

7th Edition of International Conference and Exhibition on

Separation Techniques

July 05-07, 2018 Berlin, Germany

Aymen Khalid AL-Suwailem, Arch Chem Res 2018, Volume 2 DOI: 10.21767/2572-4657-C3-009

STEREOSELECTIVE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC METHOD

Aymen Khalid AL-Suwailem

King Saud University, Saudi Arabia

Ctereoselective high-performance liquid chromatographic **O**(HPLC) method was developed and validated to determine S-() - and R-(+)-propranolol in rat serum. Enantiomeric resolution was achieved on cellulose tris (3, 5-dimethylphenylcarbamate) immobilized onto spherical porous silica chiral stationary phase (CSP) known as chiralpak ib. A simple analytical method was validated using a mobile phase consisted of n-hexane-ethanoltriethylamine (95:5:0.4%, v/v/v) at a flow rate of 0.6 mL min⁻¹ and fluorescence detection set at excitation/emission wavelengths 290/375 nm. The calibration curves were linear over the range of 10-400 ng mL⁻¹ (R=0.999) for each enantiomer with a detection limit of 3 ng mL. The proposed method was validated in compliance with ICH guidelines in terms of linearity, accuracy, precision, limits of detection and quantitation, and other aspects of analytical validation. Actual quantification could be made for propranolol isomers in serum obtained from rats that had been intraperitoneally (i.p.) administered a single dose of the drug. The proposed method established in this study is simple and sensitive enough to be adopted in the fields of clinical and forensic toxicology. Molecular modelling studies including energy minimization and docking studies were first performed to illustrate the mechanism by which the active enantiomer binds to the B-adrenergic receptor and second to find a suitable interpretation of how both enantiomers are interacting with cellulose tris(3.5-dimethylphenylcarbamate) CSP during the process of resolution. The latter interaction was demonstrated by calculating the binding affinities and interaction distances between propranolol enantiomers and chiral selector.

Recent Publications

- Silber B and Riegelman S (1980) Stereospecific assay for () - and (+) - propranolol in human and dog plasma. J Pharmacol Exp Ther. 215:643–648.
- Ram CV (2008). Risk of new-onset diabetes mellitus in patient with hypertension treated with beta blockers. Am J Cardiol. 102:242–244.
- Zhang T, Ngugen D and Franco P (2008) Enantiomer resolution screening strategy using multiple immobilized polysaccharide-based chiral stationary phases. J Chromatogr A.1191:214–219.
- Zhang T, Dgugen N, Franco P, Murakani T, Ohnishi A and Kurosawa H (2006) Cellulose 3,5dimethylphenylcarbamate immobilized on silica: a new chiral stationary phase for the analysis of enantiomers. Anal Chim Acta. 557:221–228.
- 5. Hoffmann CV, Laemmerhofer M and Linder W (2007) Novel strong cation-exchange type chiral stationary phase for the enantiomer separation of chiral amines propranolol showing the hydrogen bond formation with cellulose tris(3,5) by high-performance liquid chromatography. J Chromatogr A. 1161:242–251.

Biography

Aymen Khalid AL-Suwailem is a professor in pharmaceutical analytical chemistry, Prince Sultan Cardiac Centre. His research interests are pharmaceutical chemistry, High performance liquid chromatography, capillary electrophoresis

aymen_4120@hotmail.com