

COUPLING OF NUCLEAR AND RENEWABLE ENERGY SOURCES FOR SUSTAINABLE HYDROGEN PRODUCTION

Mehmet Fatih Orhan

American University of Sharjah, UAE

The concerns regarding global climate change are significant and have resulted in extensive R&D on alternative, clean energy sources. While many of the available renewable energy resources are limited due to their reliability, quality, quantity and density, nuclear energy has the potential to contribute a significant share of energy supply without contributing to climate change. Hydrogen production via thermochemical water decomposition is a potential process for direct utilization of nuclear thermal energy to increase efficiency and thereby facilitate energy savings. Thermochemical water splitting with a copper-chlorine (Cu-Cl) cycle could be linked with nuclear and renewable energy sources to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this study we analyze a coupling of nuclear and renewable energy sources for hydrogen production by the Cu-Cl thermochemical cycle. Nuclear and renewable energy sources are reviewed to determine the most appropriate option for the Cu-Cl cycle. A thermodynamic analysis and several parametric studies are presented for various configurations of this coupled system to ascertain its benefits.

morhan@aus.edu