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ABSTRACT 
 
A non-Newtonian second grade fluid flow is considered in a parallel plate horizontal channel partially filled by a 
porous medium. A porous layer of finite thickness is perfectly attached to upper stationary impermeable plate and 
the lower impermeable plate moves suddenly with a constant speed or it starts oscillating in its own plane with 
constant amplitude and frequency. The porous layer is assumed to be homogeneous with constant permeability and 
porosity. For flow in porous medium, a modified Darcy resistance term for a second grade fluid is taken in the 
momentum equation. Laplace transform method is applied to determine the solution of the unsteady flow problem 
for both cases. Expressions for velocity distributions in both porous and clear fluid regions, shear stresses at lower 
plate and porous interface are obtained, and the effects of the various pertinent parameters are investigated and 
discussed. 
 
Key words: Unsteady flow; permeability; second grade fluid; channel partially filled with a porous medium. 
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INTRODUCTION 
 

The study of fluid flow in the presence of porous media has become of main interest in many engineering and 
industrial applications, particularly when the flow is induced by shearing motion of a wall or convection and 
therefore such problems have been investigated extensively, e.g. Al-Nimr and Khadrawi [1], Bég et al. [2], Chauhan 
and Rastogi [3], Chauhan and Agrawal [4, 5], Saxena and Dubey [6], Sreekanth et al. [7], Sreenadh et al. [8] and 
Babu et al. [9]. It is interesting to investigate unsteady Couette flow in a parallel-plate channel filled or partially 
filled by a porous medium. The flow in the channel is caused by moving suddenly or oscillating one wall, while the 
other is kept at rest. Bhargava and Sacheti [10] examined generalized Couette flow of two immiscible fluids and 
heat transfer through a porous channel using Brinkman equations to govern the flow in porous medium. 
 
The Couette flow of a high Prandtl number fluid of temperature dependent viscosity through a porous medium is 
investigated by Daskalakis [11]. Non-Darcy Couette flow through a porous medium saturated with an inelastic non-
Newtonian fluid was examined by Nakayama [12]. Heat transfer effects in Couette flow were investigated by 
Chauhan and Shekhawat [13] and Chauhan and Soni [14] in the presence of a porous medium. Analytical study of 
Couette flow is conducted by Kuznetsov [15] in a parallel-plate channel partially filled by a porous medium and 
partially by a clear fluid. Chauhan and Gupta [16] studied heat transfer effects in Couette flow of a compressible 
fluid through a channel partially filled by a porous layer. Kuznetsov [17] investigated Couette flow and heat transfer 
in a composite duct.  
 
Three dimensional Couette flow was investigated by Singh [18], Govindarajan [19] with transpiration cooling. The 
effects of permeability of a porous substrate are investigated by Chauhan and Kumar [20] in three-dimensional 
Couette flow in a composite parallel plate channel where a transverse sinusoidal injection velocity is applied at one 
bounding wall. 
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Apart from the direct engineering applications, the study of unsteady Couette flow is important because it can serve 
as a good estimate for initial velocities of more complex fluid flow situations. Jordan and Puri [21] obtained exact 
solutions of unsteady Couette dipolar fluid flow. Khaled and Vafai [22] determined exact solutions of Stokes and 
unsteady Couette flows for both small and large times under slip conditions. Unsteady MHD Couette flow and heat 
transfer was investigated by Attia [23, 24]. Such MHD flow and heat transfer problem in a porous medium is 
investigated by Bég et al. [25]. Umavathi et al. [26] studied unsteady oscillating fluid flow in a composite porous 
medium parallel-plate channel.  
 
Recently the study of non-Newtonian fluid flows in the presence of a porous medium has gained interest 
considerably due to their several engineering applications in ceramic processing, biomechanics, enhanced oil 
recovery process and filtration process. However the governing equations that describe such fluid flows are complex 
and the exact solutions for these problems are rare. For one subclass of differential-type non-Newtonian fluids 
(second grade fluid), researchers obtain exact solutions for particular flow problems. Tan et al. [27] determined an 
exact solution of unsteady plane Couette flow of second grade fluid. Using fractional derivative model Tan and Xu 
[28] studied unsteady flows of a second grade fluid between two parallel plates in various cases. Erdo�an and İmrak 
[29] investigated effects of side walls on the unsteady flow of a second grade fluid in a duct. Jordan and Puri [30], 
and Tan and Masuoka [31] examined Stokes first problem for a second grade fluid in a porous half-space. Hayat et 
al. [32] discussed the flow of a second grade fluid in a parallel-plate channel filled by a porous medium when one of 
the plates is moved suddenly and other is kept at rest. And in the other case, unsteady flow problem is examined 
when one plate is oscillating and the other is at rest. Analytic solutions of these problems are determined using 
Laplace transform method. 
 
In this paper, a second grade fluid between two horizontal parallel plates is considered, where a porous layer of 
finite thickness is perfectly attached to the upper plate. Both plates and fluid are initially at rest, and the unsteady 
flow in the channel is generated by sudden motion of the lower impermeable plate or oscillation of the lower plate 
with a constant frequency in its own plane. Exact solutions are obtained for these two cases, and the effects of the 
various pertinent parameters are shown graphically and discussed.  
 

MATERIALS AND METHODS 
 
Formulation and solution 
We consider the flow of a second grade non-Newtonian fluid between two horizontal parallel impermeable plates. 
The distance between two plates is h and a porous layer of thickness h d−  is attached to the upper plate, in the 
channel. A Cartesian coordinate system is taken. x-axis is taken along the lower plate, and y-axis is normal to the 
channel. Thus lower plate is at 0y = , porous medium interface in the channel is at y d= , and upper plate is at 

y h= . The second grade fluid fills the channel 0 y d≤ ≤  and the porous layer d y h≤ ≤ . We write these two 

regions as clear fluid region-I and porous medium region-II respectively. Both plates and fluid are initially at rest. 
Unsteady flow is generated in the channel due to sudden motion of the lower plate with constant speed U0 or 
oscillation of the lower plate with frequency ω in its own plane. We investigate the unsteady motion in the channel 
partially filled with a porous medium for these two cases as (i) First problem, and (ii) Second problem. 
 

For a second grade fluid, Cauchy stress tensor T  is given by the constitutive equation, 
2

1 1 2 2 1T - I A A A ,p µ α α= + + +         (1) 

 

where p is the pressure, I  is the unit tensor, µ  is the dynamic viscosity, 1 2andα α  are the normal stress moduli 

and 1 2A and A  are first two Rivlin-Ericksen kinematic tensors (Fosdick and Rajagopal [33]) defined by 

 

( )1A V V
∗

= ∇ + ∇ ,          (2) 

( ) ( )1
2 1 1

A
A A V V A

d

dt

∗
= + ∇ + ∇ ,        (3) 

 

where d dt  denotes the material time derivative, V  is the velocity field and grad is the gradient operator, and 

( )∗  is the matrix transpose. 
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If the second-grade fluid given by (1) is compatible with thermodynamics, then the material moduli must meet the 
following restriction (Dunn and Rajagopal [34]) 
 

1 1 20, 0 and 0µ α α α≥ ≥ + = .         (4) 

 
For the unsteady flow in porous medium, the Darcy resistance for a second-grade fluid, which is a measure of the 
flow resistance offered by the solid matrix, following Vafai and Tien [35], is given by 
 

1K t

ε µ α ∂ = − + ∂ 
r V ,         (5) 

 
where, K, the permeability and ε is the porosity of the porous medium. 
 
By introducing the following dimensionless quantities, 
 

2 2 2
0 1, , , , , ,u u U y y h t t h h h K h a d hν ω ω ν σ ε α α ρ∗ ∗ ∗ ∗= = = = = = = ,  (6) 

 
the governing dimensionless equations for both regions become 
 

For clear fluid region ( )y a≤ ≤ −0 I  

2 3

2 2

u u u

t y y t
α∂ ∂ ∂= +

∂ ∂ ∂ ∂
,          (7) 

 

For porous medium region ( )1 IIa y≤ ≤ −  

( )
2 3

2 2
2 2

1
U U U

U
t y y t

σ α α σ∂ ∂ ∂+ = + −
∂ ∂ ∂ ∂

,       (8) 

 
where, ρ , the fluid density; σ , the permeability parameter and α  is the non-Newtonian parameter. 

 
The corresponding dimensionless boundary and initial condition for these two problems are given by 
 
For first problem 
 

at  0y = ; ( )0, 1u t = , 

at  y a= ; ( ) ( ) ( ) ( ), ,
, , ,

y a y a

u y t U y t
u a t U a t

y y
= =

∂ ∂
= =

∂ ∂
, 

at  1y = ; ( )1, 0,U t =               

and   ( ) ( ),0 0, ,0 0= =u y U y .       (9) 

 
For second problem 
 

at  0y = ; ( ) ( )0, expu t i tω= , 

at  y a= ; ( ) ( ) ( ) ( ), ,
, , ,

y a y a

u y t U y t
u a t U a t

y y
= =

∂ ∂
= =

∂ ∂
, 

at  1y = ; ( )1, 0,U t =               

and   ( ) ( ),0 0, ,0 0= =u y U y .                 (10) 

 
Exact solutions are obtained of these two problems using Laplace transform method, by defining 
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( ) ( ) ( ) ( )
0

, , exp ,u y s L u y t st u y t dt
∞

= = −   ∫ ,                (11) 

and  

( ) ( ) ( ) ( )
0

, , exp ,U y s L U y t st U y t dt
∞

= = −   ∫ .                (12) 

 
Here s is a Laplace transform parameter. 
 
Using above, equations (7) and (8) reduces to 

( )( )1 0u s s uα′′ − + = ,                   (13) 

 

( )2 21
0

1

s
U U

s

σ σ α
α

 + +
′′  − =
 +
 

,                  (14) 

 
with the corresponding boundary conditions 
 
For first problem 
 

at  0y = ; ( )0, 1u s s= , 

at  y a= ; ( ) ( ) ( ) ( ), ,
, , ,

y a y a

u y s U y s
u a s U a s

y y
= =

∂ ∂
= =

∂ ∂
, 

at  1y = ; ( )1, 0,U s =                       (15) 

 
For second problem 
 

at  0y = ; ( ) ( )0, 1u s s iω= − , 

at  y a= ; ( ) ( ) ( ) ( ), ,
, , ,

y a y a

u y s U y s
u a s U a s

y y
= =

∂ ∂
= =

∂ ∂
, 

at  1y = ; ( )1, 0,U s =                       (16) 

 
The solutions of equation (13) and (14) under the boundary conditions (15) are given by 
 

sinh coshu A py B py= + ,                   (17) 

sinh coshU C qy D qy= + .                   (18) 

 
Where,  

1 2

1

s
p

sα
 =  + 

, 
( ) 1 2

2 21

1

s
q

s

σ σ α
α

 + +
 =

+  

, 

( ) ( )
( ) ( )

sinh sinh 1 cosh cosh 1

sinh cosh 1 cosh sinh 1

p ap a q q ap a q
A

s q ap a q p ap a q

− − −
=

− − −  
, 

1
B

s
= , 

( ) ( )
cosh

sinh cosh 1 cosh sinh 1

p q
C

s q ap a q p ap a q

−=
− − −  

, tanhD C q= − . 
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Above equations has a simple pole at 0s = . It has an infinite number of poles located on the negative real axis at 

( )2 21 ,n n ns j jα= − +  where nj  is a real number and n changes from one to infinity. These nj  can be determined  

 
by the following equation 

( ) ( )2 2 2 2tan tan 1 0n n n nj aj j a jσ σ− + − − = .                (19) 

 
Also the solutions of equation (13) and (14) under the boundary conditions (16) are given by 

'sinh 'coshu A py B py= + ,                   (20) 

 

'sinh 'coshU C qy D qy= + .                   (21) 

 
Where,  

( ) ( )
( ) ( ) ( )

sinh sinh 1 cosh cosh 1
'

sinh cosh 1 cosh sinh 1

p ap a q q ap a q
A

s i q ap a q p ap a qω
− − −

=
− − − −  

, 
1

'B
s iω

=
−

, 

( ) ( ) ( )
cosh

'
sinh cosh 1 cosh sinh 1

p q
C

s i q ap a q p ap a qω
−=

− − − −  
, ' ' tanhD C q= − . 

 
Above equations has a simple pole at s iω= . It has an infinite number of poles located on the negative real axis at 

( )2 21 ,n n ns j jα= − +  where nj  is a real number and n changes from one to infinity. These nj  can also be 

determined by the equation (19). 
 
Using the Cauchy’s residue theorem (Brown and Churchill, [36]) and complex analysis, the inverse Laplace 
transform of the velocity is obtained. 
 

(A) Solutions for the first problem are given by 
 

( ) ( )
( ) ( )

cosh 1
, 1

cosh 1 sinh 1

y a
u y t

a a a

σ σ
σ σ σ

−
= −

− + −
 

( ) ( )
( ) ( )

2 2 2
1

22
1 2

sin
2 exp

11
n n n n

n nn n n

j F j j y j
t

jj j F j

σ
αα

∞

=

−  
+ − ++  
∑ ,              (22) 

 

( ) ( )
( ) ( )
sinh 1

,
cosh 1 sinh 1

y
U y t

a a a

σ
σ σ σ

−
=

− + −
 

( ){ }
( ) ( )

2 2 2 2
2

22
1 2

sin 1
2 exp

11

n n
n

n nn n

j y j j
t

jj F j

σ σ

αα

∞

=

− − −  
+ − ++  
∑ .             (23) 

 
The steady state solution is of the following form: 

( ) ( )
( ) ( )

cosh 1
, 1

cosh 1 sinh 1

y a
u y t

a a a

σ σ
σ σ σ

−
= −

− + −
,                (24) 

 

( ) ( )
( ) ( )
sinh 1

,
cosh 1 sinh 1

y
U y t

a a a

σ
σ σ σ

−
=

− + −
.                 (25) 

 
The volume flux Q across a plane normal to the flow is 
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1

0

dy dy
a

a

Q u U= +∫ ∫ .                    (26) 

 
Using (22) and (23), we get from equation (26) 

( )
( ) ( )

( )
( ) ( )

2cosh 1 1-cosh 1

2 sinh 1 cosh 1 sinh 1 cosh 1

a a a
Q a

a a a a a a

σ − σ − σ
= − −

− σ + σ − σ σ − σ + σ − σ      
 

( )( )
( ) ( )

2 2 2
1

22 2
1 2

1 cos
2 exp

11
n n n n

n nn n n

j F j j a j
t

jj j F j

∞

=

− σ −  
+ − + α+ α  
∑  

( ){ }
( ) ( )

2 2
2

22
1 2

1 cos 1
2 exp

11

n
n

n nn n

a j j
t

jj F j

∞

=

 − − − σ    + − + α+ α  
∑ .               (27) 

 

The dimensionless shear stress at the lower moving wall ( )0y = , 

2

0

0y

u u

y y t =

 ∂ ∂τ = + α ∂ ∂ ∂ 
 

( )
( ) ( )

( )
( ) ( )

2 2 2
1

2 22
1

2

cosh 1
2 exp

cosh 1 sinh 1 11

n n n

n nn n

j F ja j
t

a a a jj F j

∞

=

− σσ − σ  
= − + − σ − σ + − σ + α+ α  

∑ ,            (28) 

 

and at the porous medium interface ( )y a= , 

2

a

y a

u u

y y t
τ α

=

 ∂ ∂= + ∂ ∂ ∂ 
 

( )
( ) ( )

( ) ( )
( ) ( )

2 2 2
1

2 22
1

2

coscosh 1
2 exp

cosh 1 sinh 1 11

n n n n

n nn n

j F j aja j
t

a a a jj F j

σσ σ
σ σ σ αα

∞

=

−−  
= − + − − + − ++  

∑ . (29) 

 
(B) Solutions for the second problem are given by 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

cosh 1 sinh sinh 1 cosh exp
,

sinh cosh 1 cosh sinh 1

m a m a y l l a m a y l i t
u y t

m al a m l al a m

ω− − + − −  =
− + −

 

( ) ( )
( ) ( )

2 2 2
1

2
1 2 3

sin
2 exp

1
n n n n n

n n n n

j j F j j y j
t

F j F j j

σ
α

∞

=

−  
+ − + 
∑ ,            (30) 

 

( ) ( ) ( )
( ) ( )

sinh 1 exp
,

sinh cosh 1 cosh sinh 1

l y m i t
U y t

m al a m l al a m

ω−  =
− + −

 

( ){ }
( ) ( )

2 2 2 2 2
2

2
1 2 3

sin 1
2 exp

1

n n n
n

n n n n

j j y j j
t

F j F j j

σ σ

α

∞

=

− − −  
+ − + 
∑ .             (31) 

 
The steady state solution is of the following form 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

cosh 1 sinh sinh 1 cosh exp
,

sinh cosh 1 cosh sinh 1

m a m a y l l a m a y l i t
u y t

m al a m l al a m

ω− − + − −  =
− + −

,            (32) 
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( ) ( ) ( )
( ) ( )

sinh 1 exp
,

sinh cosh 1 cosh sinh 1

l y m i t
U y t

m al a m l al a m

ω−  =
− + −

.               (33) 

The volume flux Q across a plane normal to the flow is 
1

0

dy dy
a

a

Q u U= +∫ ∫ .                    (34) 

 
Using (30) and (31), we get from equation (34) 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2cosh 1 cosh sinh 1 sinh cosh 1 exp

sinh cosh 1 cosh sinh 1

m a m al lm a m al l m a m l i t
Q

lm m al a m l al a m

ω − + − + − − − =
− + −  

 

( )( )
( ) ( )

2 2 2
1

2
1 2 3

1 cos
2 exp

1
n n n n

n n n n

j F j j a j t

F j F j j

σ
α

∞

=

− −  
+ − + 
∑  

( ){ }
( ) ( )

2 2 2
2

2
1 2 3

1 cos 1
2 exp

1

n n
n

n n n n

j a j j t

F j F j j

σ

α

∞

=

 − − −    + − + 
∑ .             (35) 

 

The dimensionless shear stress at the oscillating plate ( )0y = , 

2

0

0y

u u

y y t
τ α

=

 ∂ ∂= + ∂ ∂ ∂ 
 

( ) ( ) ( ) ( )
( ) ( )

1 1 1 exp

1 1

l i mcosh a mcosh al l sinh a m sinh al i t

m sinh al cosh a m l cosh al sinh a m

αω ω+ − + −  = −
− + −

 

( )
( ) ( ) ( )

2 2 2 2
1

22
1 2 3

2 exp
11

n n n n

n nn n n

j j F j j t

jj F j F j

σ
αα

∞

=

−  
+ − ++  
∑ ,              (36) 

 

and at the porous medium interface ( )y a= , 

2

a

y a

U U

y y t =

 ∂ ∂τ = − + α ∂ ∂ ∂ 
 

( ) ( ) ( )
( ) ( )

1 cosh 1 mexp

sinh cosh 1 cosh sinh 1

lm i a i t

m al a m l al a m

αω ω+ −
=

− + −
 

( ) ( )
( ) ( ) ( )

2 2 2 2 2 2

22
1 2 3

cos 1
2 exp

11

n n n n

n nn n n

j j a j j t

jj F j F j

σ σ
αα

∞

=

− − −  
+ − ++  
∑ .              (37) 

 
Where  

( ) 1 2
1 2 2 2 2 22

2 2 2 2

1

1 1

ii
l , m

β α ω αω ωαω ω
α ω α ω

 + + + +
 = =   + +   

 

( ) ( ){ } ( ){ }2 2 2 2 2 2
1 sin sin 1 cos cos 1n n n n n n nF j j aj a j j aj a jσ σ σ = − − − − − −

  
 

( ) ( ){ } ( ) ( ){ }2 2 2 2 2 2
2 sin cos 1 cos cos 1n n n n n n nF j j aj a j j a aj a jσ σ σ= − − + − − −


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( ){ } ( ){ }2 2 2 2 2 2 2 2sin sin 1 cos sin 1n n n n n n nj j aj a j j aj a jσ σ σ σ − − − − + − − −


( ) ( ) ( )2 2 2
3 1 1n n n nF j j j i jα ω α = + + +   

 
RESULTS AND DISCUSSION 

 
In this paper, the unsteady shearing motion of a second grade fluid between two horizontal parallel plates is 
investigated, where a porous layer of finite thickness is perfectly attached to the upper stationary plate and unsteady 
flow in the channel is generated either by sudden motion of the lower plate or by oscillating it in its own plane. 
Exact solutions are obtained for the first and second problem by the Laplace transform method, such that these 

represent unsteady flows in the channel at the time 0t +=  and for t → ∞  they become steady state solutions. The 
effects of various pertinent parameters on the flow and shear stresses at the boundary walls of the channel are shown 
in figs. 1-11. In each figure part (a) is drawn for the first problem, while part (b) and (c) describes the second 
problem. The effects of time can be observed by figs. 1-3 on the velocity distribution in the channel for both 
problems. 
 
In fig. 1(a), we see that with the increase in time t, the flow approaches a steady state in the first problem. It is 
achieved at 0.4t = , when 10 and 0.01σ α= = . If we compare fig. 1(a) with the case when 

( )0K σ→ ∞ = (fig. 2(a)), i.e. the channel is free from the porous material, we see that by the introduction of the 

porous layer in the channel the steady state is achieved earlier. Figure 1(a) is also compared with the case when 
0α = (fig. 3(a)), i.e. the channel is filled with Newtonian fluid. It can be seen that the flow of a Newtonian fluid 

gets to the steady state more quickly than that of a second grade fluid. Similar results are observed for the second 
problem, except that in this case the steady state is achieved much later when compared to the first problem. Results 
are also compared for the case when the channel is completely filled by a porous medium for both problems. 
 
Equations (24) and (25) reveal that the steady state solution of the coupled flow first problem is independent of the 
non-Newtonian parameter. Therefore the steady state velocity profiles in both regions are same for the Newtonian 
and second grade fluid. However, the transient solution is affected by the nature of the fluid. On the other hand, eq. 
(32) and (33) show that in second problem, the periodic steady state solution and the transient solution both depends 
on the non-Newtonian parameter. It is apparent from the fig. 4 that velocity is an increasing function of the non-
Newtonian parameter in both the problems. Also the effect of non-Newtonian parameter on transient velocity is 
shown in fig. 5. We see that the transient velocity decrease numerically on increasing the non-Newtonian parameter.  
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Fig. 1(a) Profiles of the dimensionless velocity ( )u y  against y for 10, 0.01, 0.8aσ α= = =  (the first problem) 
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Fig. 1(b) Profiles of the dimensionless velocity ( )u y  against y for 10, 0.01, 0.5,σ α ω= = =  0.8a =  (the 

second problem) 
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Fig. 1(c) Profiles of the dimensionless velocity ( )u y  against y for 10, 0.01, 0.5σ α ω= = =  0.8a =  (the 

second problem) 
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Fig. 2(a) Profiles of the dimensionless velocity ( )u y  against y for 0.01α =  (the first problem) 
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Fig. 2(b) Profiles of the dimensionless velocity ( )u y  against y for 0.01, 0.5α ω= =  (the second problem) 
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Fig. 3(a) Profiles of the dimensionless velocity ( )u y  against y for 10, 0, 0.8aσ α= = =  (the first problem) 
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Fig. 3(b) Profiles of the dimensionless velocity ( )u y  against y for 10, 0, 0.5,σ α ω= = =  0.8a =  (the 

second problem) 
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Fig. 4(a) Profiles of the dimensionless velocity ( )u y  against y for 2, 0.05, 0.8t aσ = = =  (the first 

problem) 
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Fig. 4(b) Profiles of the dimensionless velocity ( )u y  against y for 2, 0.05, 0.5,tσ ω= = =  0.8a =  (the 

first problem) 
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Fig. 5(a) Profiles of the dimensionless transient velocity ( )tu y  against y for 2, 0.05,tσ = =  0.8a =  (the 

first problem) 
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Fig. 5(b) Profiles of the dimensionless transient velocity ( )tu y  against y for 2, 0.05,tσ = =  

0.5, 0.8aω = =  (the second problem) 
 
In figs. 6-8, we see that the effect of the permeability K is to increase the flow in both clear fluid and porous region. 
The steady state velocity is an increasing function of K, and the transient flow velocity also increases numerically 
throughout the region with an increase in permeability for both the problems. It is seen that the effect of the 
permeability is significant only in the porous layer and in the nearby porous interface region in the clear fluid. 
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Fig. 6(a) Profiles of the dimensionless velocity ( )u y  against y for 0.01, 0.1,tα = =  0.8a =  (the first 

problem) 
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Fig. 6(b) Profiles of the dimensionless velocity ( )u y  against y for 0.01, 0.1,tα = = 0.5,ω =  0.8a =  (the 

second problem) 
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Fig. 7(a) Profiles of the dimensionless steady state velocity ( )su y  against y for 0.01,α =  0.1,t = 0.8a =  

(the first problem) 
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Fig. 7(b) Profiles of the dimensionless steady state velocity ( )su y  against y for 0.01,α =  

0.1, 0.5,t ω= = 0.8a =  (the second problem) 
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Fig. 8(a) Profiles of the dimensionless transient velocity ( )tu y  against y for 0.01,α =  0.1,t = 0.8a =  (the 

first problem) 
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Fig. 8(b) Profiles of the dimensionless transient velocity ( )tu y  against y for 0.01,α =  

0.1, 0.5,t ω= = 0.8a =  (the second problem) 
 
 
Figures 9-11, shows variations of shear stresses at the moving/oscillating wall and at the stationary porous interface 
in the channel for various parameters. From the engineering application point of view, reduction in skin friction at 
the channel walls is important. Among several techniques for reducing skin friction, changing the wall boundary 
conditions such as applying suction or porous medium lining play a significant role. It is seen from fig. 9 that the 
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effect of the permeability of the porous layer is to reduce the dimensionless shear stress at the channel walls for both 
type of problems.  
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Fig. 9(a) Profiles of the dimensionless shear stress yxτ  against t { 0τ - at lower plate, and aτ -  at porous 

medium interface}for 0.05, 0.8aα = =  (the first problem) 
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Fig. 9(b) Profiles of the dimensionless shear stress yxτ  against t { 0τ - at lower plate, and aτ -  at porous 

medium interface}for 0.05, 2, 0.8aα ω= = =  (the second problem) 

It is observed that as permeability K increases (or h
K

εσ = decreases), the shear stress 0τ  at the lower wall and 

aτ  at the porous interface decreases absolutely. However in fig. 10 it is observe that the non-Newtonian parameter 
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α  increases numerically the shear stress aτ  at the porous interface but decrease 0τ  at the lower wall. Figure 11 

shows that the shear stress at the porous interface ( )aτ  reduces numerically as frequency ω increases for small 

time, while the shear stress at the oscillating plate ( )0τ  decreases numerically as frequency ω increases but as time 

passes it changes sign and increases afterwards. 
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Fig. 10(a) Profiles of the dimensionless shear stress yxτ  against t { 0τ - at lower plate, and aτ -  at porous 

medium interface}for 2, 0.8aσ = =  (the first problem) 
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Fig. 10(b) Profiles of the dimensionless shear stress yxτ  against t { 0τ - at lower plate, and aτ -  at porous 

medium interface}for 2, 2, 0.8aσ ω= = =  (the second problem) 
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Fig. 11 Profiles of the dimensionless shear stress yxτ  against t { 0τ - at lower plate, and aτ -  at porous medium 

interface}for 2, 0.05, 0.8aσ α= = =  (the second problem) 
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