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ABSTRACT

A non-Newtonian second grade fluid flow is considered in a parallel plate horizontal channel partially filled by a
porous medium. A porous layer of finite thickness is perfectly attached to upper stationary impermeable plate and
the lower impermeable plate moves suddenly with a constant speed or it starts oscillating in its own plane with
constant amplitude and frequency. The porous layer is assumed to be homogeneous with constant permeability and
porosity. For flow in porous medium, a modified Darcy resistance term for a second grade fluid is taken in the
momentum equation. Laplace transform method is applied to determine the solution of the unsteady flow problem
for both cases. Expressions for velocity distributions in both porous and clear fluid regions, shear stresses at lower

plate and porous interface are obtained, and the effects of the various pertinent parameters are investigated and
discussed.
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INTRODUCTION

The study of fluid flow in the presence of porousdia has become of main interest in many engingeaid
industrial applications, particularly when the flag/ induced by shearing motion of a wall or conigttand
therefore such problems have been investigatedhgxtdy, e.g. Al-Nimr and Khadrawi [1], Bég et f2], Chauhan
and Rastogi [3], Chauhan and Agrawal [4, 5], Saxamé Dubey [6], Sreekanth et al. [7], Sreenadh.gBhand
Babu et al. [9]. It is interesting to investigatesteady Couette flow in a parallel-plate channidior partially
filled by a porous medium. The flow in the chanisetaused by moving suddenly or oscillating ond,wethile the
other is kept at rest. Bhargava and Sacheti [18éned generalized Couette flow of two immiscillgds and
heat transfer through a porous channel using Bratkequations to govern the flow in porous medium.

The Couette flow of a high Prandtl number fluidtemperature dependent viscosity through a poroudiumeis
investigated by Daskalakis [11]. Non-Darcy Coudttev through a porous medium saturated with anastit non-
Newtonian fluid was examined by Nakayama [12]. Heanhsfer effects in Couette flow were investigatsd
Chauhan and Shekhawat [13] and Chauhan and Saohin[iHe presence of a porous medium. Analyticatigtof
Couette flow is conducted by Kuznetsov [15] in agfiel-plate channel partially filled by a porousdium and
partially by a clear fluid. Chauhan and Gupta [$6]died heat transfer effects in Couette flow afoapressible

fluid through a channel partially filled by a posolayer. Kuznetsov [17] investigated Couette flowd deat transfer
in a composite duct.

Three dimensional Couette flow was investigatedsimgh [18], Govindarajan [19] with transpirationotiag. The
effects of permeability of a porous substrate arestigated by Chauhan and Kumar [20] in three-dsional

Couette flow in a composite parallel plate charweére a transverse sinusoidal injection velocitgpgplied at one
bounding wall.
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Apart from the direct engineering applications, shedy of unsteady Couette flow is important beedtisan serve
as a good estimate for initial velocities of mooenplex fluid flow situations. Jordan and Puri [2i§tained exact
solutions of unsteady Couette dipolar fluid flonhded and Vafai [22] determined exact solutionsSStitkes and
unsteady Couette flows for both small and largeesmander slip conditions. Unsteady MHD Couette flovd heat
transfer was investigated by Attia [23, 24]. SuckMflow and heat transfer problem in a porous medis
investigated by Bég et al. [25]. Umavathi et ab][2tudied unsteady oscillating fluid flow in a cpasite porous
medium parallel-plate channel.

Recently the study of non-Newtonian fluid flows the presence of a porous medium has gained interest
considerably due to their several engineering apptins in ceramic processing, biomechanics, erdthrul
recovery process and filtration process. Howevergiverning equations that describe such fluid $lene complex
and the exact solutions for these problems are Foe one subclass of differential-type non-Newaoniluids
(second grade fluid), researchers obtain exactieohkifor particular flow problems. Tan et al. [2¥dtermined an
exact solution of unsteady plane Couette flow @bsé grade fluid. Using fractional derivative modein and Xu
[28] studied unsteady flows of a second grade fhgitiveen two parallel plates in various cases. Eesoandmrak
[29] investigated effects of side walls on the easly flow of a second grade fluid in a duct. Jordad Puri [30],
and Tan and Masuoka [31] examined Stokes firstlproor a second grade fluid in a porous half-spatayat et
al. [32] discussed the flow of a second grade finid parallel-plate channel filled by a porous medwhen one of
the plates is moved suddenly and other is kepéstt And in the other case, unsteady flow problsraxamined
when one plate is oscillating and the other isesat.rAnalytic solutions of these problems are aet@ed using
Laplace transform method.

In this paper, a second grade fluid between twazbotal parallel plates is considered, where a porayer of
finite thickness is perfectly attached to the upplete. Both plates and fluid are initially at reashd the unsteady
flow in the channel is generated by sudden motioth@® lower impermeable plate or oscillation of thever plate
with a constant frequency in its own plane. Exadtitsons are obtained for these two cases, aneffieets of the
various pertinent parameters are shown graphiealtiydiscussed.

MATERIALSAND METHODS

Formulation and solution
We consider the flow of a second grade non-Newtofliad between two horizontal parallel impermeaplates.

The distance between two plateshiand a porous layer of thickne$s—d is attached to the upper plate, in the
channel. A Cartesian coordinate system is takeaxis is taken along the lower plate, aréxis is normal to the

channel. Thus lower plate is 3t =0, porous medium interface in the channel isyat d , and upper plate is at
y =h. The second grade fluid fills the chanrf@k y < d and the porous layetl < y < h. We write these two

regions as clear fluid region-I and porous mediegian-1l respectively. Both plates and fluid ardially at rest.
Unsteady flow is generated in the channel due tdem motion of the lower plate with constant spekgdor
oscillation of the lower plate with frequeneyin its own plane. We investigate the unsteady amotin the channel
partially filled with a porous medium for these twases as (i) First problem, and (ii) Second proble

For a second grade fluid, Cauchy stress terlsos given by the constitutive equation,

T=-pl+uA +ap,+ah | @

wherep is the pressure| is the unit tensor// is the dynamic viscositye, anda’2 are the normal stress moduli

and ﬂland _A2 are first two Rivlin-Ericksen kinematic tensor®géick and Rajagopal [33]) defined by

A =V +(D\7)D, @)
= A+ (V) A ®

where d/dt denotes the material time derivativ\_{, is the velocity field and grad is the gradient raper, and

(D) is the matrix transpose.

76
Pelagia Research Library



Dileep S. Chauhan et al Adv. Appl. Sci. Res., 2012, 3(1):75-94

If the second-grade fluid given by (1) is compaiblith thermodynamics, then the material moduli maset the
following restriction (Dunn and Rajagopal [34])

u=20,a,20anda, +a,= C 4

For the unsteady flow in porous medium, the Dagsistance for a second-grade fluid, which is a oreasf the
flow resistance offered by the solid matrix, foliogy Vafai and Tien [35], is given by

_ £ 0\
r=-——|u+a,— |V, 5
K( 1atj ©

where K, the permeability andis the porosity of the porous medium.

By introducing the following dimensionless quaieti;
u"=u/J,,y'=y/h,t"=vt/h? &’ =h*wv 0 =h|Je/K ,a =a,/ ph* ,a=d/h, 6)
the governing dimensionless equations for bothoreggbecome

For clear fluid region (OS y< a) -1
du _d% 0%

I ta )
ot oy> oyt
For porous medium region (as y< 1) =11
ou _o°U oU
(1+0%a)—="S+a——-0U, ®)
ot oy oy“ot
where, 0, the fluid density,0 , the permeability parameter add is the non-Newtonian parameter.
The corresponding dimensionless boundary and limiadition for these two problems are given by
For first problem
at y=0; u(ot)=1,
ou(y,t ou (y,t
ay=a;  ulat)=u(ay), 2V ) vy
N T
at y=1; U(Lt)=0,
and u(y,0)=0U(y,0=C (9)
For second problem
at y=0; u(0,t) = expliat),
ou(y,t ouU (y,t
ay=a:i  u(at)=u(ar), 20U 0L
ay y=a ay y=a
at y=1; U(Lt)=0,
and u(y,0)=0U(y,0=C (10)
Exact solutions are obtained of these two problesisg Laplace transform method, by defining
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u(y,s)=L{u(y.t)] :j: exp(-st)u(y t)dt,

and
U(y.s)=L[U(y.t)]= j: exp(-st)U (y t)dt.
Heresis a Laplace transform parameter.

Using above, equations (7) and (8) reduces to

u —(s/(1+ as))U =0,

. (Jz+s(1+aza)J_
u'- U =0,

1+as

with the corresponding boundary conditions

For first problem

at y=0; u(0,s)=1Ys,

at y=a; u(as)=U(as), 6u(y,s)| :aU(y,s)|
ay y=a ay y=a

at y=1; J(l,S)Z 0,

For second problem

at y=0; u(0,s)=Y(s-iw),

at y=a; u(as)=U(as), ou(y.9) :aU(y,s)|
o |, o .,

at y=1; U(Ls)=0,

The solutions of equation (13) and (14) under thenlary conditions (15) are given by

U = Asinhpy + B coshpy,

U =Csinhqy + D coshyy .

Where,

p:[ s r, q{a%s(lmzn)r

1+as 1+as

_ psinhap sini(a- 3q-q coshp cogla- )4 5=l

s| gsinhap cos{a~ Jq-p coskp sirfa- 4] s’
C= —pcoshq

s| gsinhap cos{a~ Jq-p coshp sirfa- )d]

, D =-Ctanhq.
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(15)

(16)
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Above equations has a simple polesat 0. It has an infinite number of poles located on tlegative real axis at
S, =- jnz/(1+ a'jnz), where j, is a real number amichanges from one to infinity. Thegg can be determined

by the following equation
JinZ —o?tan(aj,) + j, tar{ Fa)yj,° 0% = C (19)

Also the solutions of equation (13) and (14) urtierboundary conditions (16) are given by

U = A'sinhpy + B 'coslpy, (20)
U =C'sinhgy + D 'coshyy. (21)
Where,
Az psinhap sinf(a- }q-q coshp coda- )q go 1

(s—iw)[ gsinhap cos{fa~ Jq-p coshp sirfa— )q] s—iw’
C'= —pcoshg D'=-C'tanhq.

(s—iw)[ gsinhap cosfa~ Jq-p coshp sirffa- )q]

Above equations has a simple polesatiw. It has an infinite number of poles located onriegative real axis at
S, =—jn2/(l+ a'jnz), where j, is a real number and changes from one to infinity. Thesp, can also be

determined by the equation (19).

Using the Cauchy’s residue theorem (Brown and Ctilird36]) and complex analysis, the inverse Lagla
transform of the velocity is obtained.

(A) Solutions for the first problem are given by

u(y,t)=1- oycosh( 1—§)a
ao cosh( 1—a)a+ smrﬁ }a)
iy )sin(ij,y) o
+2 -t 22
2 Jn(mn) (i.) ’{ 1+, j *
sinh
U(y.t)= (-y)o

accosh( t-a)o+ sinlf ta)o

o il =0 sm{(l—y) jnz—az} j.2
+2 - 0 t]. 23
2 el )R exp( Ivaj j “
The steady state solution is of the following form:
oycosh k-a)o
Jg)=1-
u(y.t) accosh( *-a)o+ sinlf ta)o (24)
U(yt)= sinh(1-y)o 25

accosh( *-a)o+ sinlf ta)o

The volume flux Q across a plane normal to the flow
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Q:Tudy+jUdy. (26)
0 a

Using (22) and (23), we get from equation (26)
Q=a- oa’cosh( +-a)o _ 1-cosh ta)o

2[ sinh(1-a)o+ao coslf +a)o] of sinp4a)o+ac cogh-h)o|
L% Jin’ ~0°F (i) (1~ c0,2) ex,{_ o’ j

S (o) R (i)

s

(L+aj,*)F, (in)
The dimensionless shear stress at the lower mtwmlg(y = O) ,
B (au 0°u j
T, =|—+a
ay dyot y=0

. ocosh( +-a)o oy Ji2=0%F (i) ex;{—j—”zztj,

~ accosh ka)o+ sinlf ta)o & (1+0‘Jn2 2 F (] taqj,

+
:N
g

(27)

(28)

and at the porous medium interfa(cy = a) ,

_(ou 0%
T, = a
oy  oyot)

_ ocosh( +a)o +2imF( in)cos(ai, ) _ ;{—j—”zt].(zg)

accosh( Fa)o+ sinlf ta)o &= (1+ajn2)2|:2(jn) 1+aj?

(B) Solutions for the second problem are given by

[mcost‘(l—a)m sinffa-y)l +| sinf 2a)m coga-y)l| efit)

u(vt) msinhal cosi{ +a)m+| cosil sirh-la)m
iV Jn” = (in)sin(i,y) p( i j
+2 : exp ————t|, (30)
Z F,(in) Fs(in) 1+aj)
Isinh 1-y m expgiat

" msinhal cosl{ ].—a)m+| coshl sirh-1a)m

zJ J‘US'”{l‘ \/J—} ’{1 j
+aj,’

(31)
n=. F2 ( Jn) F3
The steady state solution is of the following form
W) [mcost‘( ta)m sinffa-y)l +I sinf 2a)m coga-y)l] efint) @)
ugy, :

msinhal cos{ +a)m+| cosil sirh-la)m
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[Isinh(1-y)m] exfiat)

U(y.t)=— . 33
() msinhal cosi{ +a)m+| cosél sirh-1a)m )
The volume flux Q across a plane normal to the flow
a 1
:J-udy+J'Udy. (34)
0 a

Using (30) and (31), we get from equation (34)
[mzcosf’( Ta)m coshal +Im sinf4a)m sirﬁh+(|2—m2) co(sh-a)m—lz] it )
Im[msinhal cos}( ta)m+| cosdl sirh-la)m]
Vi —o?F (i,)(1-cog,a) j, it j
+2 exp ————
Z Z(Jn)F3(Jn) { 1+O’jn2

o o [1—00 (+a)yij, -o? } .
+2)° S{ ex;{—ln—tj . (35)
n=1

FZ(jn)FS(jn) 1+ajn2

Q:

The dimensionless shear stress at the oscillatatg ()y = O) ,

r, =3, g 2
> \ay ayat)

_ (1+iaw)[mcosh(1—a)mcosha| +| sinh(l—a)msinhal] exf(iat)
- msinhal cosh(1-a)m+I coshal sinh(1-a)m

+2Z WF(J) ex;{— In't J (36)

-1(1+aJn ), (in) F:(in) 1+aj’

and at the porous medium interfa(cy = a) ,
_ (au 02U j
T, = a
oy ayot ) .
Im(1+iaw) cosi +a) mexpiat)
msmhal cosi{ +a)m+| cos sirh-la)m

j.*(1," ~0*)cos( -a) JT ]
1+a1n

+22 (1+O'Jn ) ) (37)
Where
| = ac? +iw) : B (1+a2a)2)+aa)2+ia) '
_(1+aza)2j e 1+ a0’/

F(1,) = dosinai, sin (+-2) /1,7 =07} - /,7= 07 cosi, ed{ 4a)/i, =0}
Fz(in){J'nSinaJ'nCOi{(}a)\/jn2—02}+(jn2—a0'2) cogj, cc{s{ {a)‘/jnz—az}
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—in\/inz—UZSinainS""{(l—a)\/inz—Uz}+\/jn2—azcoajn si{u( 1 a) jnz—az}}
Fg(jn):(1+ajn2)[jn2+ia)(1+ajn2)]
RESULTSAND DISCUSSION

In this paper, the unsteady shearing motion of cors grade fluid between two horizontal parallehtes is
investigated, where a porous layer of finite thieks is perfectly attached to the upper stationkate @and unsteady
flow in the channel is generated either by suddetion of the lower plate or by oscillating it irsibwn plane.
Exact solutions are obtained for the first and sdcproblem by the Laplace transform method, suet these

represent unsteady flows in the channel at the tim)” and fort — o they become steady state solutions. The
effects of various pertinent parameters on the #md shear stresses at the boundary walls of twenet are shown

in figs. 1-11. In each figure part (a) is drawn fbe first problem, while part (b) and (c) descsilitee second
problem. The effects of time can be observed bg.fi33 on the velocity distribution in the chanfel both
problems.

In fig. 1(a), we see that with the increase in tinéhe flow approaches a steady state in the firsblpm. It is
achieved att=0.4, when g=10anda = 0.0. If we compare fig. 1(a) with the case when

K> 00(0 = O) (fig. 2(a)), i.e. the channel is free from the pgronaterial, we see that by the introduction of the

porous layer in the channel the steady state ieaeth earlier. Figure 1(a) is also compared with ¢ase when

a =0¢(fig. 3(a)), i.e. the channel is filled with Newian fluid. It can be seen that the flow of a New#onfluid
gets to the steady state more quickly than tha sécond grade fluid. Similar results are obsefeedhe second
problem, except that in this case the steady &atehieved much later when compared to the fiablem. Results
are also compared for the case when the chanoehgletely filled by a porous medium for both perbk.

Equations (24) and (25) reveal that the steady s@lution of the coupled flow first problem is épkndent of the
non-Newtonian parameter. Therefore the steady s&dteity profiles in both regions are same for N@wtonian
and second grade fluid. However, the transienttiolus affected by the nature of the fluid. On titeer hand, eq.
(32) and (33) show that in second problem, theopiézisteady state solution and the transient swilibth depends
on the non-Newtonian parameter. It is apparent ftbenfig. 4 that velocity is an increasing functiohthe non-
Newtonian parameter in both the problems. Alsodffect of non-Newtonian parameter on transient cigfois
shown in fig. 5. We see that the transient velodégrease numerically on increasing the non-Newtoparameter.

0.8

t=0.02,0.05,0.1,0.2,0.3,0.4
0.6 1

0.4 1

o2 ]

0 T T T T
0 0.2 0.4 0.6 0.8 1

Fig. 1(a) Profiles of the dimensionless velocity u(y) againstyfor 0 =10, = 0.01a = O.{(thefirst problem)
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t=0.02,0.05,0.1,0.2,0.3,0.4

Fig. 1(b) Profiles of the dimensionless velocity u(y) against yfor 0 =10,a = 0.0lw= 0. a=0.8 (the
second problem)

]
1L

ly t=2 t=0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 1(c) Profiles of the dimensionless velocity u(y) againstyfor 0 =10,a = 0.0lw= 0.!a=0.8 (the
second problem)
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0.8 1

t=0.02,0.05,0.1,0.1,0.2,0.2,0.3,0.4,0.5

t=0.02,0.05,0.1,0.1,0.2,0.2,0.3,0.4,0.5

Fig. 2(b) Profiles of the dimensionless velocity u(y) against yfor @ =0.01,cw= 0.£ (the second problem)
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0.8

t=0.02,0.05,0.1,0.2,0.3
0.6 1

0.4 1

0.2 1

Fig. 3(a) Profiles of the dimensionless velocity u(y) against yfor 0 =10,a = 0,a= 0. (thefirst problem)

0.8

t=0.02,0.05,0.1,0.2,0.3

0.6

0.4 1

0.2 4

Fig. 3(b) Profiles of the dimensionless velocity u(y) against yfor 0 =10,a = O,.w= 0.5 a=0.8 (the
second problem)
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------- Newtonian Fluid

a=0,0.01,0.05,0.1,0.2

|
064 °
0.4
02 7 y ~~~~~~

u——»
O T T T T
0 0.2 0.4 0.6 0.8 1

Fig. 4(a) Profiles of the dimensionless velocity u(y) againstyfor 0 =2,t = 0.05,a= 0.{(thefirst

problem)

Newtonian Fluid

a=0,0.01,0.05,0.1,0.2

h
0.6 -
0.4 -
0.2 - T
y
0
0

0.2

Fig. 4(b) Profiles of the dimensionless velocity u(y) against yfor 0 =2,t = 0.05w= 0.5a=0.8 (the

first problem)
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------- Newtonian Fluid
______________ 0:8
T 0.6 -
a=0,0.01,0.05,0.1,0.2
{
A 0.4 1
T ~~~~~~~~~~~~~~~~~ 0.2 1
y o s——
Uy .- ==
T T T T T T T \v)
.04 -035 03 025 -02 -015 -0.1  -0.05 0

Fig. 5(a) Profiles of the dimensionless transient velocity U,

(y) against yfor 0 =2,t =0.05, a=0.8 (the

first problem)

Newtonian Fluid

e
-
P

0.6 A
a=0,0.01,0.05,0.1,0.2
0.4 A

-0.4 -0.3

-0.2

Fig. 5(b) Profiles of the dimensionless transient velocity U, (y) against yfor g =2,t = 0.05,
w=0.5,a= 0.€ (the second problem)

In figs. 6-8, we see that the effect of the pernigglK is to increase the flow in both clear fluid andqgs region.
The steady state velocity is an increasing functibK, and the transient flow velocity also increasesercally

throughout the region with an increase in permdgbibr

both the problems. It is seen that the effef the

permeability is significant only in the porous layad in the nearby porous interface region inclear fluid.
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0.8

0.6 1

0.4 1

0.2 1

0]

N

c=1,5,10, 20

0

Fig. 6(a) Profiles of the dimensionless velocity u(y) against yfor @ =0.01,t = 0.1 a=0.8 (thefirst

0.2

0.4 0.6

0.8

problem)
1
0.8 \\
< c=1,5,10, 20
0.6 1
0.4 1
0.2 1 T
Yy
Uu——m—--»»
O T T T T
0 0.2 0.4 0.6 0.8

1

1

Fig. 6(b) Profiles of the dimensionless velocity u(y) against yfor @ =0.01,t = 0.1 w=0.5, a=0.8 (the

second problem)
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0.8

0.6 1

0.4 1

<

0.2 1

A

c=1,5,10, 20

Us —»

0.2 0.4 0.6 0.8

Fig. 7(a) Profiles of the dimensionless steady state velocity us(y) againstyfor @ =0.01,t=0.1,a=0.8

(thefirst problem)

0.8

0.6 1

0.4

0.2 1

c=1,5,10,20

A

0.8

Fig. 7(b) Profiles of the dimensionless steady state velocity us(y) against yfor a =0.01,

t=0.1,w= 0.5a=0.8 (the second problem)
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0:8
0.6
0.4 +
c=1,5,10,20
T 0.2 +
y
th Eammmm—
T T T T O
-0.25 -0.2 -0.15 -0.1 -0.05

0

Fig. 8(a) Profiles of the dimensionless transient velocity U, (y) against yfor @ =0.01,t=0.1,a=0.8 (the

first problem)

0-8
0.6
0.4 -

T o=1,5,10, 20
0.2 -

y

-0.25 -0.2 -0.15 -0.1 -0.05

Fig. 8(b) Profiles of the dimensionless transient velocity U, (y) against yfor a =0.01,

t=0.1,w= 0.5a=0.8 (the second problem)

0

Figures 9-11, shows variations of shear stress®anoving/oscillating wall and at the stationporous interface
in the channel for various parameters. From thénereging application point of view, reduction inirsKriction at

the channel walls is important. Among several témpes for reducing skin friction, changing the watlundary
conditions such as applying suction or porous nmadining play a significant role. It is seen froig.f9 that the
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effect of the permeability of the porous layerdgéduce the dimensionless shear stress at theahaalls for both

type of problems.

0

-2.5

o=1,5,10

0.04

0.08

0.12 0.16 0.2

Fig. 9(a) Profiles of the dimensionless shear stress Ty against t { 7 - at lower plate, and 7,- at porous

-2.5

medium interfacelfor @ =0.05,a = 0.€ (thefirst problem)

t

—_—>

0

0.04

0.08

0.12 0.16 0.2

Fig. 9(b) Profiles of the dimensionless shear stress Ty against t { 7 - at lower plate, and 7,- at porous

It is observed that as permeabilkyincreases (oo = h

medium interface}for @ =0.05,w= 2,a= 0.£(the second problem)

&
Tdecreases), the shear str@gsat the lower wall and
K

I, at the porous interface decreases absolutely. Hawa fig. 10 it is observe that the non-Newtonarameter
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a increases numerically the shear strégsat the porous interface but decredgeat the lower wall. Figure 11
shows that the shear stress at the porous inte(fﬁg} reduces numerically as frequenayincreases for small

time, while the shear stress at the oscillatingep(io) decreases numerically as frequemrgincreases but as time
passes it changes sign and increases afterwards.
0

-1 4«0 =0.01,0.05,0.1,0.2

t —»

_5 T T T T
0 0.04 0.08 0.12 0.16 0.2

Fig. 10(a) Profiles of the dimensionless shear stress Ty against t { 7, - at lower plate, and 7,- at porous
medium interface}for g =2,a = 0.8 (thefirst problem)

O
___________________________________________ }/ a=0.2,0.1,0.05,0.01
-1 -
-2 1 a=0.2,0.1,0.05,0.01
-3 -
To
______ Ta
-4 -
t —»
_5 T T T T
0 0.04 0.08 0.12 0.16 0.2

Fig. 10(b) Profiles of the dimensionless shear stress Ty against t { 7, - at lower plate, and 7,- at porous
medium interface}for 0 =2, w= 2,a= 0.€ (the second problem)
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0.5

-0.5 1

-1.5 1

-2.5
Fig. 11 Profiles of the dimensionless shear stress Ty against t { 7, - at lower plate, and 7, - at porous medium

interface}for 0 =2,a = 0.05,a= 0.£ (the second problem)

Acknowledgements
The support provided by CSIR through Senior Re$eBedlowship to one of the authors Vikas Kumarratefully

acknowledged.
REFERENCES

[1] M. A. Al-Nimr, Khadrawi, A. F.,Transport in Porous Media, 2003, 51, 157-172.

[2] O. A. Bég, H. S. Takhar, J. Zueco, A. Sajid, R. Bhargadaa Mech., 2008, 129-144.

[3] D. S. Chauhan and P. Rastofydpl. Math. Sci., 2010, 4(13), 643-655.

[4] D. S. Chauhan and R. Agrawdl,of Eng. Phy. and Thermophysics, 2011, 84(5), 1034-1046.

[5] D. S. Chauhan and R. Agrawdgccanica. DOI- 10.1007/s11012-011-9446-9.

[6] S. S. Saxena, G. K. Dubeidv. in Appl. <ci. Res., 2011, 2(4), 259-278.

[7] S. Sreekanth, R. Saravana, S. Venkataramartd, ReddyAdv. in Appl. Sci. Res., 2011, 2(3), 246-264.
[8] S. Sreenadh, S. N. Kishore, A. N. S. SrinivRsH. ReddyAdv. in Appl. ci. Res., 2011, 2(6), 215-222.
[9] M. S. Babu, P. V. S. Narayana, T. S. ReddylUDReddy,Adv. in Appl. <ci. Res., 2011, 2(5), 226-239.
[10] S.K. Bhargava, N. C. Sachetihdian Journal of Technology, 1989, 27, 211-214.

[11] J. Daskalakislnt. J. of Energy Research, 1990, 14, 21-26.

[12] A. NakayamaASME Journal of Fluids Engineering, 1992, 114, 642-647.

[13] D. S. Chauhan, K. S. ShekhawatPhys. D: Appl. Phys., 1993, 26, 933-936.

[14] D. S. Chauhan, V. SoM\MSE Periodicals: Modeling Measurement & Control B, 1994, 56, 7-21.

[15] A. V. Kuznetsov]nt. J. Heat Mass Transfer, 1998, 41, 2556-2560.

[16] D. S. Chauhan, S. GuptalVISE Periodicals: Mod. Meas. & Control B, 1999, 67, 37-52.

[17] A. V. KuznetsovActa Mech., 2000, 140, 163-170.

[18] K. D. Singh,ZAMP, 1999, 50, 661-668.

[190] A. Govindarajan, V. Ramamurthy, K. Sundararhndaurnal of Zhejiang University SCIENCE A, 2007, 8,
313-322.

[20] D. S. Chauhan, V. Kumafppl. Math. ., 2010, 4, 2683-2695.

[21] P. M. Jordan, P. Pufroc. Roy. Soc. Lond. A, 2002, 458, 1245-1272.

[22] A. R. A. Khaled, K. Vafailnt. J. Non-Linear Mech., 2004, 39, 795-809.

[23] H. A. Attia, Kragujevac J. Sci., 2005, 27, 23-30.

[24] H. A. Attia, Comm. Nonlinear Sci. Numer. Smulation, 2008, 13, 1596-1604.

[25] O. A. Bég, J. Zueco, H. S. Takh@gmmun. Nonlinear Sci. Numer. Smulat., 2009, 14, 1082-1097.
[26] J. C. Umavathi, A. J. Chamkha, A. Mateen, AMudhaf, Nonlinear Analysis: Mod. and Cont., 2009, 14, 397-
415.

93
Pelagia Research Library



Dileep S. Chauhan et al Adv. Appl. Sci. Res., 2012, 3(1):75-

94

[27] W. Tan, L. Wei, F. XianChinese Sci. Bull., 2002, 47, 1783-1785.

[28] W. Tan, M. Xu,Acta Mech. Snica, 2004, 20, 471-476.

[29] M. E. Erda’an, C. Eimrak, Int. J. Nonlinear Mech., 2004, 39, 1379-1384.

[30] P. M. Jordan, P. Puiint. J. Nonlinear Mech., 2003, 38, 1019-1025.

[31] W. Tan, T. Masuokdnt. J. Nonlinear Mech., 2005, 40, 515-522.

[32] T. Hayat, M. Khan, M. Ayub, A. M. Siddiquiirch. Mech., 2005, 57, 405-416.

[33] R. L. Fosdick, K. R. Rajagopdht. J. Nonlinear Mech., 1978, 13, 131-137.

[34] J. E. Dunn, K. R. Rajagopaht. J. Eng. Sci., 1995, 33, 689-729.

[35] K. Vafai, C. L. Tien|nt. J. Heat Mass Transfer, 1981, 24, 195-203.

[36] J. W. Brown, R. V. Churchill, Complex Variasland Applications, 8ed., McGraw-Hill, New York1995.

Pelagia Research Library

94



