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ABSTRACT 
 
The theoretical problem of an unsteady viscous flow of an ionized gas with constant properties in the presence of an 
applied magnetic and electric field through a horizontal channel bounded by two parallel porous plates, subject to 
an uniform suction, applied normal to the plates, by taking Hall currents in to account is investigated. The 
transpiration velocity distributions are assumed to vary periodically with time about a non-zero velocity. The 
closed-form solutions for the velocity distributions, such as primary and secondary velocity distributions, also the 
corresponding mean velocities are reported for small periodic frequency parameter when both plates are made up 
of non-conducting and conducting porous materials. These results are depicted graphically to elucidate the 
interesting features of the flow pattern in presence of Hall currents.  We note that, when the motion is in steady state 
and for non-porous plates, these results coincide with those of Sato [20]. Also, it is noticed that, the velocity 
distributions thus obtained are found to be the independent of s ( the ratio of electron pressure to the total pressure ) 
in case of non-conducting porous plates and are depending on ‘s’ for the case of conducting plates. 
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INTRODUCTION 

 
Magnetohydrodynamics is currently undergoing a period of great enlargement. It is well known that a number of 
astronomical bodies, namely, the sun, the planets, the magnetic stars, pulsars etc., possess fluid interior and at least 
surface magnetic field. Hence, any flow phenomenon occurring in a celestial body take place under the influence of 
an external magnetic field. The interest in these problems generates from their importance in liquid metals, 
electrolytes and ionized gases. The mechanism of conduction in ionized gases in the presence of a strong magnetic 
field is different from that in a metallic substance. The electric current in ionized gases is generally carried by 
electrons which undergo successive collisions with other charged or neutral particles. In the ionized gases, the 
current is not proportional to the applied potential except when the electric field is very weak. However, in the 
presence of strong electric field, the electrical conductivity is found to be affected by the magnetic field. 
Consequently, the conductivity parallel to the electric field is reduced. Hence, the current is reduced in the direction 
normal to both electric and magnetic fields. This phenomenon is known as Hall Effect. Due to this Hall current, the 
electrical conductivity of the fluid becomes anisotropic and this causes a secondary flow in magnetohydrodynamic 
primary flows. Hall current is of great importance in many astrophysical problems, Hall accelerator and flight MHD 
as well as flows of plasma in a MHD power generator. The stationary and non–stationary unsteady flows of an 
electrically conducting viscous incompressible fluid flow through porous plates in presence of Hall currents have 
been well established with increasing interests both from the practical needs of the astronautics, plasma physics and 
aero-space engineering by many investigators, namely, Muhuri [14], Lajpat Rai[11], Pop[18,17],  Datta and Jana 
[4], Mazumdar [13], Debnath et al [6], Rao and Krishna [19], Bharali  and  Borkakati [1], Tiwari and Kamal singh 
[25], Seth And Ghosh [21], Hossain and Rashid [8], Siva Prasad et al [23], Chand et al. [10] and Rajasekhar et al. 
[15] under varied conditions and of different geometrical situations. Even though, these studies through porous 
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plates were carried out in different ways, it seems that the studies concerning unsteady viscous incompressible flows 
of an ionized gas between two parallel porous plates have been appeared only a few in literature.  As such studies 
are expected to be useful for the boundary layer control in the field of aerodynamics, space science and in nuclear 
fusion research etc. Also, these studies are useful to carry out experiments with ionized gases to produce power on a 
large scale in stationary plants with large magnetic fields, such as in MHD generators, Hall accelerators etc. So in 
this paper, an attempt has been made to study the effects of the behaviour of flow parameters in an unsteady 
hydromagnetic viscous flow of an ionized gas between two infinite parallel porous plates, taking Hall currents into 
account under the influence of a uniform transverse magnetic field, following the analysis of Sato [20], Raju and 
Rao [12], by including the porosity at the plates. Exact solutions have been obtained for both the primary and 
secondary velocity distributions, also their corresponding mean velocities in two cases, that is, when both plates are 
made up of non-conducting and conducting porous materials. The profiles of the distributions are plotted after 
obtaining the numerical values for different sets of values of the governing parameters involved and discussed in 
detail by analyzing parameters such as, Hartmann number M, Hall parameter m and suction parameter λ.  
 
FORMULATION AND SOLUTION OF THE PROBLEM 
Consider an unsteady viscous fully developed flow of an ionized gas with constant properties through a horizontal 
channel bounded by two parallel porous plates (infinite in extent along x-and z-directions) subject to the uniform 
suction v0, applied normal to the plates, that is along y-direction. The fluid is driven by a constant pressure gradient. 
In the coordinate system choosing the origin midway between the plates, the x-axis is taken in the direction of 
hydrodynamic pressure gradient in the plane parallel to the channel plates but not in the direction of flow. A parallel 
uniform magnetic field of strength B0 is applied in the y-direction. It is assumed that the induced magnetic field is 
negligible in comparison with the applied field, under the assumption that the magnetic Reynolds number is small, 

such that B  = ( 0, 0, B0 ). The assumption is justified because the magnetic Reynold’s number of a partially ionized 
fluid is very small. Since, the fluid is subjected to a constant section v0 applied normal to both the plates and hence, 

if (u, v, w) are the velocity components in the fluid, then the equation of continuity 0. =∇ q  gives v = - v0(v0>0), 

where q =(u, v, w). The height of the channel is denoted by 2h and the width is assumed to be very large in 

comparison with the channel height 2h. All physical quantities except pressure become functions of y and t only, as 
the walls are infinite in extent along x-and z-directions. Further, to simplify the theoretical analysis, the following 
assumptions as in Sato [20], Raju and Rao [12] are considered: (i) the density of gas is always constant, (ii) the  
ionization  is  in equilibrium, which is not affected   by the applied  magnetic and electric fields, (iii) the effect of 
space charge is neglected, (iv) the  flow  is  fully  developed   and   stationary,  that   is  ∂/∂t = 0  and  ∂/∂x = 0 
except  ∂p/∂x ≠ 0, (v) the magnetic Reynolds number is small (so that the externally applied magnetic field is 
undisturbed by the fluid), namely the induced magnetic field is small compared with the applied field. Therefore, 
components in the conductivity tensor are expressed in terms of B0  and (vi) the flow is two-dimensional, namely 
∂/∂z = 0.   
   
Using these assumptions, the governing equations of motion and current are formulated as follows for the two-
dimensional problem of an unsteady MHD flow of neutral fully ionized gas in presence of Hall currents through two 
parallel porous plates. 
 
The equations of motion and current for the unsteady flow of neutral fully–ionized gas valid under the above 
mentioned conditions and assumptions as in Spitzer [24] are simplified as 
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These equations are to be solved subject to the boundary conditions:              
  
u (-h)  = 0,                                                                                                              (3) 
 
u (h)  =  ε cos(ωt) ,ε<<1,                                                                                        (4) 
 



T. Linga Raju and V. Gowri Sankara Rao                           Adv. Appl. Sci. Res., 2013, 4(4):360-370       
 _____________________________________________________________________________ 

362 
Pelagia Research Library 

w(-h)  = 0,                                                                                                                                      (5) 
 
w(h)   =  ε sin(ωt),  ε<<1.                                                                                                               (6) 
                                         

In the above equations, u and w are x- and z- components of the velocity V , known as the primary and secondary 

velocity distributions respectively.   Ex , Ez, and Jx , Jz are the x- and z- components of electric field E  and current 

density J  respectively. Here, s = pe/p is the ratio of the electron pressure to the total pressure; the value of s is 1/2 
for neutral fully–ionized plasma and approximately zero for a weakly–ionized gas.  Also p is pressure, ρ the density, 
ν the kinematic viscosity, where ε(amplitude) is a small constant quantity such that ε<<1 and ω is frequency of 
oscillation. 
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where ωe is the gyration frequency of electron; τ and τe are the mean collision time between electron and ion, 
electron and neutral particles respectively; σ1, σ2 are the modified conductivities parallel and normal to the direction 
of electric field.  The above expression for m which is valid in the case of partially–ionized gas agrees with that of 
fully–ionized gas when τe approaches infinity. 
 
Then the eqs.(1) and (2) are non–dimensionalized, using    the   characteristic  length   h  and   velocity uP = - 
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and λ ( Porous  parameter or  Suctionnumber ) = 

(hv0)/ν.                                                                                                                                                                        (10) 
  
Using the above transformations, the following non–dimensional forms of equations are obtained as: 
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where  

 k1 = 1 – s (1 - ( )2

1

1 m+
),   k2 = - s (( )21

m

m+
),      mx = Ex/(B0uP),  mZ = Ez/(B0uP).             

 
The corresponding boundary conditions are:              
  
u (-1) = 0,                                                                                                                       (15) 
 
u ( 1) = ε cos(ωt),   where   ε<<1,                                                                                                                               (16) 
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w(-1) = 0,                                                                                                                                                                    (17) 
 
w(1)  =  ε sin(ωt), ε<<1.                                                                                                                                             (18) 
 
For simplicity, introducing the complex notations:  
 
q = u + iw,             k = k1 + ik2, E = mx + imz ;  
 
the eqs.(17) and (18) can be written in complex form as:        

2
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Further, Ix and Iz are defined in non-dimensional form by writing     Ix=Jx /(σ0B0uP) and Iz=Jz /(σ0B0uP) respectively, 
and these are given in complex notation as 
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.                                                                                               (20) 

The non- dimensional electric field E is to be determined by boundary   conditions at large x and z. 
  
SOLUTIONS OF THE PROBLEM 
In order to solve the eq.(19) subject to the boundary conditions eqs. (15) to (18) for obtaining the primary and 
secondary velocity distributions, we  assume that  their  solutions  are of the form:  
 

0 1 0 0 0 1 1 1,i tq q e q where q u iw and q u iwωε= + = + = + ,                                                                   (21) 

 
as in the study of Helmy’s [9]. Then separating the real and imaginary parts of the resulting solution,  we obtain the 
solutions for u0, w0, u1 and w1, where, u0(y)  and  w0(y) are the  primary  and  secondary  velocity  distributions  in  
basic  steady  state case; u1(y)   and   w1(y)   are   the   corresponding   time dependent components.  The solutions 
for both primary and secondary velocity distributions are obtained in two cases of study, that is, when the plates are 
made up of (i) non-conducting and (ii) conducting porous materials and are given in the following sections (21) and 
(21) as in the analysis of Sato [20] and Raju and Rao [12]. 
 
Non-conducting porous plates:   
When the side plates are kept at large distance in z-direction and are made up of the non-conducting porous 
materials, then the induced electric current does not go out of the channel but circulates in the fluid.  Therefore, an 
additional condition for the current defined in non-dimensional form is obtained by   
 

                                  0
1

0

=∫ dyI z .                                                                                                 (22)  

        If the insulation at large x is also assumed, another relation is obtained as  

                                                       0
1

0

=∫ dyIx .                                                                                                  (23) 

The above two conditions of insulation at large distance are physically realized, for example, when the flow of 
ionized gas is surrounded by the cold non-conducting gas. Constants in the solutions for velocity distributions are 
determined by these two conditions. And it is seen that, the solutions  for  velocity and current distributions q and I, 
respectively are all independent of the partial pressure of electron  gas ‘s’ and are obtained as  
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the mean velocity for u and w in the complex notation is given by 
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1

0

 = qdy∫  

=  511 13 ,i ta a e bωε+                                                                                                                                              (26) 

 
in which um and wm are the mean velocities of the primary and secondary  velocity distributions u and w 
respectively. Further, by separating the real and imaginary parts from the eqs. (24) and (26), we get the independent 
solutions for both primary and secondary velocity distributions, and their corresponding mean velocities 
respectively. 
 
Conducting porous plates: 
When the side plates are made up of conducting materials and are short– circuited by an external conductor, the 
induced electric current flows out of the channel.  In this case no electric potential exists between the side plates.  If 
we assume zero electric field also in the   x– and z– directions, then we have mx = 0, mz = 0. Constants in the 
solution are determined by these two conditions and it is observed that the solutions for  u, w, Ix and Iz are all depend 
on ‘s’ and are given in complex notations as  
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the mean velocity for u and w in the complex notation is given by 
 

511 12
i t

mq a a e bωε= + .                                                                                                                           (29) 

 
Where the constants involved in the above solutions are given by 
 

RESULTS AND DISCUSSION 
 

The closed-form solutions for the velocity distributions, such as primary and secondary velocity distributions, that 
is, u and w respectively, also the corresponding mean velocities are reported for small ε �, the coefficient of 
exponent of periodic frequency parameter when both plates are made up of non-conducting and conducting porous 
materials.  Computational values for various sets of values of the governing parameters involved are determined for 
primary and secondary velocity distributions, also the corresponding mean velocities. The results are depicted 
graphically in figures. 1– 24 for primary and secondary velocity distributions, also their mean velocities to elucidate 
the interesting features of the flow pattern in presence of Hall currents.  We note that, when the motion is in steady 
state and λ = 0 (i.e., for non-porous plates), these results are coincide with those of Sato [20].  Also, an interesting 
point to be noted here that, the velocity distributions thus obtained are found to be the independent of s ( the ratio of 
electron pressure to the total pressure ) in case of non-conducting porous plates and are depending on ‘s’ for the case 
of conducting plates.  
 
Figs. 1 to 6 show the velocity distributions, such as primary and secondary distributions for different values of the 
Hartmann number M, Hall parameter m and porous parameter λ, in the case when the porous plates are non-
conducting. From Fig 1, it is noticed that the primary velocity distribution decreases as the Hartmann number M 
increases for fixed values of Hall parameter m and porous parameter λ. From fig 2, it is observed that the secondary 
velocity distribution increases as Hartmann number M increases and then decreases the same when M > 4 near the 
center of the channel, but this distribution increases at nearer to both the plates as M increases. From fig 3, it is 
noticed that, an increase in Hall parameter enhances the primary velocity distribution for fixed values of M and λ. 
But from fig 4, it is found that an increase in Hall parameter increases the secondary velocity distribution and then 
decreases the same when m > 4 for fixed values of M and λ. The effect of porous parameter λ, on the primary and 
secondary velocity distributions is depicted in figures 5 and 6 respectively. From figure 5, it is seen that the primary 
velocity distribution decreases as the porous parameter λ increases for fixed values of M and m. From fig.6, it is 
observed that the secondary velocity distribution decreases at the center of the channel as λ increases. But the same 
is increasing at the lower plate where as it decreases at the upper plate. 
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Figs. 7 to 18 show the velocity distributions, such as primary and secondary distributions for different values of the 
Hartmann number M, Hall parameter m and porous parameter λ, in the case when the porous plates are conducting 
and for ionization parameter s = 0 and 0.5 
 
From figs 7 and 8, it is noticed that both the primary and secondary velocity distributions decrease as the Hartmann 
number M increases for fixed values of m and λ. From figs 9 and 10, it is seen that both primary and secondary 
velocity distributions increase as Hall parameter m increases for fixed M and  λ. From figs 11, it is observed that 
primary velocity distributions decrease as the Porous parameter λ  increases for fixed  M and  m. From fig 12, it  is 
noticed that the secondary velocity distribution  increases at near to the lower wall and  it decreases that at  the  
upper  wall as  λ  increases   for   fixed  values   of  M and  m. From figs 13, it is seen that primary velocity 
distributions decreases as Hartmann number M increases for fixed m and λ. From fig 14, it is seen that the secondary 
velocity distribution increases as Hartmann number M increases   up to M = 2 to 4 there after the distribution 
decreases for fixed m and λ. From fig 15, it is noticed that, the primary velocity distribution decreases as Hall 
parameter m increases for fixed values of Hartmann number M and porous parameter λ. From fig 16, it is noticed 
that, the secondary velocity distribution increases as Hall parameter m increases for fixed M and λ. From fig 17, it  
is noticed that the primary velocity distribution  increases at near to the lower wall and  it decreases that at  the  
upper  wall as  λ  increases   for   fixed  values   of  M and  m. From fig 18, it  is noticed that the secondary velocity 
distribution  increases at near to the lower wall and  it decreases that at  the  upper  wall as  λ  increases   for   fixed  
values   of  M and  m. 
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The mean velocities um and wm in case of non-conducting plates are plotted against the Hartmann number M in 
figures 19 and 20 respectively for set of fixed values of Hall parameter m, and porous parameter λ.  it is seen that, as 
M increases, um and wm decrease.  
 
The mean velocities um and wm in case of conducting plates and when the ionization parameter s = 0 are plotted 
against the Hartmann number M in figures 21 and 22 respectively for set of fixed values of Hall parameter m, and 
porous parameter λ. And it is seen that as M increases, um and wm  decrease. 
 
The mean velocities um and wm in case of conducting plates and when the ionization parameter s = 0.5 are plotted 
against the Hartmann number M in figures 23 and 24 respectively for set of fixed values of Hall parameter m, and 
porous parameter λ.  From these figurers, it is observed that as M increases, um and wm decrease.  
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                                                          CONCLUSION 
  
An unsteady hydro-magnetic flow of an ionized gas between two parallel porous plates, in presence of Hall currents, 
when one of the plates is set into uniform accelerated motion is considered. It is observed that, an increase in M 
decreases the primary velocity distribution. While, the secondary velocity distribution increases as Hartmann 
number increases and then decreases the same near the center of the channel when this number is greater than 4, but 
this distribution increases at nearer to both the plates as M increases. The primary velocity distribution decreases as 
the porous parameter λ increases. The secondary velocity distribution decreases at the center of the channel as λ 
increases, but the same is increasing at the lower plate, where as it decreases at the upper plate. An increase in Hall 
parameter enhances the primary velocity distribution, but the secondary velocity distribution first increases and then 
decreases the same when m > 4. 
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