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Epigenetics Involvement 
in Parkinson’s Disease and 

Manganese-Induced Neurotoxicity

Abstract
Parkinson’s disease (PD) is a progressive neurological disorder of CNS and one of 
the most common neurodegenerative diseases. The exact mechanisms underlying 
PD has been unclear but it is believed that multiple factors are involved. Excessive 
exposure to manganese (Mn) can causes its accumulation in the human brain and 
subsequent neural damage and even development of PD-like movement disorder, 
referred to as manganism. Although recent studies indicated the pathologic and 
clinical distinction between PD and Mn-induced neurotoxicity, genetically they 
have been shown some common features and associations. In recent years, the 
role of epigenetic changes has been well studied in brain development as well as 
different brain diseases including PD. Meanwhile, environmental agents including 
Mn have been found to damage the developing and mature nervous system 
through altering epigenetic regulatory pathways such as DNA methylation. The 
aim of this contribution was to review the epigenetic involvement in the etiology 
of PD and Mn-induced neurotoxicity. Other aspects of these syndromes were also 
discussed. Several lines of evidence have indicated that epigenetic modulation of 
gene plays more important roles in PD processes. On the other hand, maternal 
Mn exposure has been found to be able to cause epigenetic changes in genes 
associated with neurodegeneration. The current data is very limited to show 
the association of Mn-induced epigenetic changes and PD etiology. Although 
conclusion about the relationship between PD and Mn exposure need more 
consolidated studies, studying the molecular mechanisms of the effect of Mn, 
genetically and epigenetically will be helpful to understand the etiology of PD 
which is essential for therapeutic strategies of this disease.
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Manganese, Exposure and Health 
Effects 
Manganese as a part of normal physiology: source in diet, role 

as a cofactor, deficiencies

Manganese (Mn) is a naturally occurring component in the 
environment and an essential trace element in for normal 
growth and development through maintaining of proper 
cellular functions and biochemical processes [1]. Manganese 
deficienciency would lead to some diseases and it may play a 

significant role in coronary spasm via reduction in SOD activity, 
resulting in increased superoxide levels which in turn inactivate 
NO, leading to coronary spasm [2]. In recent years it has been 
noted that there is more Mn content in infant formula than in 
human milk [3]. Although required by multiple physiological 
processes of the human body, elevated Mn in the body due to 
over exposure would elicit toxicological effects, particularly on 
the central nervous system (CNS).

Sources of toxicity and human exposure 
Human exposure to Mn can occur through ingestions and 
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inhalation. The general population can be exposed to Mn through 
the consumption of Mn-contaminated drinking water and food 
stuff [4]. However, Mn-induced toxicity mainly occurs in certain 
occupational settings through inhalation of Mn-containing dust 
[5]. With continuing improvement in production technology and 
prevention strategies, serious and acute poisoning of Mn have 
occurred rarely, but long-term and low dose exposure to Mn 
still exists which may impose health risks to factory workers and 
nearby residents. Besides, Mn is one of the constituents (24.4%) 
of in methylcyclopentadienyl manganese tricarbonyl (MMT) 
which has been used in leaded gasoline, unleaded gasoline, 
diesel fuel, fuel oil to improve combustion. The combustion of 
MMT in the combustion chamber leads to increased airborne Mn, 
including inorganic Mn particles such as manganese phosphate 
and manganese sulfate [6, 7]. Additionally, Mn is also found in 
some fungicides and pesticides, which could gradually lead to 
potential contamination of soil and waterways [8].

Manganese absorption, transport and 
excretion 
Through inhalation and ingestion, Mn can be absorbed [9] into 
blood where it is mainly (>99%) in the 2+ oxidation state (Mn+2) 
and bound to β-globulin and albumin with a small fraction with 
transferrin [10]. Facilitated by the divalent metal ion transporter 
1 (DMT1), N-methyl-d-aspartate (NMDA) receptor channel and 
Zip8 [11], the Mn+2 transport across the blood–brain barrier and 
blood-cerebrospinal fluid barrier and accumulate in in center 
nerve system including the basal ganglia structures, specifically 
in the striatum, cerebellum and globus pallidus [12-16] where 
Mn cause pathologies of extrapyramidal system, referred to 
as manganism, or Parkinsin’s disease (PD)-like syndrome [17]. 
Besides, Mn has also been contributed to the etiology of other 
neurodegenerative diseases, such as Huntington’s disease and 
Alzheimer’s disease [18, 19].

Absorption by astrocytes, levels in normal 
astrocytes vs. after exposure to Mn
Astrocytes the most abundant CNS cells (~ 50% by volume), can 
accumulate up to 50-fold higher Mn concentrations compared 
to neurons, thus serving as the main homeostatic and storage 
site for this metal [20]. At the subcellular level, the highest Mn 
concentration in astrocytes is noted within mitochondria [21]. 
In normal situation the intracellular concentration of Mn in 
astrocytes is 50-75 μM where it is an essential cofactor for the 
astrocyte-specific enzyme glutamine synthetase [22]. Astrocytes 
exposed to Mn (500 μM) had significantly reduced 3H-GABA 
uptake despite no change in membrane or cytosolic GAT3 protein 
levels. Mn accumulation in the membrane fraction of astrocytes 
was enhanced with fatty acid administration, and was negatively 
correlated with 3H-GABA uptake [23].

Manganese environmental epigenetics 
and neurotoxicity
Mn causes oxidative stress in primary cultures of astrocytes, 
leading to the mitochondrial dysfunction and energy insufficiency 

[24]. The main phenotypic characteristic of Mn intoxication is 
motor impairment due to the accumulation of Mn in the basal 
ganglia. The symptoms of manganism include rigidity, rapid 
postural tremor, bradykinesis, gait disturbance, memory and 
cognitive deficit, and mood disorder [25, 26]. While mechanisms 
of these extrapyramidal effects of Mn are unclear, results from 
in vitro and animal studies suggested that multiple pathways 
are involved. One of the main mechanistic pathways underlying 
the Mn-induced neurotoxicity is the effects on dopaminergic 
transmission and monoamine oxidase (MAO) [13, 27-30]. MAO 
is a flavo-enzyme involved in the oxidative deamination of 
amine neurotransmitters, including serotonin, dopamine and 
noradrenaline [31]. MAO can be oxidized into aldehyde amine, 
enough to degrade biogenic amines, including neurotransmitters 
such as norepinephrine, dopamine and serotonin (5–HT). It is 
the key enzyme of dopamine degradation, with detoxification 
function. In addition, Mn has been reported to disturb the 
dopamine metabolism via direct oxidation of dopamine, 
inhibition of its synthesis, and inhibition of monoamine oxidase 
activity in brain mitochondria [32]. In addition, MAO-A was 
found in catecholamine neurons with the highest expression 
[33]. Further, Mn can cause oxidative stress in mitochondrial 
[34-36] where MnSOD is the primary antioxidant [37]. Human 
and animal studies suggested the susceptibility to Mn-induced 
neurotoxicity [38] involves the Mn metabolism, distribution and 
ROS generation. Mn redox ability depends on the state of charge. 
Mn2+ in the body is more toxic when it is oxidized to Mn4+ and 
Mn3+ [39, 40] because the more Mn accumulation in the cells 
when Mn is oxidized [41]. In addition, Mn (III) was found to inhibit 
total cellular aconitase activity, reduce cellular serotonin more 
effectively and induced more oxidative stress compared to Mn 
(II) [42-44].

Glutamine can enhance the heat shock protein 70 (HSP70) [45], a 
protein playing an important role in preventing oxidative damage 
and protecting against neurodegeneration [46-49]. Mn are also 
important cofactors for various mitochondrial enzymes, as a result 
the high Mn levels in this organelle can directly interfere with 
oxidative phosphorylation leading to mitochondrial dysfunction 
[50-53]. Besides, Mn has been shown to trigger apoptosis in 
dopaminergic neurons in a caspase-3-dependent manner by 
activation of protein kinase C delta (PKC-δ) [54]. Futher more Mn 
can also induce oxidative stress [35, 55, 56]. Studies have shown 
that individual susceptibility exists and plays a role in metabolism 
and subsequent neurotoxic effects of Mn [38, 57]. The most of 
above effects are involved in the area of the basal ganglia and 
the dopaminergic system. Recent studies found that Mn can also 
interfere on cortical structures and cognitive functions involving 
in the cerebral cortex [58, 59] in which is chemic lesions are also 
found in pre-motor stages of Parkinson’s disease (PD) [60, 61].

Parkinson’s Disease (PD) and Etiology 
Parkinson’s disease (PD), also known as idiopathic or 
primary parkinsonism, is a chronic, progressive neurological 
disorder of CNS and one of the most common neurodegenerative 
disorders and the second most prevalent after Alzheimer’s 
disease comprising 1-2% of the population over 65 years of age 
[62]. The disease is more commonly found in people over 50 

http://www.sciencedirect.com/science/article/pii/S0197018612003968#200024356
http://www.sciencedirect.com/science/article/pii/S0197018612003968#200024334
http://www.sciencedirect.com/science/article/pii/S0197018612003968#200024358
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year old but it can also happen in younger patients. The exact 
mechanisms underlying PD has been unclear but it is believed 
that multiple factors are involved in case of sporadic PD which 
are the majority of PD cases [63]. About 15% of PD patients 
genetically inherited with gene mutations of SNCA, LRRK2, Parkin, 
PINK1, DJ-1 and ATP13A2 [64]. Clinically, PD is also characterized 
by a kind of active immune response [65]. The typical symptoms 
are movement-related including shaking, rigidity, slowness of 
movement and difficulty with walking and gait accompanied by 
thinking, sensory, sleep and emotional problems. Its pathogenesis 
is characterized by the loss of dopamine signaling due to the 
progressive degeneration or death of dopamine-generating 
neuron cells in the region of midbrain and accumulation of a 
protein termed as Lewy bodies in neurons. The main affected 
brain areas in PD include substantia nigra, basal ganglia and 
cerebral cortex [61, 66]. In addition to the aging and heritage, 
exposure to environmental factors such as pesticides has been 
identified to be a risk factor of PD [67, 68].

Association between excessive Mn expo-
sure and PD
Resemblance in extrapyramidal symptoms between MN-induced 
neurotoxicity or manganese and Parkinson's disease has led to 
extensive study the possible relationship between these two 
syndromes. Eepidemiological studies suggested that pathologic 
and clinical difference between that chronic manganese (Mn) 
intoxication and PD. In addition, animal studies have shown 
that the therapy compound for PD is not effective for Mn-
induced motor and non-motor deficits [59]. However, further 
evidences are required before the final conclusion can be 
made since genetically correlations between them have been 
keeping reported. Several genes have recently been identified 
to be genetic etiological factors of Parkinson's disease including 
alpha-synuclein (α-Syn), leucine-rich repeat kinase 2 (LRRK2) 
[69]. Functional or structural abnormality of α-Syn in the brain 
is a hallmark pathological feature of several neurodegenerative 
disorders [70]. In Parkinson’s disease the accumulation of 
intraneuronal Lewy bodies/Lewy neurites containing misfolded 
fibrillar α-Syn are found [71]. A recent study using Cynomolgus 
macaques indicated that Mn exposure promotes α-Syn 
accumulation in neuronal and glial cells in the frontal cortex grey 
and white matter [72]. The induction of α-Syn aggregation by 
Mn may be due to defence mechanisms since an in vitro study 
showed that transgenic dopaminergic neuronal cells stably 
expressing human wild-type α-Syn hampered the Mn-induced 
toxicity during the early stages of exposure [73, 74]. The variation 
of LRRK2 gene was found to be a risk factor for both familial and 
sporadic PD [69]. Down-regulation of this gene led in increased Mn-
induced toxicity [75] suggesting the protective role of LRRK2 gene 
in Mn toxicity. Additionally, the proteins encoded by parkin and 
ATP13A2 can protect cell from Mn-induced toxicity. [76, 77]. Over 
expression of parkin in cell by transient transfection has been found 
to attenuate the toxicity of Mn. Similarly, cells harboring wild type 
ATP13A2 showed more cell viability when compared with the cells 
with mutant ATP13A2 after exposure to Mn. These findings suggest 
that Mn-induced Parkinsonism and PD disease share at least partial 
common way of genetic initiation in disease onset.

Epigenetic involvement in of parkinson’s 
disease and Mn-induced neurotoxicity
The normal physiological functions of cells are controlled by 
not only genetic mechanisms but also balanced epigenetic 
pattern. The epigenetic machinery plays an important role in the 
control of many cellular functions of the body. The epigenetic 
modifications include DNA methylation, histone modifications 
and non-coding RNAs (ncRNA) expression. Methylation of DNA, a 
process involving the addition of methyl groups to DNA typically 
at CpG dinucleotide context, can cause the conformational change 
of DNA structure and consequent alteration in gene expression 
[78, 79]. DNA methylation is import regulation mechanism 
for mammalian development [80]. However, abnormal DNA 
methylation patterns, hypermethylation or hypomethylation can 
lead to various pathogenesis or oncogenesis. Hypermethylations 
are generally associated with gene silencing or down regulation, 
whereas hypomethylation or unmethylated promoters are 
mostly linked to gene activation [81]. Epigenetic regulation 
gene expression can also be through modification of histone 
through post-translational modifications such as acetylation, 
phosphorylation, methylation and ubiquitination [82]. Histone 
modifications are important in genetic process including 
transcriptional regulation, DNA repair, DNA replication, 
alternative splicing and chromosome condensation [82-84]. 
Another important epigenetic modifier is ncRNA including 
microRNAs (miRs) and long non-coding RNAs (LncRNAs) [85].

In recent decades, the role of epigenetic changes in the 
development of diseases has drawn great attentions. Epigenetic 
changes are reversible and heritable modifications in phenotype 
without alteration of the primary nucleotide sequence [86]. 
Evidences have suggested that epigenetic mechanisms, including 
DNA methylation, histone modification and ncRNA DNA may 
regulate the expression of PD-related genes and provoke PD. It 
has been shown that methylation of the α-Syn, may in involved in 
PD through abnormal expression and accumulation of the protein 
[87, 88]. Hypomethylation of α-Syn was found in patients with 
sporadic Parkinson's disease which could lead to over-expression 
of α-Syn resulting in disease development [89]. Interestingly 
L-Dopa which has been used for years for treating Parkinson's 
disease can increase methylation of α-Syn [90]. Furthermore, 
α-Syn has been shown to sequester DNMT1 and consequently 
leading to epigenetic alterations of Lewy body [91]. Other 
epigenetic regulated genes involving in PD includes LRRK2, Parkin, 
PARK16/1q32, and GPNMB [92]. Histone modifications also play 
roles in PD disease and inhibitors for of histone acetyltransferases 
(HATs) and histone deacetylases (HDACs) showed effective in 
both in vitro and in vivo PD models [93]. Recent studies have 
shown that miRNAs are involved in PD [94-96].

Environmental factors, biological and chemical, have long-lasting 
phenotypic effects without apparent underlying genetic change 
through above epigenetic modifications. In another words, 
environmental factors may change the gene expression directly or 
indirectly through epigenetic alterations such as DNA methylation 
or histone modifications. Heavy metalloid(s) such as arsenic, 
cadmium, chromium, lead, Mercury, coppers, nickel have been 
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found to cause adverse effects through aberration of epigenetic 
patterns, which has been well reviewed [97-99]. These epigenetic 
changes in the developmental stages due to prenatal exposure 
to the environmental factors including Mn may contribute the 
abnormal phenotype including neurodegeneration. It has been 
reported that epigenetic gene regulation may contribute to 
Mn-induced neurogenesis in mouse offspring after maternal 
exposure to MN. Sustained promoter hypermethylation of Mid1, 
Atp1a3, and Nr2f1 and transient hypermethylation in Pvalb and 
consequent down regulation of these genes were found in mouse 
offspring after maternal exposure to Mn [100]. Epidemiological 
studies reported the epigenetic changes including DNA 
methylation, histone modifications and microRNA in subjects 
exposed to metal-rich air particles containing Mn [101-104]. 
Although Mn is one of the inhalable metal components in 
these studies, no significant association was found between Mn 
exposure and epigenetic changes.

Conclusion
While the role of Mn in the pathogenesis of PD remains 
controversial, the role of Mn as a modifier of PD warrants future 

study. Mn has been shown to induce mitochondrial dysfunction 
and oxidative stress, α-Syn aggregation and dopaminergic neurons 
which are pathological changes in PD. Recent work has shown 
the important role of epigenetic regulation as mediator between 
environmental factors and gene in PD onset and development. 
So far epigenetic studies on Mn-induced neurotoxicity have been 
sparsely reported. More and more epigenetic roles in PD have 
been reported while these genes with epigenetic changes in PD 
have been not reported in Mn-induced toxicity. To understand 
the epigenetic effects of Mn on these genes would be helpful to 
differentiate these two syndromes. This kind of work can improve 
our understanding of the role of Mn on early events as well as late 
life abnormalities of the nervous system. Although conclusion 
about the association between PD and Mn exposure need 
more consolidated studies, studying the genetic and epigenetic 
mechanisms of the effect of Mn will be helpful to understand 
the etiology of PD which is essential for therapeutic strategies 
of this disease. These studies will also helpful in finding suitable 
biomarkers not only for health risk assessment of Mn and other 
related environmental factors but also diagnosis and treatment 
of PD.
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