Why Clinical Trials Might Succeed in Acute Pancreatitis when They Failed in Septic Shock

Jean-Louis Frossard, Philippe Morel, Catherine M Pastor

Division d'Hépatologie et de Gastro-entérologie and Département de Chirurgie Digestive, Hôpital Universitaire de Genève. Genève, Switzerland

Sepsis and acute pancreatitis, which bear a significant morbidity and mortality, are two diseases frequently encountered in intensive care units. Twenty percent of patients with acute pancreatitis have a severe form of the disease and 15-20% of them will die [1]. The mortality in septic shock varies from 40 to 60% [2]. Interestingly, both diseases have several features in common: the occurrence of multiple organ dysfunction over time and the involvement of mediators such as cytokines in the pathogenesis of the disease [3, 4, 5]. While numerous therapeutic clinical trials have been carried out in patients suffering from septic shock, only a small number of trials were done in patients with acute pancreatitis. In septic shock, the results of such trials have been disappointing for several reasons, all of which have been emphasized in recent literature. However, such treatments, which failed during septic shock, might be of interest in patients with severe acute pancreatitis. This hypothesis will be the focus of our article.

Clinical Trials in Septic Shock

Many pro-inflammatory mediators have been involved in the physiopathology of sepsis [3]. Tumor necrosis factor- α (TNF- α) and interleukin-1 (IL-1) are two major mediators of the early host response to bacteria proliferation. In experimental septic shock, concentrations of TNF- α and IL-1 increase, thus promoting the release of IL-6 which is responsible for the acute phase response [6, 7,

8]. IL-8, IL-12 and products released by activated leukocytes such as O₂-derived free radicals and platelet-activating factor (PAF) are also involved at the beginning of the systemic inflammation. A concomitant antiinflammatory response is also evidenced by the increased synthesis of IL-10, soluble TNF- α receptors and the IL-1 receptor antagonist (IL-1ra) which counteract the effects of the pro-inflammatory mediators. Interestingly, the survival rate during sepsis is increased when animals are treated either by the inhibition of these pro-inflammatory cytokines or by IL-10, soluble TNF-a receptors and IL-1ra. Following these promising experimental

findings, large clinical trials have been initiated. Early clinical trials demonstrated that the inhibition of pro-inflammatory mediators was able to reduce the mortality of septic patients by 10%. However, many subsequent clinical trials failed to improve the outcome of septic shock and the reasons for such failure are numerous [9, 10, 11, 12]. Most clinical trials were unable to evidence a 10% improvement of the overall mortality in septic patients because they were not large enough [13]. To enroll patients in clinical trials, positive microbiological cultures were not required and only a limited number of patients had positive cultures. The criteria of inclusion did not consider the length of the infection before enrollment nor the anatomic site of the infection. Most of the criteria used in these trials included clinical features which defined the multiple organ dysfunction.

Moreover, although various immunomodulatory treatments were beneficial in experimental models of sepsis. the extrapolation of these findings to patients might be questionable. Indeed, most experimental models of sepsis used a single injection of endotoxin and this experimental model greatly differs from clinical sepsis. Moreover, treatments have been injected in animals before the septic challenge. Cecal ligation and puncture which create peritonitis polymicrobial mimicking а perforated appendix and diverticulitis observed in human sepsis might be a more appropriate model. In this experimental model of sepsis, cytokine blockade has, for the most part, been unsuccessful. Moreover, animals are healthy and do not suffer from underlying diseases as is frequently observed in humans. Another reason for the failure of clinical trials might be that septic patients were heterogeneous with many co-morbidities associated with sepsis [14]. Consequently, the mediators of inflammation greatly differ from one patient to another. For example, most of the patients included in anti-TNF- α trials had normal plasma concentrations of TNF-a when the treatment began. In contrast, anti-TNF- α antibodies are effective in homogeneous groups of patients suffering from well-characterized chronic pathologies such as Crohn's disease [15] or rheumatoid arthritis [16]. Additionally, the onset of sepsis is difficult to determine precisely. Thus, it is difficult to treat each patient at the same timepoint of the disease. Finally, the classic endpoint of all clinical trials is the 28-day overall mortality [2, 3]. Due to the various events which occur in intensive care units and

the severe underlying diseases of these patients, a single therapy might be insufficient to significantly modify the outcome of the disease.

Similarities between Sepsis and Acute Pancreatitis

is pancreatitis also а Acute severe inflammatory disease frequently encountered in intensive care units [1] (Table 1). It is diagnosed mainly by acute abdominal pain associated with a concomitant rise of serum amylase and lipase concentrations. Gallstone migration into the common bile duct and alcohol abuse account for most of the etiologies of the disease. Usually the injury is mild, but 20% of the patients have a severe injury and, among them, 15 to 25% will die. In recent years, treatment of these patients has greatly improved following а better understanding of the pathophysiology of the disease [17, 18]. This pathophysiology includes the activation and release of pancreatic enzymes in the interstitium, the autodigestion of the pancreas and a multiple organ dysfunction following their release into circulation. the systemic In 1988. Rinderknecht [19] first hypothesized that cytokines may also play an important role and suggested that inappropriate activation of the immune system might increase the severity of the local disease and the systemic complications. Over the past few years, significant evidence has been accumulated indicating that the synthesis and release of pro-inflammatory cytokines and chemokines were responsible for the local injury and the systemic dispersion of the inflammation [20,

Table 1. Similarities between septic shock and acute pancreatitis.

	Septic shock	Acute pancreatitis
Severe inflammatory disease	Yes	Yes
Pro-inflammatory mediators involved in the disease	Yes	Yes
Anti-inflammatory response	Yes	Yes
Multiple organ dysfunction in the evolution of the disease	Yes	Yes
Benefit of immunomodulatory treatments in experimental models	Yes	Yes

21. 22]. Thus, inflammatory mediators produced within the gland increase the pancreatic injury and spread to distant organs, transforming a local inflammation into a severe systemic disease. Interestingly, the involved in mediators this systemic inflammation are similar to those encountered during sepsis. Moreover, an antiinflammatory response is also initiated which includes the synthesis of IL-10 and IL1ra [23, 24, 25].

Because it is important to predict the severity of the disease as early as possible in order to optimize the therapy and to prevent organ dysfunction and local complications, several scores such as Ranson [26], Glasgow [27] and the Acute Physiology And Chronic Health Evaluation (APACHE II) [28] scores have been used. Recently, new serum markers have emerged and their ability to provide additional information on the severity of the disease has been evaluated [29]. Interestingly, because the serum concentration of some of these markers is correlated to the severity of the disease and because they are detected before the occurrence of multiple organ dysfunction, it is then conceivable that the therapeutic antagonism of these mediators might prevent or attenuate the severity of the multiple organ dysfunction, and consequently the outcome of the disease.

Thus, common mediators are involved in the pathogenesis of both diseases and interestingly most of the reasons why clinical trials failed in septic shock can be avoided in acute pancreatitis.

Why Clinical Trials Might Succeed in Acute Pancreatitis when They Failed in Septic Shock

Criteria for the diagnosis and the severity classification of the of acute pancreatitis are better defined than those of sepsis (Table 2). The routine availability of early markers of severity, such as trypsinogen activated peptide [30, 31], IL-6 [32, 33, 34], and IL-8 [35, 36] should improve the selection of severe patients before the development of multiple organ dysfunction. Consequently, the early administration of antagonists targeting these factors should improve the outcome of the disease and prevent the development of multiple organ dysfunction. Patients included in clinical trials are more homogeneous in acute pancreatitis than in sepsis. Underlying diseases are less common than in sepsis. Additionally, the cause of acute pancreatitis moderately influences the evolution of the disease [37]. During acute pancreatitis, the time of onset is easy to determine because the first abdominal pain is usually well-described by the patient. For that reason, it is possible to standardize the timing of treatment administration. Provided that the patient is admitted soon after the onset of abdominal pain, the therapeutic window is between 24 and 48 hours [22].

The early clinical trials for severe pancreatitis have been disappointing. Administration of proteolytic enzyme inhibitors, steroids and inhibitors of pancreatic exocrine secretion did

	Septic shock	Acute pancreatitis
Precise diagnostic of the disease	No	Yes
Specific biological criteria for the diagnosis	No	Yes
Onset of the disease easy to determine	No	Yes*
Heterogenous population	Yes	No
Frequent underlying diseases	Yes	No
Early treatment at the onset of the disease	No	Yes

Table 2. Why clinical trials might succeed in acute pancreatitis when they failed in septic shock.

* Abdominal pain

not alter the course of severe pancreatitis [38, 39, 40]. In recent years, the only trials targeting an inflammatory mediator in acute pancreatitis used the inhibitor of PAF receptor, lexipafant [41, 42, 43]. PAF is a low molecular weight phospholipid which acts via specific cell surface receptors on platelets, leukocytes and endothelial cells. Normal acini synthesize PAF but, during acute pancreatitis, pancreatic and pulmonary tissue as well as blood concentrations rise, indicating that PAF is key mediator of the systemic а inflammatory syndrome. When patients with severe acute pancreatitis were treated with lexipafant at admission for up to 3 [41] or 7 [42] days, the severity score for organ dysfunction was lower in the treated group than in the group of patients treated with saline. However, a recent study showed the absence of the efficacy of the inhibition of PAF in improving the severity of the disease more definitely [43]. Interestingly, when severe septic patients were treated with lexipafant for up to 3 or 7 days, the 28-day mortality was similar in the treated and control groups [44].

Nevertheless, other agents, such as PAF acetylhydrolase, might be tested during acute pancreatitis. This enzyme which degrades PAF might represent another way to inactivate PAF [45]. Its efficacy has been proven in opossum, and clinical trials have started in the USA. The development of additional immunomodulatory clinical trials might also be helpful. Thus, similarly to clinical trials in sepsis shock [46, 47], antibodies to TNF- α , soluble TNF- α receptors, IL1-ra, and soluble IL-1 receptors might be tested. IL-10, which reduces the incidence of acute pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography might be another candidate [48].

Conclusion

In conclusion, although anti-inflammatory drugs have failed to improve the outcome in septic shock, a reassessment of the potential benefits of such treatments in acute pancreatitis might be interesting. Considering the lessons learned from the clinical trials in septic shock and the reasons for which these trials failed, patients suffering from acute pancreatitis might benefit from these antiinflammatory treatments.

Received September 3rd, 2002 – Accepted October 14th, 2002

Keywords Bacterial Infections; Clinical Trials; Cytokines; Inflammation

Abbreviations IL-1ra: interleukin-1 receptor antagonist; PAF: platelet-activating factor

Correspondence

Catherine M Pastor Division d'Hépatologie et de Gastro-entérologie Hôpital Universitaire de Genève 24 Rue Micheli-du-Crest CH 1211 Geneva 14 Switzerland Phone: 41-22-372.9340 Fax: 41-22-372.9366 E-mail address: catherine.pastor@hcuge.ch

References

1. Steinberg W, Tenner S. Acute pancreatitis. N Engl J Med 1994; 330:1198-210. [AN 94187814]

2. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101:1644-55. [AN 92289319]

3. Bone RC, Grodzin CJ, Balk RA. Sepsis:a new hypothesis for pathogenesis of the disease process. Chest 1997; 112:235-43. [AN 97372118]

4. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndroms (SIRS). JAMA 1995; 273:117-23. [AN 95097446]

5. Saluja AK, Steer ML. Pathophysiology of pancreatitis. Role of cytokines and other mediators of inflammation. Digestion 1999; 60:(Suppl 1):27-33.

6. Michie HR, Manogue KR, Priggs DR, Revhaug A, O'Dwyer S, Dinarello CA, et al. Detection of

circulating TNF after endotoxin administration. N Engl J Med 1988; 318:1481-6. [AN 88216750]

7. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87:2095-147. [AN 96203776]

8. Gabay C, Kushner I. Acute-phase proteins and other systemic response to inflammation. N Engl J Med 1999; 340:448-54. [AN 99122626]

9. Abraham E, Raffin TA. Sepsis therapy trials. Continued disappointment or reason for hope? JAMA 1994; 271:1876-8. [AN 94254202]

10. Natanson C, Esposito CJ, Banks SM. The sirens' songs of confirmatory sepsis trials:selection bias and sampling error. Crit Care Med 1998; 26:1927-31. [AN 99091115]

11. Vincent JL. Search for effective immunomodulating strategies against sepsis. Lancet 1998; 351:922-3. [AN 98404000]

12. Abraham E. Why immunomodulatory therapies have not worked in sepsis. Intensive Care Med 1999; 25:556-66. [AN 99343314]

13. Zeni F, Freeman B, Natanson C. Antiinflammatory therapies to treat sepsis and septic shock:a reassessment. Crit Care Med 1997; 25:1095-1100. [AN 97376955]

14. Sprung CL, Finch RG, Thijs LG, Glauser MP. International sepsis trial (INTERSEPT):role and impact of a clinical evaluation committee. Crit Care Med 1996; 24:1441-7. [AN 96390627]

15. van Deventer SJ. Anti-TNF antibody treatment of Crohn's disease. Ann Rheum Dis 1999; 58:Suppl 1:I114-20. [AN 20046944]

16. Maini RN, Taylor PC, Paleolog E, Charles P, Ballara S, Brennan FM, et al. Anti-tumor necrosis factor specific antibody (infliximab) treatment provides insights into the pathophysiology of rheumatoid arthritis. Ann Rheum Dis 1999; 58:Suppl 1:I56-60. [AN 20046931]

17. Steer ML, Meldolesi J. The cell biology of experimental pancreatitis. N Engl J Med 1987; 316:144-50. [AN 87090173]

18. Pastor CM, Frossard JL. Are genetically modified mice useful for the understanding of acute pancreatitis? FASEB J 2001; 15:893-7. [AN 21189144]

19. Rinderknecht H. Fatal pancreatitis, a consequence of excessive leukocyte stimulation? Int J Pancreatol 1988; 3:105-12. [AN 88199203]

20. Kaufmann P, Tilz GP, Lueger A, Demel U. Elevated plasma levels of soluble tumor necrosis factor receptor (sTNFRp60) reflect severity of acute pancreatitis. Intensive Care Med 1997; 23:841-8. [AN 97456845]

21. Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J. Inflammatory mediators in acute pancreatitis. J Pathol 2000; 190:117-25. [AN 20124017]

22. Norman JG. New approaches to acute pancreatitis:role of inflammatory mediators. Digestion 1999; 60 (Suppl 1):57-60. [AN 99152100]

23. Pezzilli R, Billi P, Miniero R, Barakat B. Serum interleukin-10 in human acute pancreatitis. Dig Dis Sci 1997; 42:1469-72. [AN 97388815]

24. Chen CC, Wang SS, Lu RH, Chang FY, Lee SD. Serum interleukin 10 and interleukin 11 in patients with acute pancreatitis. Gut 1999; 45:895-9. [AN 20031703]

25. Simovic MO, Bonham MJ, Abu-Zidan FM, Windsor JA. Anti-inflammatory cytokine response and clinical outcome in acute pancreatitis. Crit Care Med 1999; 27:2662-5. [AN 20092187]

26. Ranson JH, Pasternack BS. Statistical methods for quantifying the severity of clinical pancreatitis. J Surg Res 1977; 22:79-91. [AN 77122330]

27. Blamey SL, Imrie CW, O'Neil J, Gilmour WH, Carter DC. Prognostic factors in acute pancreatitis. Gut 1984; 25:1340-6. [AN 85077717]

28. Wilson C, Heath DI, Imrie CW. Prediction of outcome in acute pancreatitis: a comparative study of APACHE II, clinical assessment and multiple factor scoring systems. Br J Surg 1990; 77:1260-4. [AN 91070206]

29. Frossard JL, Hadengue A, Pastor CM. New serum markers for the detection of severe acute pancreatitis in humans. Am J Resp Crit Care Med 2001; 164:162-70. [AN 21328541]

30. Gudgeon AM, Heath DI, Hurley P, Jehanli A, Patel G, Wilson C, et al. Trypsinogen activation peptides assay in the early prediction of severity of acute pancreatitis. Lancet 1990; 335:4-8. [AN 90113538]

31. Neoptolemos JP, Kemppainen EA, Mayer JM, Fitzpatrick JM, Raraty MG, Slavin J, et al. Early prediction of severity in acute pancreatitis by urinary trypsinogen activation peptide:a multicentre study. Lancet 2000; 355:1955-60. [AN 20315573]

32. Leser HG, Gross V, Scheibenbogen C, Heinisch A, Salm R, Lausen M, et al. Elevation of serum interleukin-6 concentration precedes acute-phase response and reflects severity in acute pancreatitis. Gastroenterology 1991; 101:782-5. [AN 91317425]

33. Heath DI, Cruickshank A, Gudgeon M, Jehanli A, Shenkin A, Imrie CW. Role of interleukin-6 in mediating the acute phase protein response and potential as an early means of severity assessment in acute pancreatitis. Gut 1993; 34:41-5. [AN 93162506]

34. Pezzilli R, Billi P, Miniero R, Fiocchi M, Cappelletti O, Morselli-Labate AM, et al. Serum interleukin-6, interleukin-8, and β 2-microglobulin in early assessment of severity of acute pancreatitis. Comparison with serum C-reactive protein. Dig Dis Sci 1995; 40:2341- 8. [AN 96083453]

35. Chen CC, Wang SS, Lee FY, Chang FY, Lee SD. Proinflammatory cytokines in the early assessment of the prognosis of acute pancreatitis. Am J Gastroenterol 1999; 94:213-8. [AN 99131457]

36. Gross V, Andreesen R, Leser HG, Ceska M, Liehl E, Lausen M, et al. Interleukin-8 and neutrophil activation in acute pancreatitis. Eur J Clin Invest 1992; 22:200-3. [AN 92258463]

37. Uhl W, Isenmann R, Curti G, Vogel R, Beger HG, Büchler MW. Influence of etiology on the course and outcome of acute pancreatitis. Pancreas 1996; 13:335-43. [AN 97055506]

38. Trapnell JE, Rigby CC, Talbot CH, Duncan EH. A controlled trial of Trasylol in the treatment of acute pancreatitis. Br J Surg 1974; 61:177-82. [AN 74137980]

39. Bachrach WH, Schild PD. A double-blind study of Trasylol in the treatment of pancreatitis. Ann N Y Acad Sci 1968; 146:580-92. [AN 69205705]

40. Valderrama R, Perez-Mateo M, Navarro S, Vazquez N, Sanjose L, Adrian MJ, et al. Multicentre double blind trial of gabexate mesilate (FOY) in unselected patients with acute pancreatitis. Digestion 1992; 51:65-70. [AN 92363079]

41. Kingsnorth AN, Galloway SW, Formela LJ. Randomized, double-blind phase II trial of Lexipafant, a platelet-activating factor antagonist, in human acute pancreatitis. Br J Surg 1995; 82:1414-20. [AN 96097842] 42. McKay CJ, Curran F, Sharples C, Baxter JN, Imrie CW. Prospective placebo-controlled randomized trial of lexipafant in predicted severe acute pancreatitis. Br J Surg 1997; 84:1239-43. [AN 97458927]

43. Johnson CD, Kingsnorth AN, Imrie CW, McMahon MJ, Neoptolemos JP, McKay C, et al. Double blind, randomized, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 2001; 48:62-9. [AN 20567661]

44. Suputtamongolkol Y, Intaranongpai S, Smith MD, Angus B, Chaowagul W, Permpikul C, et al. A doubleblind placebo-controlled study of a infusion of Lexipafant (platelet- activating factor receptor antagonist) in patients with severe sepsis. Antimicrob Agents Chemother 2000; 44:693-6. [AN 20145391]

45. Hofbauer B, Saluja AK, Bhatia M, Frossard JL, Lee HS, Bhagat L, et al. Effect of recombinant plateletactivating factor acetylhydrolase on two models of experimental acute pancreatitis. Gastroenterology 1998; 115:1238-47. [AN 99014212]

46. Cain BS, Meldrum DR, Harken AH, McIntyre RC. The physiological basis of anticytokine clinical trials in the treatment of sepsis. J Am Coll Surg 1998; 186:337-50. [AN 98169085]

47. Marshall JC. Clinical trials of mediators-directed therapy in sepsis:what have we learned? Intensive Care Med 2000; 26:S75-83. [AN 20246643]

48. Deviere J, Le Moine O, Van Laethem JL, Eisendrath P, Ghilain A, Severs N, et al. Interleukin-10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 2001; 120:498-505. [AN 21100083]