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ABTSRACT

In this work the fourth order differential equation governing the vibration of damped orthotropic rectangular plate
resting on Winkler foundation was reduced to second order coupled differential equation by separating the
variables. The coupled differential equation was solved using numerical methods .The classical edge condition used
as an illustrative example is the simple support conditions. The effects of some physical phenomena were
investigated and the results obtained are discussed and graphically presented.
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INTRODUCTION

Vibration of rectangular plates is an interestingjsct because of its wide applications in struadtingineering and
transport engineering. Structures like railway besl, highway bridges, cranes, road pavements atcactually be
modeled as rectangular plates. The applicabilitghiff subject in the study of these structures am ltardly do
without, has accelerated research on the studyuaddrstanding of rectangular plates. As a way wviere we
quickly discuss some early works on the vibratibnestangular plates and some interesting resubitsined. In [6]
the differential equation relating to the breakofgailway bridges was developed and well discusSeune other
research works focused more on vibration of sadiaid structures under moving loads, such work iregy@], who
found that the theoretical considerations are apple in calculations relating to dynamic stressesailway and
highway bridges, suspension bridges, rails, slegpeanes etc. In mechanics moving loads are akfisdoads that
vary in both time and space. In [3] the dynami&pmnse of plates on elastic foundation to disteduhoving loads
was investigated and it was reported that the ahtfrequency of rectangular plates traversed by ingv
concentrated forces is greater than that of plsiiegected to moving concentrated masses and thgirdsence of
foundation modulus reduces the deflection of tlaepl

In most of the works the type of plates consideneglisotropic rectangular plates which are uniforrall direction.

In application not all plates are isotropic, anotimeportant type of plate is the orthotropic regalar plates which
found applications in the modeling of the dynamésponse of rigid concrete pavements. In [1], ortpt
rectangular plate was used to model the dynamitaf roadway pavement under dynamic load, the oubtised
was the modified Bolotin Method. The dynamic movitrgffic load is expressed as a concentrated Ioad o
harmonically varying magnitude, moving straightrejathe plate with a constant velocity, It was fouhdt this
dynamic load approach may lead to more economigtisak as compared to those obtained from the ctiorel
static load approach.

Viscous damping is the dissipation of energy amdabnsequence reduction or decay of motion. To ngteteding
the control and mechanical response of vibratingcsires, viscous damping should be properly undeds Most
of the early works neglected damping, but recerigresting studies and results are now emergimthe effects
of viscous damping on the vibration of rectangylates on elastic foundation. Some of such workkide [4], it
was found that the deflection profile of the pldepends on the magnitude of the damping coefficienfs], the
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effect of viscous damping on the dynamic resporfsisairopic rectangular plates on Pasternak fouodatare
studied and it was shown that viscous dampingerpttesence of Pasternak foundation actually rediheebuildup
of amplitude, thereby reducing the possibility ebonance. In this work we pay attention to theatibn or the
dynamic behavior of damped Orthotropic rectangplate resting on Winkler foundation, subjected ymammic
loads.

MATERIALSAND METHODS

M ethods of Solution
The governing equation of the problem is given as:

A%y
g

[ A%y 8w 4w

dw
oy ——+ 2 oty prees +0tg F} +M—+ EMYI + Kw = p(x,v.t) (@h)

2

where:

w = w(X,y,t) is the deflection of the plate.
t = time in seconds.

¥ =viscous damping coefficient.

@4 = flexural rigidity in the x direction.

o, = effective torsional rigidity.

o 5= flexural rigidity in the y direction.

E= Young’s modulus

M= mass density per unit area

H= thickness of plate

P(x,y,t)= the applied load, which taken to be;
_1 dEW

P(x,y,b)= - (mg —m

dt2
r=length of the load.
H(x)= Heaviside step function
& {x)= dirac delta function
g= acceleration due to gravity.
v= velocity.
K= foundation stiffness.

r

) [H(x — vt + g) —H (x — vt — —)] Ay —w) (2)

-
=

The above governing partial differential equatidhwas developed under the following assumptions:
- The small strain in the system is still goverbgdHook’s law.

-The plate is resting on elastic foundation.

-The load is taken to be a distributed time load.

-There is no deformation in the middle of the plaithe plate remains the same before and afiedibg.

The governing equation of the problem is solvechgisseparation of variable in series form. We asstinee
following;
Let,

WOxYD= Xzt Lomet Amn (OW, COW,,, () 3)

Where: n=1,2,3,...,N and m=1,2,3,...M. M and N arediy®sitive integer.
A(t) is a function of time.

If we substitute (3) into (1), we have that;
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[0 ZRt Zies A (OWo ™ (W (3) +
2 o Z:{: 1 Z:?i: 1Arnn Et)wniiix)wmii@) +
X3 Z;{= 12#1: 1 Amn l:t:.an (X]Wmiv @}] +M ZTL 12&?1: 1 ‘éimn I:t)
Wy (x)
w,, (v) +
EM?Z;?:lZM:lAmn(E)Wn{:x]wm(y) + K 20y Zone1 A (O Wy, (O, (v) =
p(x,y,t) @)
On further simplifications, we have that;
LiZ”:ilﬂm () {ocy W, (W, () + 2 06, W, ()W, " () +
o W, (W, " (1)} +
MA,,, ()W, ow,, () 2MYA,., (Ow, COw,, () + KA, (Ow, (x)w,,(¥)] =

%(m B dzw)[hr(x—vt—l—) H(x—vt——)]ﬁli}’ Y1) (5)

When we substitute the p(x,y,t), from (2).

The equation governing the undamped free vibraifaan orthotropic rectangular plate is as follows;

8% w 8% w 8% w
ocC o, — 6
locw S5+ 2 0, 2% 406, 22 4 Kw + w2 Mw = 0 ©)
By substituting (3) into (6), and takmgmn = 9M,

We have that
O(l Wﬂw (X)Wmt}’) + 2 O':Z Wnn(x)wmu(y) —sz wn (X]me(y) t+

Kwn ::x)wm O’) = K, Wn El’) Wm(}’) )
On substituting (7) into (5), and putting (3) iretiRHS of (5), we have the simplified equation gausy the
vibration problem of damped orthotropic rectangydate resting on Winkler foundation, subjecteddimamic
loading.

f'-.-‘ lzn—l[#mﬂ ™R (EJMWﬂ(ijmt}Jj + Mlqmn (ijﬂ(x)wml:}’}FZ
M}’ﬂmn(tjw COw,, ()]=
; (mg - mun—lzu— {Amn {:t Wy {:X mt}] + szmn(t]W I(X]Wm(y] +

V2 Ay (OW, () wy, (D1 [H (x—vt+ 5) —H (x oyt _)] Ay —y1) .

Multiply both sides of (8) byw;{x)w;(y) and we integrate along the edges of the rectangldte of dimension

(axb). And further apply the Orthogonalitywf, (x) and w,,{y) with the following relation between dirac delta
function and the Heaviside unit function.

jjj d(x —x,)dx =H(x —x,).
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We obtain;

r
ri+—

1
=W—M{m.gw}(}’1] . w; (x)dx

N M Ut_i 1.?!':+I
“mY D U Own w0 [ om0

n=1m=1
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ut+§
+ 20 Ay OWnGw D) [ W @

2
v!t+E

V2 A, OWR GIW ) | wywi (0)dx]}

1.?!:—5

9

Where( is an arbitrary constant.

Equation (9) is the generalized Ordinary coupleffiecéntial equation to be solved for some spedifizindary
conditions.

Simply Supported Rectangular plate (as an illustrative example)
We have different kinds of classical edge suppbuis for the sake of this study we limit our corsation to simply
supported edges alone.

The boundary condition for simply supported rectdagplates is given as;

w(0, 5, t) = wla, y,t) = wyp(0, %, ) = Weela 32) =0
wix,0,t) = wlx,b,2) = wy (x,0,£) = wy, (x,,t) =0

With the initial condition
wix,y,0) = w.(x,y,0 =0 (10)

The Normalized deflection curve for simply suppdrbmundary condition for rectangular plate has he®ained in
[3] to be

My

2z .  hmxX |,
Wn(X}Wm(}'}—ESlH —sin—

Wheren=1,2_3,...,and m=1,2,3,..., (12)
To obtain the eigen values, we substitute (11) (Ajdo have;

4 2.8 4

a* “ a*h?

B = [ml ]+ K (12)

The exact governing equation for simply supportesnped orthotropic rectangular plate resting on Méink
foundation can be obtained by putting (11) inta (9)
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To have

1 4mga - imvt | imy,

sin
(;JTM jrn;-.,,u' b
. m?'[}:L . Imyy - a dymrt | dqnr
—m {—sin sin A (E COS sin
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v t) sin sin COs sin —
“Amn (9 b b (’n:dl a 2a
2 o5 P gin P r
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Where i#n
w : 1 dmga . imy, . irm . imvk
A )+ 2yA, L (8) + A, (B) = oy LME sin —=sin ——sin —

T 4 . may . ITYy T ia . NIT 2nvin
mZ‘“’:lZ;';ﬁ:l{E sin—= 4, (£)(;— 5 —sin—cos ) +
Snmor )_

azb
45T nzu . jmyy T
TET A (t) sin T . sm‘r—”i(——

b 2
a . RIT 2nvin
sin— cos ) }]

; . TUTVy . JITVy . @ . Envt'r in nIr
A, (t)sin—=sin sin
mﬂ( ) b b izﬂrr a

2nm a a

(14)
RESULTSAND DISCUSSION

Equations (13) and (14) are Second order couplffdreintial equations. Equation (13) is for wherzin, and

equation (14) is for when=ri. The coupled differential equations are solvemhgishe finite difference method i.e.
the central difference method. The resulting Tgdiaal matrix is of the form;

[2 — rP(e )Ty + [2 + 2R2Q(£)IT; + [2 + hP (£, )]Tisy = 2R7R(2)
Where h is chosen appropriately, &g 1,2,3,...1

The resulting tridiagonal matrices were solved gsMATLAB. The following values are assumed for the
corresponding variablez:= 10,5 = 5, ¥ =12m/s, 24m/s and 36m/s, K=0, 20,80. The values fmetie flexural

rigidity in the x-direction €z1), the effective torsonal rigidify;) and the flexural rigidity in the y-directidixy), is

that of Veneer, given as 0.297, 0.21 and 0.69,ecspely. The values of the damping rati§3 are assumed to be
0,100,150, respectively.
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In figure 1, we see that the maximum deflectiomisch higher when damping ratig)€0, and as the damping ratio
is increased, the deflection is reduced and theatidn also stabilizes with time.

In figure 2, observed that when the foundation nheglis reduced to zero, the mid-plate deflectiocréased and
when the foundation modulus K, is increased, thgimam deflection is reduced.

In figure 3, various velocities are considered;sge that at high velocity, the maximum deflectisraitained at a
shorter time.
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Figure 1: Deflection per time at various damping ratios
6
e—K=20]" T T T T T T T
K=0
5| ——K=80 .
e
4 ’ = .
E s -
E / \
-] e N
= i i
s 3l s s -
= -~
8 2"
% ,_.a//
T L \ i s |
] { 4 T
] f g T
-_ o o
= ;
=
b= o
0 -
1 1 1 I I 1 1 1 1

"o 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time in seconds

Figure 2: Mid-plate deflection per time at variousvalues of K
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Figure 3: Deflection per time at various velocities

CONCLUSION

Damping plays a very significant role in the vilwatof solid structures, as it has been showndeé#ection profile
depends greatly on the damping ratio. The deflacfioofile also proves to be more stable in the gmes of
foundation coupled with viscous damping. Theseltedurther show that very high speed can be dhetntal to
solid structures, especially Highway bridges argptstructures subjected to dynamic loads.
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