

EuroScicon Joint event on Genetics, Cell and Gene Therapy

August 20-21, 2018 Amsterdam, Netherlands

> Biochem Mol biol 2018 Volume: 4 DOI: 10.21767/2471-8084-C3-015

A *Creld1* Gene variant leads to atrioventricular septal defects in down syndrome

Ambreen Asim and Sarita Agarwal

Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), India

C(AVSD) or endocardial cushion defect is commonest form of CHD in these children. *CRELD1* gene is implicated in causation of sporadic AVSD. In the present study, we evaluated the association and significance of *CRELD1* variants with AVSD in Down syndrome (DS) patients. Sequencing was done in blood samples from 3 groups: group I (DS with AVSD), group II (DS without AVSD) and group III (non-syndromic AVSD cases). Twenty two variants in *CRELD1* gene were identified, comprising of sixteen novel and six previously reported variants. However, on the basis of sequence, as well as structure analysis, the variant c.973G > A(p.Glu325Lys) variant was identified only in DS having AVSD group which was predicted to have significant effects on calcium binding of putative *CRELD1* protein. Since *CRELD1* gene acts as a regulator of calcineurin/NFATc1 signaling which is crucial for the regulation of cardiac development by dephosphorylation of the transcription factor, NFAT (nuclear factor of activated T cells), in cytoplasm, the variation in cb-EGF-like calcium binding domain in *CRELD1* protein is likely to have pathogenic consequences. Thus, we conclude that the *CRELD1* gene is likely to have a major role in causation of AVSD phenotype in selected DS patients.

ambreenasimsiddiqui@gmail.com