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ABSTRACT 
 
In this paper, we discuss an analytical study of unsteady hydro magnetic generalized couette flow of an 
incompressible electrically conducting couple stress fluid between two parallel plates, taking into account pulsation 
of the pressure gradient effect and under the influence of periodic body acceleration with phase differenceφ . The 

solution of the problem is obtained with the help of perturbation technique. Analytical expression is given for the 
velocity and the effects of the various governing parameters entering into the problem are discussed with the help of 
graphs. The shear stresses on the boundaries are also obtained analytically and their behaviour computationally 
discussed with different variations in the governing parameters in detail. 
 
Keywords: Couette flow, couple stress fluid, periodic body acceleration and MHD flows. 
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INTRODUCTION 
 

Many attempts have been made by several authors to describe blood as a simple model but failed to reach their 
attempts. In further investigation many authors have used one of the simplification is that they have assumed blood 
to be a suspension of spherical rigid particles (red cells), this suspension of spherical rigid particles will give rise to 
couple stresses in a fluid. Stokes [16] introduced the theory of couple stress fluid, which is a special case of micro-
polar fluid. Valanis and sun [17] have proposed a mathematical model for blood flow by assuming blood as a couple 
stress fluid. It seems that their work contained some serious errors that have been corrected by Chaturani [2]. 
Further, Chaturani [3] has proposed a method to determine couple- stresses parameters with the help of relative 
viscosity and velocity profiles. Chaturani and Upadhya [4] Investigated the pulsatile flow of couple stress fluid by 
using perturbation method. They have suggested two methods for the determination of the value of puslatile 
Reynolds’s number. The important conclusion of their analysis is a method (geometrical) that has been developed 
for studied a theoretical model for pulsatile flow of blood with varying cross sectional tube and its applications to 
cardiovascular diseases. It is observed that an increase in finding the precise value of non dimensional couple stress 
parameter. A simple mathematical model depicting blood flow through permeable tube by assuming blood as couple 
stress fluid has been studied by Pal et al [8]. Sagayamary and Devanathan [11] have studied two dimensional flow of 
couple stress fluid through a rigid tube of varying cross section for low Reynolds numbers. Padmanabha [7] 
analyzed pulsatile flow of viscous fluid through a curved elastic tube. Batra and Jena [1] have studied the steady, 
laminar flow of a Casson fluid in a curved tube of circular cross section. Smith [15] has studied on flow through 
bends and branching. Schneck [12] has obtained an approximate analytical solution for a pulsatile flow through a 
diverging channel. Using perturbation method, Rao and Devanathan [9] have analyzed pulsatile flow of blood 
through varying cross sectional tube.  Schneck and Ostrich [13] studied the pulsatile flow of blood in a channel of 
small expontical divergence. Schneck and Walburn [14] have investigated the pulsatile flow of blood with low 



P. Sulochana                                                                   Adv. Appl. Sci. Res., 2014, 5(4):136-143         
 _____________________________________________________________________________ 

 

 
137 

Pelagia Research Library 

Reynolds number assuming blood as a Newtonian fluid, through a channel of diverging cross section. They have 
observed a phase-lag between flow rate and pressure gradient. The steady flow of an incompressible micro polar 
fluid in a diverging channel has been studied by Kamel [5]. Misra and Ghosh [6] used a micro continuum approach 
to determine the velocity and pressure distributions in an exponentially diverging channel. Rathod [10] studied the 
pulsatile flow of couple stress fluid through slowly diverging tubes and its applications to cardiovascular diseases.  
 
The importance of the study of the pulsatile flow in a channel or a porous pipe is too well known to be elaborated. It 
has biological applications in relation to hemo dynamics [18 & 19], industrial applications in relation to heat 
exchange efficiency, applications in natural systems like circulatory systems, respiratory systems, vascular diseases, 
in engineering systems like reciprocating pumps, IC engines, combustors and applications in MEMS micro fluidic 
engineering applications [20]. The terms ‘pulsatile’, ‘oscillatory’ or ‘unsteady’ are generally used in the literature to 
describe the flows in which velocity or pressure or both depend on time. Oscillatory flow is a periodic flow that 
oscillates around a zero value. Pulsatile flow is a periodic flow that oscillates around a mean value not equal to zero, 
i.e., it is a steady flow on which is superposed an oscillatory flow. The couple stress fluid theory is one of the fluid 
theories that has arisen to explain the deviation in the behavior of real fluids with that of Newtonian fluids. It is the 
simplest theory that shows all the important features and effects of couple stresses in a fluid medium and the basic 
equations describing a couple stress fluid flow are similar to the Navier Stokes equations, however, with the order of 
the differential equations increased by two. Stokes introduced this theory in 1966 [16] and since then there has been 
considerable interest regarding the study of various problems in fluid dynamics in the context of couple stress fluid 
flow. Stokes has written an exemplary treatise on theories of fluids with microstructure in which he has presented a 
detailed account of couple stress fluids [21]. Lakshmana Rao and Iyengar [22] made analytical and computational 
studies of some axisymmetric couple stress fluid flows. Several of the couple stress fluid flow problems studied upto 
1984 can be seen in [23]. Srivastava studied the flow of a couple stress fluid through stenotic blood vessels [24]. He 
also studied the peristaltic transport of a couple stress fluid [23]. Recently T.K.V. Iyengar and Punnamchandar Bitla 
[25] discussed the pulsating flow of an incompressible couple stress fluid between permeable beds. Arterial MHD 
pulsatile flow of blood under periodic body acceleration has been studied by Das and Saha [26]. Tzirtzilakis [27] 
studied a ma- thematical model of biomagnetic fluid dynamics (BFD), suitable for the description of the Newtonian 
blood flow under the action of magnetic field. This model is consis- tent with the principles of ferrodynamics and 
magneto- hydrodynamics and takes into account both magnetiza- tion and electrical conductivity of blood. 
Ramamurthy and shanker [28] studied magnetohydrodynamic effects on blood flow through a porous channel. They 
considered the blood a Newtonian fluid and conducting fluid.  Madhu et al. [29]. In this investigation; it is assumed 
that there is a lubricating layer between red blood cells and tube wall. A pulsatile flow of blood which is considered 
as a couple stress fluid through a porous medium under the influence of periodic body acceleration in the presence 
of magnetic field has been investigated by Rathod and Tanveer [30]. Singh and Rathee [31] gave an analytical 
solution of two dimensional model of blood flow with variable viscosity through an indented artery due to low 
density lipoprotein effect in the presence of magnetic field. The investigation shows that hypertensive patients are 
more adequate to have heart circulatory problems. The effect of uniform transverse magnetic field on its pulsatile 
motion through an axi-symmetric tube is analyzed by Dulal and Ananda [32]. Zamir and Roach [33] studied Blood 
flow downstream of a two-dimensional bifurcation with a symmetrical steady flow. In view of this, in our paper we 
discuss an analytical study of unsteady hydro magnetic generalized couette flow of an incompressible electrically 
conducting couple stress fluid through a porous medium between parallel plates, taking into account pulsation of the 
pressure gradient effect and under the influence of periodic body acceleration with phase differenceφ .  

 
2. Formulation and solution of the problem: 
We consider the unsteady pulsatile flow of an incompressible couple stress fluid in a parallel plate channel under the 
influence of uniform transverse magnetic field of strength H0 normal to the plates.  The flow of a couple stress fluid 
in a parallel plate channel of width 2h bounded by a clean fluid.  The flow takes place with uniform axial pressure 
gradient and under the influence of periodic body acceleration with phase differenceφ .  The upper plate moves with 

a constant velocity U in its own plane and bottom plate is at rest. We choose a Cartesian frame of reference O(x, y) 
with hy ±= .  The flow in the clean fluid region is assumed to be fully developed.  The periodic body acceleration 

is assumed to be  φcos0gG =   where, 0g  is the amplitude of the body acceleration and φ   is its phase 

difference. The unsteady hydro magnetic equations governing the couple stress fluid uniform pressure gradient and 
periodic body accelerations with reference to a frame 
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where u is the axial velocity, ρ   is the density of the fluid, p is the pressure,  µ  is the coefficient of viscosity and 

η  is the coefficient of couple stress.  

 
The boundary conditions are  

hyatUu ==                                                                                                  (3) 
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Conditions (3) and (4) specify the non-slip conditions at the bounding walls.   However condition (3) specifies that 
the fluid adjacent to the non accelerating upper boundary with velocity U where as the lower boundary is fixed.  
Condition (5) specifies the vanishing couple stress conditions. 
 
Introducing non-dimensional variables are  
 

2

2
*

2
*

2
**** ,,,,,

µ
ρ

ν
ωων

ρ
µ

hp
p

h

h

t
t

h

u
u

h

y
y

h

x
x ====== ⋅

 
 
Using the non-dimensional variables (dropping asterisks), we obtain 
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a =   is the couple stress parameter  

 

µ
σµ 22

0

2
2 hH

M e=  is the Hartmann number (Magnetic field parameter) 

 

2

23
0

µ
ρhg

G =   is the body acceleration parameter 

 
Corresponding the non-dimensional boundary conditions are given by 
 

hyatUu ==                                                                                                  (7) 

 
hyatu −== 0                                                                                            (8) 
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For the pulsation pressure gradient 
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Equation (6) reduces to the form     
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The equation (11) can be solved by using the following perturbation technique  
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Substituting the equation (12) in (11) and equating like terms on both sides 
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Subjected to the boundary conditions 
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The solutions of the equations (13) and (14) subjected to the boundary conditions (15) to (20) give the velocity 

distribution of the fluid under consideration.             
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Where, the constants 821 .,........., CCC   are given in appendix. 
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The shear stresses on the lower and upper plates are given in dimension less form as 
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RESULTS AND DISCUSSION 

 
From the linear momentum equations, we may note that if the magnitude of the body acceleration dominates over 
the axial pressure gradient then the velocity u is positive and the flow takes place from left to right.  In case of the 
magnitude of pressure gradient is more then the body acceleration, then u is negative and the flow takes place from 
right to left. In general the magnitude of velocity u increases from zero the state of rest on the lower boundary (

0=y ) to a maximum in the upper half region and later gradually reduces to rest on the upper boundary (1=y ). 

The flow governing the non-dimensional parameters namely viz. a couple stress parameter, 2M the Hartmann 
number, G body acceleration parameter, Po the amplitude of pulsation pressure gradient.  Fig (1-2) represent the 
velocity profiles for the pulsation pressure gradient dominates the body acceleration parameter and which 

corresponds to ( 1=t , 4/πω = , 060=φ ) with variations in the governing parameters while fixing the other 
parameters and the figures (3-4) represents the reverse case with flow taking place from right to left.  
 
Fig (1 and 3) illustrates the magnitude of the velocity u enhances with increasing the couple stress parameter “a” and 
fixing the other parameters.  From figures (2 and 4), it is evident that the magnitude of the velocity u decreases with 
increasing the intensity of the magnetic field (Hartmann number M).  The velocity profiles (5 & 6) exhibit how the 
velocity u influenced with the body acceleration parameter G. We may observe that the negative pressure gradient in 
the momentum equation balances the body acceleration term and hence in the absence of any other extraneous 
forces the fluid is at rest, since the channel walls are at rest. However, when the body acceleration dominates the 
pulsation pressure gradient, the magnitude of the velocity component u enhances with increase in G in the entire 
flow field.  Likewise it is interesting to note that when the pulsation pressure gradient dominates the body 
acceleration, an increase in G the magnitude of the velocity u reduces in the entire flow field.  The Fig (7 & 8) 
illustrates the magnitude of the velocity u enhances with increase in the amplitude of pulsation of pressure gradient 
in both cases (when the body acceleration dominates the pulsation pressure gradient and vice versa).  
 
The shear stresses have been evaluated on the boundaries and tabulated in the tables 1 and 2.  The magnitude of the 
stresses on either plate enhances with increase in body acceleration parameter G and it reduces with increase in the 
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amplitude of pulsation pressure gradient and the Hartmann number M fixing the other parameters.  Thus the 
magnitude of the stresses on the lower boundary is far lesser than the corresponding magnitudes on the upper 
boundary. We observe that the stresses reduces on the upper boundary while enhances on the lower boundary with 
increase in the couple stress parameter ‘a’. 
 

 

 

 

 
 

 

Fig. 1: The velocity profile for u against a with G=1, M=5, Po=Ps =10 

 

Fig. 2: The velocity profile for u against M with a=0.5, G=1, Po=Ps =10 

 

 

Fig. 3: The velocity profile for u against a with G=1, M=2, Po=Ps =10 

 

Fig. 4: The velocity profile for u against M with a=0.5, G=1, Po=Ps =10 

 

 

Fig. 5: The velocity profile for u against G with a=0.5, M=2, Po=Ps =1 
 

Fig. 6: The velocity profile for u against G with a=0.5, M=2, Po=Ps =10 

 

 

Fig. 7: The velocity profile for u against Po with a=0.5, G=1, M=2, Ps =10 

 

Fig. 8: The velocity profile for u against Po with a=0.5, G=25, M=2, Ps =10 
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Table 1: The shear stresses on the upper plate 
 

a I II III IV V VI VII 
0.5 0.427585 0.384225 0.311421 0.586225 1.245665 0.257695 0.083125 
1 0.235423 0.121402 0.052202 0.346752 0.683023 0.105214 0.042141 
4 0.145855 0.048732 0.010863 0.231402 0.483152 0.082125 0.004365 
M 2 5 8 2 2 2 2 
G 1 1 1 2 3 1 1 
Po 10 10 10 10 10 25 50 

 
Table 2: The shear stresses on the lower plate 

 
a I II III IV V VI VII 

0.5 -0.08214 -0.05865 -0.02515 -0.15612 -0.25065 -0.04025 -0.02465 
1 -0.14825 -0.09421 -0.04321 -0.28525 -0.49345 -0.08227 -0.04309 
4 -0.24555 -0.152202 -0.09522 -0.47802 -0.83166 -0.19909 -0.08385 
M 2 5 8 2 2 2 2 
G 1 1 1 2 3 1 1 
Po 10 10 10 10 10 25 50 

 
CONCLUSION 

 
1. The magnitude of the velocity enhances with increase in the couple stress parameter ‘a’ and the amplitude of 
pulsation pressure gradient.  
2. The magnitude of the velocity reduces with increase in the Hartmann number M.  
3. When the body acceleration dominates the pulsation pressure gradient, the magnitude of the velocity enhances 
with increase in the body acceleration parameter G, while pulsation pressure gradient dominates body acceleration 
the magnitude of the velocity reduces with increase in G.  
4. The magnitude of the stresses on either plate enhances with increase in body acceleration parameter G and it 
reduces with increase in the amplitude pulsation pressure gradient and the Hartmann number M.  The stress reduces 
on the upper boundary and enhances on the lower boundary with increase in the couple stress parameter ‘a’.  
5. The magnitude of the stresses on the lower boundary lesser than the corresponding values of the upper boundary. 
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