8th International Conference on **Environmental Chemistry and Engineering**

7th Edition of International Conference on

Green Energy, Green Engineering and Technology

September 20-22, 2018 Berlin, Germany

Evaluation of novel thermo tolerant haloalkaliphilic bacterium *Halomonas stevensii* for biomitigation of gaseous phase CO_2 : Energy assessment and product evaluation studies

Somesh Mishra

Indian Institute of Technology Delhi, India

P resent work deals with the bio-mitigation potential of gaseous phase CO₂ by chemolithotrophic bacterium *Halomonas stevensii* isolated from haloalkaliphilic habitat using thiosulfate ion (S₂O32-) as an energy source. *H. stevensii* was tested for various abiotic stress tolerance such as salt [1 - 14% (%w: v)], temperature (35-80oC) and pH (4-12). Batch studies were conducted for 6 days at 15 (±1) % (% v:v) inlet CO₂ concentration to find the CO2 fixing capability of *H. stevensii* under varying concentration of energy substrate i.e. 0, 50 and 100 mm Na₂S₂O₃. Approximately 98% CO₂ removal from gaseous phase was achieved at 50 and 100 mm Na₂S₂O₃. Biomass productivity was estimated in terms of maximum biomass productivity (P-Max) and specific growth rate (μ Max). 6th day sample (biomass and supernatant) obtained from 100 mm Na₂S₂O₃ batch study was characterized by FTIR and GC-MS to identify the products formed from CO₂ fixation. The evaluation of CO₂ fixation by *H. stevensii* into primary metabolite was carried out by growing the *H. stevensii* at 5%, 10% and 15 % (% v: v) inlet CO₂ concentration for the duration of 6 days. The obtained leachate was further analyzed by GC for the quantification of fatty alcohols. The utilization of gaseous phase CO₂ by *H. stevensii* is also proven by conducting the approximate materials balance and energy assessment for the present CO₂ fixation process.

somesh.mishra@pilani.bits-pilani.ac.in

Notes: