
iMedPub Journals
http://www.imedpub.com

2016
Vol. 2 No. 1:  3

1

Research Article

DOI: 10.21767/2470-9867.100011

© Under License of Creative Commons Attribution 3.0 License |  This article is available from: http://electroanalytical.imedpub.com/archive.php 

Insights in Analytical Electrochemistry
ISSN   2470-9867

Hao Peng1,2, Miao Shen1, 
Chenyang Wang1, Yong Zuo1 
and Leidong Xie1

1	 Shanghai Institute of Applied Physics, 
Chinese Academy of Sciences, Shanghai, 
PR China

2	 University of Chinese Academy of 
Sciences, Beijing, PR China

Corresponding author: Leidong Xie

 xieleidongsinap@163.com

Shanghai Institute of Applied Physics, 
Chinese Academy of Sciences, Shanghai 
201800, PR China.

Tel: +8602139194105
Fax: +8602139194105

Citation: Peng H, Shen M, Wang C, et al. 
Electrochemical Investigation on the Stable 
Iron Species in Molten FLINAK. Insights Anal 
Electrochem. 2016, 2:1

Introduction
Molten fluorides are suitable for use as coolants of molten salt 
reactors because these materials present excellent heat transfer 
properties [1-3]. However, the residual oxidation of impurities in 
fluorides, such as absorbed water and HF(g) [4,5], are corrosive 
to the structural materials at high temperature [6-9], resulting in 
the dissolution of Fe in those materials [10], such as Hastelloy.

According to the investigations described by Oak Ridge National 
Laboratory (ORNL) [11], the corrosion valence state of Fe in molten 
fluorides is determined by the acid-base properties of the molten 
fluoride employed; here, a Lewis acid is defined as a fluoride ion 
acceptor, and a Lewis base is a fluoride ion donor. Pure FLINAK 
consisting of LiF, NaF, and KF [LiF:NaF:KF, 46.5:11.5:42 (mol%)] is 
known to be a strongly basic solvent that tends to stabilize the 
Fe(III) valence state [11]. According to the theory of non-electric 
transfer described by Ozeryanaya [12], Fe may firstly dissolve in 
FLINAK melts as a form of Fe(II), which would further convert to 
Fe(III). Unfortunately, no relevant studies have yet been published 
to prove this conversion.

By using cyclic voltammetry (CV), Bing [13] found that Fe(III) 
could be converted to Fe(II) in KCl–CaCl2–NaCl–MgCl2 melts. With 
the same method, Manning [14] indicated that O2- and O2

2- ions 
stayed stable in LiF–BeF2–ZrF4 and LiF–BeF2–ThF4 melts whereas 
O2

- was unstable in these eutectics. Recently, Nourry [15] found 
that U(III) could be oxidized to U(IV) in LiF–CaF2–UF3 melts 
through CV and SWV. Cassayre and Pakhui [16,17] claimed that 

Th(IV) is the only stable species in LiCl–KCl melts at 420–550 °C by 
involving CV, CP, SWV and chronoamperometry (CA). Reports thus 
far [13-19] suggest that the electrochemical method can be used 
to investigate the stable valence of electro-active species because 
the technique offers quick responses and in-situ monitoring. The 
aim of the present work is to determine the stable valence state 
of Fe in FLINAK melts through CV, CP and SWV.

Experimental Methods
Highly-purified LiF–NaF–KF [46.5:11.5:42 (mol%)] [FLINAK] 
eutectic salt was used as the experimental fluorides. A known 
amount of Fe(III) and Fe(II) were introduced to FLINAK salt as the 
form of FeF3 (Strem Chemicals, 99.9%) and FeF2 (Alfa Aesar, 99%), 
respectively. Then the fluorides system was melted at 600°C in 
a vitreous carbon crucible placed in a stainless steel cell inside 
an electric furnace. The temperature of the melts was measured 
by a nickle-chromium thermocouple positioned just outside the 
crucible.

A platinum wire (Ф=1.0 mm) served as the working electrode, 
whose surface area was determined by measuring the immersion 
depth in the melts. A graphite rod (Ф=6.0 mm) was used as 
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the auxiliary electrode with a large surface area (2.50 cm2). All 
potentials were referred to a platinum wire (Ф=1.0 mm) that had 
been proven to function as a quasi-reference electrode Pt/PtOx/
O2-, with a stable potential when the O2- concentration is constant 
[20,21]. The entire apparatus was placed inside a glove box with 
dry argon atmosphere (99.99 wt%), as shown in Figure 1, and 
the typical concentrations of moisture and oxygen in glove box 
were generally below 2 ppm. All electrochemical measurements 
were performed with a computer-controlled AUTOLAB digital 
electrochemical analyzer (Metrohm AutoLab Co. Ltd.).

Results and Discussion
Electrochemical behavior of Fe(III) in FLINAK 
melts
Cyclic voltammetry: The typical cyclic voltammograms of FLINAK-
Fe(III) (484 ppm) melts on a Pt electrode at 600°C and different 
scan rates are shown in Figure 2. Two reduction peaks, A and B, 
at 1.97 V (vs. alkalis) and 1.42 V (vs. alkalis), respectively, in the 
cathodic run and two anodic counter-peaks, A’ and B’, at 2.15 V 
(vs. alkalis) and 1.52 V (vs. alkalis), respectively, can be observed. 
As the Fe(III) concentration increases, the current densities of 
peak A and B (ipA and ipB) increase accordingly, as shown in Figure 
3. Thus, the reduction of Fe(III) proceeds in two steps.

A/A’ redox system: The cathodic current density of peak A (ipA) 
obtained after subtracting the background current [22,23] linearly 
increases with the square root of the scan rate (v1/2) as shown 
in Figure 4a, indicating that the first reduction step of Fe(III) is 
controlled by ion diffusion. In addition to the almost invariable 
peak potential (EpA) in the range of 0.1 to 1.0 V/s, the ratio of 
|ipA’/ipA| is approximately equal to 1, as shown in Table 1. These 

results suggest that the first step of Fe(III) reduction is considered 
reversible over the studied scan rates.

For a reversible system, the diffusion coefficient of Fe(III) in the melts 
can be calculated according to the Randles-Sevcik equation [24]:

(1/2 )

(1/2 ) (1/2 )nF
ip 0.4463nFSC D

RT
= − ν 

 
 

	                	               (1)

Where ip is the peak current (A), n the number of exchanged 
electrons, F the Faraday constant (96,485 C mol-1), S the 
electrode surface area (cm2), C the Fe(III) concentration 
(mol cm-3), R the universal gas constant (8.314 J mol-1 K-1), T the 
absolute temperature of the melts (K), D the diffusion coefficient 

Figure 2 Cyclic voltammograms of the FLINAK-Fe(III) (484 
ppm) melts at 600°C and different scan rates. 
Working electrode: Pt (0.62 cm2); auxiliary electrode: 
Graphite; reference electrode: Pt.

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
-30

-20

-10

0

10

20

30

40

A'

B'

B

 

 

i /
 m

A
 c

m
-2

E vs. alkalis / V

 0.1 V/s
 0.2 V/s
 0.3 V/s
 0.4 V/s
 0.5 V/s
 0.6 V/s
 0.7 V/s
 0.8 V/s
 0.9 V/s
 1.0 V/s

A

 

Figure 3 Linear relationship between the peak current density 
and Fe(III) concentration in FLINAK melts at 600°C and 
scan rate of 0.1 V/s for cathodic peaks A and B. Working 
electrode: Pt (0.62 cm2); auxiliary electrode: Graphite; 
reference electrode: Pt.
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Figure 1 Schematic illustration of the electrochemical cell.

1: Glove box; 2: Transition cover; 3: Cooling coil; 4: Alumina tube; 
5: Working electrode; 6: Reference electrode; 7: Thermocouple; 8: 
Auxiliary electrode; 9: Crucible and molten salt; 10: Furnace.
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(cm2 s-1) and v the potential scan rate (V s-1).

The slope of ip versus v1/2 attributed to peak A obtained in Figure 
4a is:

1/2 1/2 2

1/2

ip
0.00529As cm− −= − ν

ν
 	 	 	                (2)

at T=600°C and C=1.73 × 10-5 mol cm-3.

B/B’ redox system: The sharp oxidation peak B’ and the ratios 
of |ipB’/ipB|>1 imply the couple B/B’ may be attributed to the 
deposition and dissolution of Fe [25,26]. Since the peak potential 
EpB remains at about 1.42 V (vs. alkalis) and the cathodic peak 
current density ipB linearly increases with v

1/2 as shown in Figure 
4b, the reduction peak B is a quasi-reversible reaction controlled 
by ion diffusion.

Chronopotentiometry
A typical chronopotentiogram of FLINAK-Fe(III) (997 ppm) melts 
obtained for an applied current of -3.5 mA on a Pt electrode at 
600°C is shown in Figure 5. Two plateaus, A and B, at about 1.9 V 
(vs. alkalis) and 1.5 V (vs. alkalis), respectively, can be observed, 
which confirms the two-step reduction mechanism of Fe(III) 
previously evidenced by CV.

The validity of the Sand’s law [Eq. (3)] is verified in Figure 6, since 
the iτ1/2 plotted versus the applied current (i) is constant [Eq. (4), 
(5)]. The two reduction processes of Fe(III) are thus controlled by 
ion diffusion in molten FLINAK. The diffusion coefficient of Fe(III) 
can be determined using the Sand’s law [24]:

1/2 1/2 1/2i nFSD

C 2

τ π
=  	 	 	 	  	                (3)

Where i is the applied current (A), τ the transition time (s), C the 

Fe(III) concentration (here, C=3.56 × 10-5 mol cm-3), n the number 
of exchanged electrons, F the Faraday constant (96,485 C mol-1), 

S the electrode surface area (cm2) and D the diffusion coefficient 
(cm2 s-1).

Peak A: 1/2 1/2i  – 0.00395 A sτ = 		   	                         (4)

Peak B: 1/ 2 1/ 2i –0.01242 A sτ =  	 	 	                (5)

Number of exchanged electrons
The Fe(III) reduction mechanism was finally evidenced by 
calculating the number of exchanged electrons. Combining CV and 
CP measurements, the exchanged electron number of peak A was 

Figure 4 Plots of peak current density (ip) and peak potential (Ep) vs. the square root of the scan rate (v1/2) for cathodic peaks A and 
B in FLINAK-Fe(III) (484 ppm) melts at 600°C. Working electrode: Pt (0.62 cm2); auxiliary electrode: Graphite; reference 
electrode: Pt.
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v/V s-1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
|ipA’/ipA| 1.28 1.06 1.17 1.10 0.93 0.99 1.06 1.02 1.04 0.99

Table 1 Ratios of the anodic to the cathodic peak current density |ipA’/ipA|.

Figure 5 Chronopotentiogram of the FLINAK-Fe(III) (997 ppm) 
melts at 600°C when the applied current is -3.5 mA. 
Working electrode: Pt (0.62 cm2); auxiliary electrode: 
Graphite; reference electrode: Pt.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.5

1.6

1.7

1.8

1.9

2.0

2.1

 

E
 v

s. 
al

ka
lis

 / 
V

t / s

A

B

 



2016
Vol. 2 No. 1: 3

Insights in Analytical Electrochemistry
ISSN   2470-9867

4  This article is available from: http://electroanalytical.imedpub.com/archive.php 

obtained to be 0.87 by coupling Eq. (1)-(4). Thus, Fe(III) reduction 
proceeded in two steps: initial Fe(III) reduction to Fe(II) followed 
by subsequent reduction of Fe(II) to Fe. For the reversible Fe(III)/
Fe(II) couple, Fe(III) diffusion coefficient is determined to be 3.80 
× 10-6 cm2 s-1 from CV measurement [Eq. (1)] and to be 4.38 × 10-6 
cm2 s-1 from CP measurement [Eq. (3)].

Square wave voltammetry
The typical square wave voltammograms of FLINAK-Fe(III) (190 
ppm) melts at 30-70 Hz on a Pt electrode are shown in Figure 7. 
Two reduction peaks, A and B, at about 2.03 V (vs. alkalis) and 1.43 
V (vs. alkalis), respectively, can be observed. The mathematical 
analysis of the peak yields a simple equation associating the 
width of the half peak (W1/2) and the electron transfer number 
[27,28].

1/ 2
3.52= ×

RT
W

nF
				                  (6)

Eq. (6) is theoretical valid for a reversible system, which can be 
extended to other systems as far as the criterion of linearity 
between the peak intensity and the square root of the frequency 
signal is respected [29-33]. As shown in Figure 8, the reduction 
peak current densities (δipA and δipB) show a linear relationship 
with the square root of the frequency. Calculated according to 
Eq. (6), the electron transfer number for peaks A and B are 1.04 
and 1.77, respectively, as shown in Table 2. Thus, peaks A and B 
are corresponding to the reductions of Fe(III)/Fe(II) and Fe(II)/Fe, 
respectively. These results are in accordance with those obtained 
through CV and CP.

Electrochemical behavior of Fe(II) in FLINAK 
melts
After 740 ppm of Fe(II) was introduced into FLINAK melts in the 
form of FeF2, the square wave voltammograms obtained on a 
Pt electrode at 600°C and different holding times are shown in 

Figure 9. Two reduction peaks, A and B, at about 2.1 V and 
1.5 V (vs. alkalis), attributed to the reductions of Fe(III)/Fe(II) 
and Fe(II)/Fe, respectively, can be observed. Peak A assigned 
to the reduction of Fe(III)/Fe(II) also appeared even though 
only FeF2 was added to FLINAK, indicating the conversion of 
Fe(II) to Fe(III).

Plot of current density of peak A (δipA) vs. different holding 
times at 600°C in FLINAK-Fe(II) (740 ppm) melts is shown in 
Figure 10. δipA increases from –1.22 mA cm-2 to –5.64 mA cm-2 
and then reaches a plateau after 130 min. The increase of 
δipA before 130 min is attributed to the conversion of Fe(II) to 
Fe(III). After the conversion equilibrium is achieved at 130 min, 
the Fe(III) concentration in molten FLINAK remains constant, 
resulting in an unchangeable δipA value.
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Figure 6 Dependence of iτ1/2 on the applied current intensity for cathodic peaks A and B in FLINAK-Fe(III) (997 ppm) melts at 600°C. 
Working electrode: Pt (0.62 cm2); auxiliary electrode: Graphite; reference electrode: Pt.

Figure 7 Square wave voltammograms of the FLINAK-Fe(III) (190 
ppm) melts at 30-70 Hz and 600°C. Pulse height: 20 mV, 
step potential: 2 mV. Working electrode: Pt (0.62 cm2); 
auxiliary electrode: Graphite; reference electrode: Pt.
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Figure 9 Square wave voltammograms of the FLINAK-Fe(II) 
(740 ppm) melts recorded on a Pt electrode at 600°C 
and different holding times. Pulse height: 20 mV, step 
potential: 2 mV, frequency: 10 Hz. Working electrode: 
Pt (0.62 cm2); auxiliary electrode: Graphite; reference 
electrode: Pt.
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Figure 10 Plot of the current density of peak A vs. holding time 
at 600°C as measured from the SWVs of FLINAK-Fe(II) 
(740 ppm) melts. Pulse height: 20 mV, step potential: 
2 mV, frequency: 10 Hz. Working electrodes: Pt 
(0.62 cm2); auxiliary electrode: Graphite; reference 
electrode: Pt.

reduced to Fe. Both Fe(III)/Fe(II) and Fe(II)/Fe reductions were 
controlled by ion diffusion. The diffusion coefficient of Fe(III) was 
3.80 × 10-6 cm2 s-1 obtained by Randles-Sevcik equation and was 
4.38 × 10-6 cm2 s-1 obtained by Sand’s law. The electrochemical 
behavior of Fe(II) was then investigated by SWV. Two cathodic 
peaks attributed to the reductions of Fe(III)/Fe(II) and Fe(II)/Fe, 
can be observed. This result indicated that Fe(II) was converted 
to Fe(III), which is more stable in FLINAK melts.
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Figure 8 Plots of peak current density (δip) and peak potential (Ep) vs. the square root of the frequency (f1/2) for cathodic peaks A and B 
in FLINAK-Fe(III) (190 ppm) melts at 600°C. Pulse height: 20 mV, step potential: 2 mV. Working electrode: Pt (0.62 cm2); auxiliary 
electrode: Graphite; reference electrode: Pt.

Conclusion
In this work, the electrochemical behavior of Fe(III) in molten 
FLINAK was studied by CV, CP and SWV. The results showed that 
Fe(III) was initially reduced to Fe(II), which was subsequently 

Reduction peak A B
Reduction potential vs. alkalis 2.03 V 1.43 V
Value of W1/2 253 mV 150 mV
Exchanged electron numbers 1.04 1.77
Corresponding reaction Fe(III)+e=Fe(II) Fe(II)+2e=Fe

Table 2 Reduction reactions and electron transfer numbers of peak A 
and B.
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