters of the model in 
the control of the cholera epidemic will be 
established. Equilibrium analysis of the 
disease - free and endemic states will also be 
investigated for its existence and stability 
and a conclusion will be drawn for the 
paper. 
 
MATERIALS AND METHODS 

 
The  authors proposed a 

mathematical  model which will  be  
formulated  using  differential  equations  
based  on  the epidemiological  compartment  
modeling.  We used the SIR model for this 
paper, with water treatment as a control 
strategy, which will be incorporated into the 
model. The computer software package that 
will be used to solve the differential 
equation model numerically is Matrix 
Laboratory (Matlab R2010a). Sensitivity 
analysis and numerical simulations of the 
model will be conducted.  

 
The mathematical model 

In this paper, we consider the SIR 
epidemiological model with the assumption 
that water treatment incorporated, is the only 
control strategy, as developed in the model 
ofreference20, in addition to human birth and 
death rates being unequal. For our model, 
we assume that water treatment is the 
control strategy because it is the basic and 

most primal control strategy for cholera. 
With this, we introduce another 
compartment into the model, i.e. 
concentration of vibrio cholerae in water, at 

a given time (t), denoted by ( )C t . 
The cholera model is a combination 

of the human populations and the 
environmental component (SIR – C), with 

the total population, N S I R    assumed 
to be constant. The model to be formulated 
will take into consideration the effectiveness 
of the water treatment as the control strategy 
and will be sought for in the model. We 
make the following assumptions for the 
model: 
 Water sanitation leads to death of the 

Vibrio cholerae in the aquatic 
environment. 

 Water treatment is the only control 
strategy considered. 

 Other control strategies such as 
vaccination and curative treatment were 
not considered in the model. 

 Human Birth and Death rate occur at 
different rates. 

 Cholera occurs in a relatively short 
period of time and it has low mortality. 

The variables and parameters used in 
the model are defined below: 

( )S t  The number of Susceptible 
individuals at time, t 

( )I t    The number of Infected individuals 
at time, t 

( )R t   The number of Recovered 
individuals at time, t 
N  Total Population 

( )C t  Vibrio Cholerae concentration in the 
water supply at time, t 

µ = natural death rate, β = birth rate, 
ε = rate of exposure to contaminated water, γ 
= rate at which people recover from 
Cholera, m = Vibrio Cholerae growth rate, n 
= Vibrio Cholerae loss rate, Ƙ= 
concentration of Vibrio Cholerae in water 
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(pathogen concentration that yields 50% 
chance of getting Cholera), δ =rate of death 
of Vibrio Cholerae as result of water 
treatment, α= contribution of each infected 
person to the population of Vibrio Cholerae 
in the aquatic environment (water 
sanitation), φ= net death rate of Vibrio 
Cholerae, i.e. φ = m – n. 

As a result of the analysis and the 
assumptions, we obtained the following 
dynamical systems: 
dS c

N S S
dt c


 


  

                            (1) 
dI c

S I I
dt c


 


  

                               (2) 
dC

I C C
dt

    
                                  (3) 

With initial conditions: 
(0) , (0) 0, (0) 0S N I C   . 

In addition, we have the equation for 
the R compartment (recovered individuals), 
even though this equation is not needed in 
the model analysis. This is 

because R N S I   . 
dR

I R
dt

  
…….……………………..(4) 

 
Analysis of the equilibrium points of the 
model 

In this section, we present the results 
of the stability of the equilibrium points on 
the model. Analytic studies on the results of 
the stability of the equilibrium points were 
done. In order to determine the stability of 
the model, the systems of ordinary 
differential equations (Equations 1 – 3) were 
evaluated. The two non – negative 
equilibrium points to be found are the 

disease – free equilibrium, where 0i  and 

endemic equilibrium, where 0i  . 
 
 
 

Existence and stability of the disease – 
free equilibrium 

At the equilibrium point, 

0
dS dI dC

dt dt dt
  

, we therefore equate 
equations (1)  - (3) to zero (0). 

0
c

N S S
c


 


  

                               (5) 

0
c

S I I
c


 


  

                                  (6) 
0I C C                                           (7) 

There are no infections at the 

Disease – Free equilibrium, hence 0I  . We 
then substitute this into equation (7) to get 
0 ( ) 0

0

C C C

C

        

  , given 

that 0   . 

Putting 0C  into equation (5), we 

obtained

N
S






. Hence there exists a 
Disease – Free equilibrium point given as: 

0 0 0( , , ) ,0,0
N

S I C




 
  
  .                          (8)                                                

For the stability of the Disease – 
Free equilibrium, we will consider 
linearizing the system of equations (1) – (3) 
about the equilibrium points to prove that it 
is locally asymptotically stable, by taking 
the Jacobian of them. 
The Jacobian matrix is given by 

2

0 0 0 2

0
( )

( , , )
( )

0

c S cS

c c c

c S cS
J S I C

c c c

  


  

  
 

  

  

 
      
 
 

      
 

  
 
                                                 

                                                                   (9) 
We evaluate the Jacobian matrix at 

the equilibrium points, 

0 0 0( , , ) ,0,0
N

S I C




 
  
   
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And hence we get         

0 0 0

0

( , , ) 0

0

N

NJ S I C









 

  

  
 

   
    ..(10) 

The characteristic equation of the 
Jacobian matrix is given as follows: 

0 0 0

0

( , , ) 0 0

0

N

N
J S I C I


 




   



   

  

     

  

                        
(11) 

( ) ( )( ) 0
N

       


 
           

 
 We observe that the characteristic 
equation of the Jacobian matrix has three 
roots.   

From equation (10), 1   . 
Thus the two other roots will be 

solved for using the general formula for the 
roots of an equation. That 
is

2

2,3

( ( )) ( ( )) 4 ( )( )

2

N
           




 
           

 


 
 

2

0

2,3

( ( )) ( ( )) 4 ( )( )(1 )

2

R           


           


Where, 
0

( )( )

N
R



    


                                                                                                
(12) 

Note: According to [30], R0is the 
Basic Reproductive Number and in 
epidemiology, it’s the number of cases one 
case generates on the average over the 
course of its infectious period. 

Now, suppose 0   if 0 1R  , we have 

04( )( )(1 ) 0R        
Therefore, 

2 2
0( ( )) 4( )( )(1 ) ( ( ))R                     

 
2

0( ( )) 4( )( )(1 ) ( ( ))R                     

 

Hence, we can deduce from the equation () 
that  

2,3

( ( )) ( ( ))

2 2

       


      
 

 

2

( ( )) ( ( ))

2 2

       


      
  

 

, 
3

( ( )) ( ( ))

2 2

       


      
 

 
From the analysis, the roots are all 

negative when R0< 1, thus the Disease – 
Free equilibrium is asymptotically stable 
when R0< 1.  
 
Existence and stability of the endemic 
equilibrium 

The endemic state of the system of 
equations (1) – (3) will be determined 

at 0I  . We now analyze the existence of 
the stability of the Endemic state of the 
model. 

At equilibrium,
0

dS dI dC

dt dt dt
  

, we 
therefore equate equations (1) – (3) to zero 
(0). 

0
c

N S S
c


 


   

 ……………  (13) 

0
c

S I I
c


 


  

 ………………….  (14) 
0I C C     ……………………... (15) 

 
From equation (15), 

0

( )

( )

I C C

I C

I
C

  

  



 

  

 


 …………………….. (16) 

Also from equation (14),  

0

( )

( )

c
S I I

c

c
S I

c

c
S I

c


 




 



 



  


 



 

………………..    (17) 
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Again, from equation (13), 

0

0

c
N S S

c

c
N S

c


 




 



  


 
   

   
We then substitute S from equation  …(17) 

( ) 0

( )

( ) 1 0

c c
N I

c c

c c c
N I

c c c

c
N I

c

 
   

 

  
   

  


   



  
    

 

  
    

 

 
    

   
We also substitute C from equation (16) 

( )
( ) 1 0

( )

( ) 1
( ) 1 0

( ) ( ) ( )
( ) 0

( ) ( )
( ) 1 0

( ) ( ) ( ) 1 0

(

I

N I
I

N I
I

I I
N I

I

N I

N I

N




 
   



 

  
   

 

        
  

 

      
  

 


          



 

 
 

     
 
  

   
      

  

  
    

   
     

 

 
        

 

 ) ( ) ( ) ( ) 0

( ) ( )

( ) ( )

I

N
I

          

       

    

     

  
 

 

 (18) 
Supposedly, for I to be > 0, 

( ) ( )N           

1
( ) ( )

N 

     
 

  . 0 1R   
Where, the Basic Reproductive 

number, R0 is given as 

0
( ) ( )

N
R

 

     


  (19) 
From the analysis, it can be observed 

that a positive endemic equilibrium exist if 
R0> 1. This conditions (necessary and 
sufficient) are true for all values of the 

parameters (all non – negative), hence the 
endemic equilibrium is locally 
asymptotically stable when R0> 1. 
 
NUMERICAL ANALYSIS AND 
RESULTS 

In this paper, we present a cholera 
epidemiological model by incorporating 
water treatment as a control strategy. We 
used the standard ordinary differential 
equation obtained from our proposed SIR - 
C model to predict the dynamics and the 
control of the disease. Matrix Laboratory 
(Matlab R2010a) application software was 
use to solve the system of equations in the 
model. Numerical simulations of the model 
were done, as well as the plots of the graphs. 
This was done to look into the effects and 
changes that will occurin the model when 
the values of each of the compartments of 
the model were altered. The sensitivity 
analysis of the model was performed and 
this led to the discussion of the existence 
and stability of the disease- free equilibrium 
and endemic equilibrium states of the model 
equations. We assign values for the model 
parameters for the components of the 
compartments of the model based on 
specified values as being used in the models 
by references8,20,21. Below are the results 
obtained after the numerical investigations 
on the model; (See Figure 1) 

At the initial stages, the level of 
infections is reduced since there are no 
Vibrio Cholerae bacteria in the water bodies 
consumed by the population. The source of 
drinking water at this state is treated and 
safe for human consumption. As expected, 
the number of infected individuals increases 
with the introduction of the bacteria in the 
sources of drinking water, as it can be seen 
from Figure 2. 

In trying to access the effectiveness 
of the control strategy on the susceptible and 
infected individuals in the population, we 
can see from Figure 1 as compared to Figure 
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2, that strong control strategy for the disease 
generated good results for disease control 
and eradication. This is due to the fact that 
when the rate of exposure of humans to 
contaminated water is reduced, the rate of 
contribution of each infected person to the 
population of Vibrio Cholerae in the aquatic 
environment (water sanitation) will also 
reduce and hence prevent the disease from 
spreading into an outbreak.  

It can be seen from Figure 3 that, 
cholera cases persist in the population. This 
is because the number of infected 
individuals will increase and this is as a 
result of the increased rate of exposure to 
contaminated water and a high rate of 
contribution of each infected person to the 
aquatic environment (water sanitation).Even 
with the presence of a water treatment as a 
control strategy, cholera will still persist in 
the population until both rates are reduced 
drastically. This can be achieved through 
sensitization and education by authorities for 
the populace, on the dangers of open 
urinating and defecating into sources of 
drinking water.  
 
CONCLUSION AND 
RECOMMENDATIONS 

The analysis and formulation of the 
modified SIR epidemiological model with a 
control strategy of water treatment (water 
sanitation) incorporated (SIR – C) by the 
authors enabled a better understanding of the 
transmission dynamics of the spread of 
cholera and how it can be controlled. 

The model has two non – negative 
equilibria, namely the disease – free 
equilibrium and the endemic equilibrium 
and their existence and stability analysis 
were also performed. The analysis of the 
model also produced a threshold parameter, 
R0, which is the basic reproductive number. 
It was noted that when R0< 1, the disease – 
free equilibrium is asymptotically stable and 
this indicates the disease will not persist in 

the population and hence can be controlled. 
Also, whenR0> 1, the endemic equilibrium 
state exist and become stable and this will 
let the disease persist in the population and 
hence an outbreak will occur. In the case 
with constant controls, the equilibrium 
analysis shows that the basic reproductive 
number for the model plays an essential role 
in determining the epidemic and endemic 
dynamics of the cholera disease. 

The numerical simulations analysis 
was widely useful in the determination of 
the effect of the control intervention on the 
transmission of the disease. The control 
strategy has more effect on the contribution 
of the each individual to the water 
ecosystem (aquatic environment) and that 
there is a reduction of the rate of exposure to 
contaminated and untreated water. 

Cholera is a pandemic disease that 
affects hundreds of thousands of people 
every year. Because the bacterium that 
causes cholera, Vibrio cholerae, is always 
present in aquatic ecosystems, eradication of 
the bacteria is not feasible.  There is the 
need to find better ways of treating drinking 
water, predicting future outbreaks, and 
treating infected individuals in the populace. 
We recommend that the Government should 
educate the population in order to create 
awareness of the disease transmission for the 
individuals to be aware of its endemism. 
Health authorities and Non – Governmental 
Organization (NGO’s) should sensitize the 
public on the dangers of open urinating and 
defecation in various source of drinking 
water. Portable drinking water should be 
provided for the populace so that they can 
avoid the using and coming into contact 
with untreated water. 
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Figure 1. Graphs of Infective in the population for the cholera model with 

control 

 

Figure 2. Graph of Susceptible and Infected Individuals in the population 

without control (presence of the bacteria Vibrio Cholerae) 
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Figure 3. Graph of Infected Individuals with a case of an increased rate of 

exposure to contaminated water and a high rate of contribution of each 

infected person to the aquatic environment (water sanitation) 


