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Introduction

The buffer capacity concept is usually referred to as a measure of
resistance of a solution (D) on pH change, affected by an acid or
base, added as a titrant T, i.e., according to titrimetric mode; in
this case, D is termed as titrand.

The titration is a dynamic procedure, where V mL of titrant T,
containing a reagent B (C mol/L), is added into VO mL of titrand
D, containing a substance A (CO mol/L). The advance of a titration
B(C,V) = A(CO,V0), denoted for brevity as B = A is characterized
by the fraction titrated [1-4]

C-v

v, (1)
That introduces a kind of normalization (independence on VO
value) for titration curves, expressed by pH=pH(®), and E=E(®D)
for potential E [V] expressed in SHE scale. The redox systems with
one, two or more electron-active elements are modeled accord-

=

ing to principles of Generalized Approach to Electrolytic Systems
with Generalized Electron Balance involved (GATES/GEB), de-
scribed in details in [5-16], and in references to other authors'
papers cited therein.

According to earlier conviction expressed by Gran [17], all titra-
tion curves: pH=pH(®) and E=E(®D), were perceived as monoton-
ic; that generalizing statement is not true [7], however. According
to contemporary knowledge, full diversity in this regard is stated,
namely: (10) monotonic pH=pH(®) and monotonic E=E(®D) [18-
20]; (20) monotonic pH=pH(®) and non-monotonic E=E(D) [6];
(30) non-monotonic pH=pH(®) and monotonic E=E(D) [5]; (40)
non-monotonic pH=pH(®), and non-monotonic E=E(D) [7].

[=] michalot@02.pl

Department of Analytical Chemistry, Techni-
cal University of Cracow, 24, 31-155 Cracow,
Poland.

Tel: +48 12 628 20 00

Citation: Michatowska-Kaczmarczyk AM,
Sporna-Kucab A, Michatowski T (2017)
Dynamic Buffer Capacities in Redox Systems.
Biochem Mol Biol J. Vol.3 No. 3:11

Examples of Titration Curves pH=pH(®)
and E=E(®) in redox systems

In this paper, we refer to the disproportionating systems: (S1)
NaOH = HIO and (S2) HCl = NalO, characterized by monotonic
changes of pH and E values during the related titrations (i.e., the
case 10). In both instances, the values: V0=100, C0=0.01, and
C=0.1 were assumed. The set of equilibrium data [18-20] applied
in calculations, presented in Table 1, is completed by the solu-
bility of solid iodine, 12(s), in water, equal 1.33-10-3 mol/L. The
related algorithms, prepared in MATLAB for S1 (NaOH = HIO) S2
(HCl = NalO) system according to the GATES/GEB principles, are
presented in Appendices 1 and 2.

The titration curves: pH=pH(®) and E=E(®) presented in Figures
1 and 2 are the basis to formulation of dynamic buffer capacities
in the systems S1 and S2.

Dynamic acid-base buffer capacities B, and B,

Dynamic buffer capacity was referred previously only to acid-
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Table 1 Physicochemical data related to the systems S1 and S2.

Reaction Equilibrium equation Equilibrium data
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Figurel (A) pH=pH(®) and (B) E=E(®) relationships plotted for the system NaOH = HIO.

/

base equilibria in non-redox systems [3,21-23]. However, the dy-
namic (B,) and windowed (B, ) buffer capacities can be also relat-
ed to acid-base equilibria in redox systems. The B, is formulated
as follows [3,21].

Ccv

c= (3)
V,+V

It is the current concentration of B in D+T mixture, at any point of

the titration. In the simplest case, D is a solution of one substance

B = e (2) A(C, mol/L), and then Equation 3 can be rewritten as follows
v
c=Qp.—0~ (4)
where C+d-C,
2 This article is available in: http://biochem-molbio.imedpub.com/archive.php
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\ Figure2 (A) pH=pH(®) and (B) E=E(®) relationships plotted for the system HCl = NalO. )
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where @ is the fraction titrated (Equation 1). Then we get

de | do c-Cc 1 ¢
Ao dpH| (C+®-C,)* [n| C,-Jn| (5)
where
dpH
_ 9P 6
Ui (6)

is the sharpness index on the titration curve. For comparative
purposes, the absolute values,|B, | and |n|, for B, (Equations 1 and
5) and n (Equation 6) are considered. At C /C << 1 and small ®
value, from Equation 3 we get ay =02 -Cq /|g|-

The B, value is the point—assessment and then cannot be used in
the case of finite pH—changes (ApH) corresponding to an addition
of a finite volume of titrant (B, is a non—linear function of pH). For
this purpose, the ‘windowed’ buffer capacity, B, defined by the
formula [3,21].

Ac
-2 7
Be =l (7)
where
pH+ApH _
Ai{:AlH' J- Bv.dezc(pH+AApI-II; c(pH)
g p
has been suggested. From extension in Taylor series we have
Ac g 9By ApH By (apHY o S dBy ) (ApH)
ApH "V dpH 2 dpHT 6 T Y SUdpHY ) (k+1)!
()
where
dc ] (dk‘ﬁvj
= - 10
(dek i \dpH ) (10)

From Equations 7 and 9 we see that BV is the first approxima-
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tion of BV. One should take here into account that finite changes
(ApH) in pH, e.g. ApH=1, are involved with addition of a finite
volume of a reagent endowed with acid—base properties, here:
base NaOH, of a finite concentration, C.

Dynamic redox buffer capacities gt and BE

In similar manner, one can formulate dynamic buffer capacities
B! and By, , involved with infinitesimal and finite changes of po-
tential E values:

s _|de
P= g "
Ac
o (12)
Where c is defined by Equation 2, and then we have
%:é'Efgﬁs'dE:W
0 knE L
Sy | S (13)
AE GiLdE" ) (k+1)!
where
k k-lnE
dc _ d“'By .
dE* dEX! )

Graphical presentation of dynamic buffer capac-

ities in redox systems

Referring to dynamic redox systems represented by titration
curves presented in Figures 1 and 2, we plot the relationships: B,
vs. ®, B, vs. pH, B, vs. E, and By vs. ®, By vs. pH, By vs. E for the
systems: (S1) NaOH = HIO; (S2) HCl = NalO. The relations: (A)
B, vs. @, (B) B, vs. pH, (C) B, vs. E and (D) B, vs. @, (E) By vs. pH,
(F) g vs. E are plotted in Figures 3 and 4.
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Figure 3 The relations: (A) B, vs. O, (B) B, vs. pH, (C) B, vs. E and (D) B} vs. ®, (E) Bt vs. pH, (F) gt vs. E for (S1) NaOH = HIO.
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Discussion

Disproportionation of the solutes considered (HIO or NalO) in D
occurs directly after introducing them into pure water. The dis-
proportionation is intensified, by greater pH changes, after ad-
dition of the respective titrants: NaOH (in S1) or HCI (in S2), and
the monotonic changes of E=E(®) and pH=pH(®) occur in all in-
stances.

All attainable equilibrium data related to these systems are in-
cluded in the algorithms implemented in the MATLAB computer
program (see Appendices 1 and 2). In all instances, the system of
equations was composed of: generalized electron balance (GEB),
charge balance (ChB) and concentration balances for particular
elements # H, O.

In the system S1, the precipitate of solid iodine, IZ(S), is formed,
see Figure 5. In the (relatively simple) redox system S2, we have
all four basic kinds of reactions; except redox and acid-base reac-
tions, the solid iodine (IZ(S)) is precipitated and soluble complexes:
I,CI, ICland ICI* are formed, see Figure 6A. Note that L + =1
is also the complexation reaction.

In the system S2, all oxidized forms of CI* were involved, i.e. the
oxidation of CI?* ions was thus pre-assumed. This way, full “de-
mocracy” was assumed, with no simplifications [18-20]. How-
ever, from the calculations we see that HCl acts primarily as a
disproportionating, and not as reducing agent. The oxidation of
CI* occurred here only in an insignificant degree (Figure 6B); the
main product of the oxidation was Cl,, whose concentration was
on the level ca. 10%-10" mol/L.

Conclusion

The redox buffer capacity concepts: 4y and ___.can be principally
related to monotonic functions. This concept looks awkwardly
for non-monotonic functions pH=pH(®) and/or E=E(®D) specified
above (2°-4°) and exemplified in Figures 7-9 presented in Ap-
pendix 3. For comparison, in isohydric (acid-base) systems, the

K Figure 5 Speciation diagram for the system (51) NaOH = HIOJ

© Under License of Creative Commons Attribution 3.0 License

2017

ISSN 2471-8084 Vol.3No. 3:11

buffer capacity strives for infinity. In particular, it occurs in the
titration HB (C,V) = HL (C,,V,), where HB is a strong monoprotic
acid HB and HL is a weak monoprotic acid characterized by the
dissociation constant K =[H*'][L"]/[HL]; at 4K ,/C°<<1, the isohy-
dricity condition is expressed here by the Michatowski formula
C,=C+C*-0 *'[24-26].

The formula for the buffer capacity, suggested by Bard et al.
[27] after Levie [28], is not correct. Moreover, it involves formal
potential value, perceived as a kind of conditional equilibrium
constant idea, put in (apparent) analogy with the simplest static
acid-base buffer capacity, see criticizing remarks in the study by
Michatowska-Kaczmarczyk et al. [29]; it is not adaptable for real
redox systems.

~

R

L
HEEREBBS L4 Ll

(&) (B)

Figure 6 Speciation diagram for the system (S2) HCI = NalO:
(A) for iodine species; (B) for oxidized forms of chlo-

K rine species. )
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Case (2°): (A) monotonic pH=pH(V) and (B) non-
monotonic E=E(V) plots on the step 3 of the process
presented in the study by Michatowska-Kaczmarczyk

K et al. [6].
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