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ABSTRACT

Considering the Casson fluid as blood; the unstefioy through a constricted artery has been studi€de
governing equations have been solved by using énteipation technique. Expressions for axial veipcshear
Stress, volumetric flow rate and plug flow veloate obtained. The results are shown and discusisexligh
graphs; choosing suitable parameters. The studwshbat the axial velocity, wall shear stress almel Yolumetric
flow rate decrease when the time increases aloa@itial distance. The axial velocity and the voltriodlow rate
rise with an increase in slip velocity. The non lagpflow velocity, volumetric flow rate and wall esdr stress
decrease but the plug flow velocity increases withease in stenosis height along axial distance.
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INTRODUCTION

The hemodynamic behaviour of flows through the trisied arteries have always drawn attention of the
researchers as it puts the health at risk whiclvgg@ometimes fatal. One basic reason of the ¢ctimtr of the
artery is the deposit of some fatty and fibrousues in the arterial wall which restricts the ndriolaod flow
through the artery. Many research workers have madeable contributions to understand the variolasv f
properties through the constricted arteries.

A.C. Burton [1] made several experiments to study effects of whole body accelerations on humatidsoand
presented empirical data regarding the relatiomwd®n blood flows and the radii of the blood vessBL.F. Young
[2] discussed the effect of an axially symmetnngidependent stenotic growth into the lumen ofbe tf constant
cross-section over the steady flow of a Newtonlamlf P. Chaturani et al. [3] studied the pulsatiitev of a Casson
fluid through stenosed arteries with applicatiorbtood flow. S. Chakravarty et al. [4] presentechathematical
model for the blood flow through an overlapping d@htlependent arterial stenosis by taking the expariably
established viscoelastic properties of the blood deformability of the arterial wall. A.V. Mernorig] et al.
performed a mathematical study of peristaltic tpamsof a Casson fluid and found the analytical andherical
solutions for the zeroth and first order in strefamction. H. Jung et al. [6] studied the asymmefiogvs of non —
Newtonian fluids in symmetric stenosed artery amstussed the characteristics of pulsatile bloodavfl&R.N.
Pralhad et al. [7] modelled the arterial stenosid studied its application in blood diseases assgrhlood as a
couple — stress fluid. K.Y. Volokh [8] studied te&esses in growing soft tissues and showed tleaulttiform
volumetric growth can lead to the deposits of nesidstresses in blood arteries due to the matarislotropy. T.
Ishikawa [9] performed the numerical simulatioradbw- hematocrit blood flow in a small artery witenosis and
showed that the erythrocytes are considerably defdraround the stenosis. S.U. Siddiqui et al. [dtddied
pulsatile flow of blood through stenosed arteriad éound that the width of the plug core regionréases with
increasing value of yield stress at any time. Gand Gupta. [11] presented a Casson fluid moddhieisteady flow
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through a stenosed blood vessel in which the astBbhowed that the axial velocity, volumetric floater and
pressure gradient increase with the increaseprvsliocity and decrease with growth in yield stré&aur and Gupta
[12] studied the slip effects on steady flow thrbug stenosed blood artery and showed that axialcirg)
volumetric flow rate and pressure gradient decred&meg the radial distance as the slip length iasee but the wall
shear stress increases with increase in slip ler@tur and Gupta [13] discussed the steady bloma finder
magnetic effects through an axially symmetric ssebartery and found that increments in magnetld firadients
and slip velocity increase the axial velocity atah flux. Gaur and Gupta [14] studied the poroug&s on blood
flow through a stenosed artery under slip condgtiand found that the permeability of the artemall increases
the axial velocity, plug flow velocity, flow fluxrad pressure gradient along axial and radial digsnc

2. Mathematical Formulation
Let us consider an incompressible blood with a teanunsteady flow through a cylindrical blood aytethich is
stenosed with an axially symmetric stenosis. Tharggrical diagram of the stenosis is given below:
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Let R(Z) be the radius of the vessel in the constrictetbregndR,, in the non — stenctic area given as [2]:

— h 2 _ — _ _ _ _ —
R@) = Ro—z[1+cosf(zl+ls—z)]; 7, <Z<7Z;+] 2.1)

Ry ; otherwise

where hl; andz, are the maximum height, length and the locatiothefstenosis in the vessel of the lerigihlso,
letr andz represent the radial and axial coordinates.

Here the blood is assumed to behave like a Ca$sidn f

Considering the above assumptions, the equatiom®tibn for the blood can be written as

_ 0% ap , 10 ,__

Po = =5, t 25 () (2.2)

w_ (2.3)

Wherep denotes the density of bloopl,is the pressure at any point at tilnand<, is the shear stress. The
constitutive equations for Casson fluid are:

v 2
F(T.) = _iaL = Eic(fz/z -5/%) forz. > %, (2.4)

9vc =0 for .51 (25)

oF -
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Herev, gives the axial velocity of blood, represents the yield stress ands the fluid viscosity. The equations
(2.2) to (2.5) are governed with the following bdary conditions:

V. =V, att = ﬁ(z)}

T, = Finite value att =0 (2.6)
wherev, is the slip velocity in the axial direction.

As the pressure gradient is a functiorz @indt, its form can be taken from [1] as

op = = e = = _

~ (7D = Po(@)+P1(2) cos(®.) (2.7)

Herep, is the steady — state amplitude @nds the fluctuating amplitude of the pressure geatiwith a period
o = 2nf wheref is the pulse frequency.

Applying the following non — dimensional quantities

R@) _ Zg+ls-Z T T Ty Ve Vs

R(z) =—=, z= r=—, T. = —= T, = —= Ve=——0—, Vg = —5—
(2) Ro ’ | Ro’ ¢ PoRo/2” Y DPoRo/2 € DoR3/2k’ 5 PoRE/2k(
h ®pR3 _ - P
==, 2=2%0 t=—@pfe=2 (2.8)
Ro k¢ Po

wheree represents the amplitude of the flow andefines the pulsatile Reynold number which is &sown as the
Womersley parameter.

Hence the dimensionless radius of the stenoticafrdze artery is
1—Hcos?nz; 0<z<1

R(») = {1 ; otherwise (2:9)
The non — dimensional form of equation of the mo{{2.2) is

azaaltc= —2@ +%%(I‘TC) (2.10)
Wherep = @(t) =1+ ecost

The non — dimensional constitutive equations ofsGadluid are

=@ -yt fortexy (2.11)
Ze=0 fort, < T, (2.12)
The dimensionless boundary conditions are

‘;cc _= \lgsinite Valuit l;alt_ r R=(ZO)} (2.13)

3. Method of Solution

In order to get the required solutions of the peatl the perturbation method is used for which<< 1 is taken to
maintain the non — Newtonian nature of the bloowirich a plug flow region is developed through toastricted
arteries in small blood vessels like coronary ggerThen the axial velocity., plug flow velocityv,, shear stress

1. and the plug core radiug can be expressed in the powerstbgjiven as

Ve = Ve + 02V + atvey + (3.1)
Vp = Vpo + a?Vpy + atvp, + - (3.2)
Te = Teo + 0%Teq + oty + -+ (3.3)
Ip = Tpo + o_czrpl + atrp; + - (3.4)

I'p . . . .
wherer, = ﬁ—p is the non — dimensional radius of the plug core.
0
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Using equations (3.1) & (3.3) in equation (2.108, get

Ove
Zeo ;a( ) (3.5)
a
> ('Teo) = 2r@ (3.6)
Substituting equations (3.1) & (3.3) in equatiorl(@d, we have
—% =T+ Ty — Zrl/z Tiéz 3.7)
Bvcl _ 1/2
ar Ta1 [1 - ’[Co) ] (38)
Using equation (3.1), the boundary conditions (Rr&8uce to
Veo = Vs
ver =0} atr =R (3.9)

whereR = R(z)

Integrating equation (3.6) and using condition 82, ve get

Teo =T (3.10)
Using equation (3.10), equation (3.7) on integratieelds

Vo =2 @(R? = 12) = 21,/ 2 @12 (R¥/% = 13/2) + 1y (R— 1) + v, (3.11)
The expression for,,, is obtained by putting = rp, in equation (3.11) given as

Vpo = %q)(RZ —r2) — ET;/2(P1/2(R3/2 3/2) + 1, (R —rp) + vs (3.12)
Integrating equation (3.5) using equation (3.1 @h13), we get

T =%q)’ (%Rzr—%ﬁ) 1/2q) @2 (%Rs/zr_érs/z) (3.13)
whereg’ = 2o

ot

Applying equations (3.10) and (3.13) in equatio8)&nd then integrating we obtain

_1 /(3 nps_1p22 i 4)_ 1/2 4 —1/2(33 7/2 _1p3/2.2 4 4 7/2)_1 1/2 —1/2(2 7/2 _
Ve z(p(mR Rr + sy @ 196R R r +49r 2y @@ 42R

%Rzre‘/2 + ir”z) +51 q)’q)_1 ( 51 R3 — §R3/2r3/2 Zre‘) (3.14)
Substitution ofr = ry, in equation (3. 14) yields the expressionvpy given as

oo =80 (0 ) 32 (0 e )< (-
%RZrS{Z o ;{2) += ‘tyq)’q)_l( 1R3 Re‘/2 3/2 +o 81) (3.15)

Thus the total axial velocity distribution for thegionr, <r < R(z) is

Ve =

%(p(R2 —r?) — ET;/2<p1/2(R3/2 -r*2)+t,(R—1) +vs +

2|1 (3 4_1 2.2 i 4) _2.12 0 0-1/2 (33 p7/2 _1psja2 472 1/2 ro—1/2 (1172
« [2(p (16R R + ) 3 y (p(p (196R 4R r +49r ) 2 ¢ ¢ (42R
152.3/2 , 1 772 3 _1p3/2.3/2, 2.3

SRS+ —r )+ “T,0' @ ( R R r +21r)] (3.16)
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The plug flow velocity distribution for the regigh< r < ry, is
= lq)(R2 - rgo ——‘rl/z 1/2(R3/2 3/2) + ‘ry(R— rpo) +ve+a [ © ( R* —%RZ 2

2 1/2 1 —1/2 (33 7/2__ 3/2,.2 4 7/2\_ 1 1/2 4 —1/2 (115772 1 23/2 1.7/2 r.-1(5 p3 _
3 Ty @@ (196R 4R I'p1+49rp1) 2y 9@ (42R 3R pl +14rp1) oo ( R
IR+ L rgl)] (3.17)
The shear stress is given as
_ 2|1 /(lp2._ 1.3 21/2 -1/2 (1p3/2,._ 2 5/2
Tc=rep+a [Zq) (er 4r) @' (zR r—-r )] (3.18)
The wall shear stres@ is obtained as
TR = Ro +%a2<p’R3 —>a? 1/2(|)’(|)‘1/2R5/2 (3.19)
The non — dimensional volumetric flow rate for thgion0 < r < R(z) is defined as
Q(z,t) = 4f0R rv.dr
whereQ(z,t) = % Q(Z ©) being the dimensional volumetric flow rate.
Hence
Q = 2R?v, +2 TyR3 + LR4 ((p+ WZ@'R? — 2 o2 1/2(p (p'1/2R3/2) ST;/ZR”Z ((p1/2 +%560£2(P'(P_1/2R2 _
—aztl/zq) q)_lR3/2) (3.20)

RESULTSAND DISCUSSION

The velocity profile for the axial velocity in theon — plug flow area has been obtained by equd8dt6). The

graphical analysis of the results thus obtainecaeeented in Figs. 1(a) and 1(b).
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Figure 1 (a): Variation of Axial Velocity Along Axial Distance for
Different Values of the Time 1, Stenosis Height H, Yield Stress 'cyand Slip
Velocity v, with Some Fixed Values e=0.1 and at =0.1.

Figure 1(a) describes the variations of the axibeity versus axial distance for the differentues of timet,

stenosis height, yield stress, and slip velocity taking fixed values = 0.1 anda = 0.1. The profile shows a
natural pattern of fluid flow in a circular ducth@re is an increase in velocity with the pulse &hslip velocity
increases the axial velocity of the fluid. It isufal that the axial velocity decreases along thel alistance when

time, yield stress and stenosis height increase.

Pelagia Research Library

_4)_
p1

53



Manish Gaur and Manoj Kumar Gupta

Adv. Appl. Sci. Res., 2015, 6(1):49-58

0.08 1

0.06 1

<_n<—b

0.04 1

0.02 1

0 T
0 0.1

02

03

—Fr—

0.4

0.5

Figure 1 (b): Variation of Axial Velocity Along Radial Distance for

Different Values of the Time ¢, Yield Stress Tand Slip Velocity v with

Some Fixed Values e=0.1 and 0. = 0.1
Figure 1(b) shows the variations of the axial vitjoalong radial distance for the various valuediofet, yield
stressrt, and slip velocity; with some fixed values = 0.1 anda = 0.1. It is clear that the axial velocity slows
down along the radial distance. Also the axial g#joincreases when the time, yield stress and &lijpcity
increase. A similar graph is obtained showing titgéments in the axial velocity with the increasgield stress.

The graphical analysis of the axial velocity foetplug flow area obtained through equation (3.1&3% been

described through Figs. 2(a) and 2(b).
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Figure 2 (a): Variation of Plug Flow Velocity Along Axial Distance for

Different Values of the Time z, Stenosis Height H, Yield Stress T, and Slip

Velocity v with Some Fixed Values e=0.1 and a¢=0.1.
Figure 2(a) gives the variations in plug flow vétgpalong axial distance for the various valuediofet, stenosis
heightH, yield stress, and slip velocity, with some fixed values = 0.1 anda = 0.1. It shows that the plug flow
velocity increases with the increase in axial dista the stenosis height or slip velocity whilénitreases with the
pulse. Also the plug flow velocity decreases asyibll stress and time increase.
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Figure 2 (b): Variation of Plug Flow Velocity Along Radial Distance for

Different Values of the Time ¢, Yield Stress T and Slip Velocity v with

Some Fixed Values e=0.1 and ot =0.1
Figure 2(b) explains the changes in plug flow vigloeersus radial distance for the different valoésimet, yield
stresst, and slip velocity with some fixed values = 0.1 anda = 0.1. The graph shows that the plug flow
velocity increases with increase in the radialatise and slip velocity but it decreases as the #@ntkyield stress
increase.
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Figure 3 (a): Variation of Wall Shear Stress Along Axial Distance for
Different Values of the Time t and Stenosis Height A with Some Fixed

Valugse=0.1, 7,=0.010and ¢ =0.1.
Figure 3(a) shows the changes in the wall sheasstilerived through equation (3.19) along the aig&hnce for
the different values of timeand the stenosis heightwith some fixed values = 0.1,t, = 0.010 anda = 0.1. It
describes that the wall shear stress shows a vikkw@driations along the axial distance and it dases when time
and stenosis height increase.
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Figure 3 (b): Variation of Wall Shear Stress Along Radial Distance for
Different Values of the Time ¢ with Some Fixed Values e=0.1,
1,=0.010 and c.=0.1

Figure 3(b) gives the variations of the wall shetness along the radial distance for the differaities of time
with some fixed values = 0.1, t, = 0.010 anda = 0.1. It is observed that the wall shear stress ine®atong the
radial distance but it decreases when the timeasss.
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Figure 4 (a): Variation of Volumetric Flow Rate Along the Axial

Distance for Different Values of the Time £, Stenosis Height and Slip

Velocity v with Some Fixed Values e=0.1 and o=0.1.
Figure 4(a) shows the variations of the volumefloe rate obtained in equation (3.20) versus thialadistance for
the different values of timg stenosis height, yield stress, and slip velocity taking fixed values = 0.1 and
a = 0.1. It is observed that the volumetric flow rate tstes along the axial distance. The flow rate els®s with
increase in time, yield stress or stenosis heighttbhncreases when the slip velocity increases.
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Figure 4 (b): Variation of Volumetric Flow Rate Along Radial Distance
for Different Values of the Time ¢, Yield Stress T, and Slip Velocity v

with Some Fixed Values e=0.1 and 0. =0.1.
Figure 4(b) shows the variations of the volumefioev rate along the radial distance for the difierrvalues of time
t, stenosis height, yield stresx, and slip velocitys with some fixed values = 0.1 anda = 0.1. The graph
shows that the volumetric flow rate increases wtinenradial distance or slip velocity increases.oAtsdecreases
when the time or yield stress increases.

CONCLUSION

In the present model where the Casson fluid isidensd as a blood, the Womersley parametiertaken less than
one which is suitable for the small blood vesside toronary arteries. The non — dimensional y&ess:, is
taken from 0.01 to 0.03 for a normal state. Thevfemplitude ¢” is also taken less than one which is reasonable
for physiological conditions in normal blood flowhrough the graphical analysis it is observed thatvolumetric
flow rate and the axial velocity in both plug flaand non — plug flow regions increase with pulse slilvelocity
along axial distance but they decrease when timgeadd stress increases. The axial velocity in roplug flow
region, flow flux and wall shear stress decreagetmiplug flow velocity increases with increasesianosis height.
Fort = 0 the model reduces to steady state situations whichrified by the author’s previous work [11].&twvall
shear stress decreases along axial distance wherniritreases. Also the plug flow velocity, wall ahstress and
flow flux increase along radial distance and thegrédase when yield stress or time increases. Nplug-flow
velocity decreases with increase in radial distdangeéncreases when time, yield stress or slipaigloncreases.
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