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Summary

Conformational diseases are conditions that
arise from the dysfunctional aggregation of
proteins in non-native conformations. Type 2
diabetes mellitus can be defined as a
conformational disease because a constituent
beta cell protein, islet amyloid polypeptide,
undergoes a change in tertiary structure
followed by self-association and tissue
deposition. Type 2 diabetes mellitus is
associated with multiple metabolic
derangements that result in the excessive
production of reactive oxygen species and
oxidative stress. These reactive oxygen
species set in motion a host of redox reactions
which can result in unstable nitrogen and thiol
species that contribute to additional redox
stress. The ability of a cell to deal with
reactive oxygen species and oxidative stress
requires functional chaperones, antioxidant
production, protein degradation and a cascade
of intracellular events collectively known as
the unfolded protein response. It is known
that beta cells are particularly susceptible to
perturbations in this quality control system
and that reactive oxygen species play an
important role in the development and/or
progression of diabetes mellitus. Oxidative
stress and increased insulin production
contribute to endoplasmic reticulum stress,
protein misfolding, and induction of the
unfolded protein response. As the cell’s
quality control system becomes overwhelmed,

conformational changes occur to islet amyloid
polypeptide intermediates, generating stable
oligomers with an anti-parallel crossed beta-
pleated sheet structure that eventually
accumulate as space-occupying lesions within
the islets. By approaching type 2 diabetes
mellitus as a conformational disease in which
there is a structural transition from
physiological protein to pathological protein,
it is possible that the relentless nature of
disease progression can be understood in
relation to other conformational diseases.

Introduction to Conformational Diseases

Conformational diseases occur when an
endogenous protein undergoes a change in
shape that leads to self-association of these
proteins and tissue deposition [1]. In the
course of normal protein biosynthesis,
misfolding does occur, and intracellular
mechanisms have evolved to shuttle and
degrade these aberrant proteins/polypeptides
[2]. Although conformational changes occur
with normal protein processing, a particular
protein’s susceptibility to aggregation, and a
genetic or environmental predisposition to
disease may overwhelm the cell’s quality
control mechanisms. In the setting of
significant and sustained endoplasmic
reticulum (ER) stress, these quality control
mechanisms prove insufficient. High
concentrations of mutant protein lead to
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aggregation and slow deposition into tissues
over time. This time-requiring sequence of
events may partially explain the relatively late
clinical presentation of many conformational
diseases.
Table 1 is adapted from Carrell and Lomas’s
original disease classification [1] and
illustrates the wide array of recognized
conformational diseases. These diseases arise

from secondary or tertiary structural changes
within constituent proteins, with subsequent
aggregation of those altered proteins. For
example, in alpha1-antitrypsin deficiency, a
single amino acid substitution results in the
destruction of a salt bridge that affects the
secondary structure of alpha1-antitrypsin [3].
This perturbation leads to a molecular
interaction between the A sheet of one

Table 1. Conformational diseases (adapted from [1]).
Protein aggregate Clinical disease

Serpins Alpha1-antitrpysin-deficiency
C1-inhibitor deficiency angioedema
Antithrombin deficiency thromboembolic disease

Prion Kuru
Creutzfeld-Jakob disease/scrapie
Bovine spongiform encephalopathy
Gerstmann-Straussler-Scheinker disease
Fatal familial insomnia

Glutamine repeats Huntington’s disease
Spinocerebellar ataxia
Machado-Joseph atrophy
Dentato-rubro-pallidoluysian atrophy

Tau hemoglobin Frontotemporal dementia
Sickle cell anemia
Unstable hemoglobin inclusion-body hemolysis
Drug-induced inclusion body hemolysis

Alpha-synuclein Parkinson’s disease

Systemic amyloides

Immunoglobulin light chain Systemic AL amyloidosis
Nodular AL amyloidosis

Serum amyloid A protein Systemic AA amyloidosis

Beta2222 microglobulin Prostatic amyloid
Hemodialysis amyloidosis

Cystatin C Hereditary (Icelandic) cerebral angiopathy

Huntingtin Huntington’s disease

Apolipoprotein A1 Familial visceral amyloid
Familial amyloid polyneuropathy

Lysozyme Familial visceral amyloidosis

Transthyretin Senile systemic amyloidosis
Familial amyloid neuropathy
Familial cardiac amyloid

Localized amyloidoses

Abeta Alzheimer’s disease

Beta-amyloid peptide Down’s syndrome

Procalcitonin Medullary carcinoma thyroid

Islet amyloid polypeptide (IAPP) Type 2 diabetes mellitus (T2DM)
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molecule with the reactive center loop of
another [4]. This polymerization results in an
accumulation of this enzyme in the ER,
activation of the unfolded protein response
(UPR) (described below) and ultimately,
apoptosis. In the prion diseases Kuru and
Creutzfeld-Jakob disease, proteins that have
primarily helical structure convert to a beta-
pleated sheet configuration [5]. In fact,
conformational diseases often feature a
protein that aggregates in beta-sheet linkages.
Beta-pleated sheets are formed by alternating
peptide strands that are linked by hydrogen
bonding between their aligned pleated
structures. This is a feature of the systemic
amyloidoses, neurodegenerative diseases and
type 2 diabetes mellitus (T2DM). The diverse
clinical presentations of these diseases, as
well as the fact that some are almost solely
rooted in genetic deficiencies (e.g.,
Huntington’s disease) whereas others such as
T2DM can have a relatively strong
environmental component (obesity), may
seem to controvert the single grouping of
them on the basis of conformational
abnormalities. However, one utility of the
designation ‘conformational disease’ is that it
denotes the mechanisms underlying the
sometimes odd and delayed presentation of
these diseases. Although fibril formation is a
defining feature of these diseases, they are
composed of different aggregated proteins,
sharing structural properties. Another reason
for giving diseases this label is that it suggests
common avenues of therapy. It is intriguing to
consider that the manipulation of protein
structure and/or aggregate assembly can be a
platform for the development of novel
therapies. For example, processes that result
in the tissue deposition of beta-pleated sheets
can be inhibited by compounds such as
glycosaminoglycan mimetics.
Treating T2DM as a conformational disease
does not imply that the disease begins with or
can be holistically described as inappropriate
protein deposition. Other associated
processes, such as the development of insulin
resistance, require other models to explain
disease pathogenesis. Like Alzheimer’s
disease, where brain amyloid represents the

culmination of multiple previous events and
cannot wholly explain cognitive deficits, so in
T2DM, islet amyloid is both cause and
consequence of several disease processes. The
sole purpose of this review is to interpret how
protein abnormalities can be understood in the
context of other conformational disease
processes and specifically how they could
arise in T2DM.

Islet Amyloid: The Conformational
Problem of T2DM
The contribution of islet amyloidosis to
disease pathogenesis has been vigorously
debated [6]. Islet amyloid polypeptide (IAPP)
oligomers that precede islet amyloid
deposition are likely more toxic to beta cells
than islet amyloid itself [7]. Islet amyloid is
present at autopsy in as many as 96% of
patients with T2DM [8]. With accumulations
of toxic, misfolded IAPP oligomers and
deposition of crossed beta-pleated sheets,
T2DM is similar to other protein
conformational diseases. It is interesting to
note that the human, feline, and non-human
primate forms of the IAPP molecule are
known to be amyloidogenic, and these are the
only members of the animal kingdom that
develop spontaneous T2DM. Lower
mammals, on the other hand, do not share this
feature of having amyloidogenic IAPP due to
proline substitutions at positions 25, 28, and
29, and they do not develop spontaneous
T2DM [9, 10]. Most animal models of insulin
resistance do not feature islet amyloid except
for transgenic mice that express human IAPP

Figure 1. Human islet amyloid polypeptide (IAPP).
The amyloidogenic region of IAPP is responsible for
providing a toxic conformational structure within islets.
Note disulfide bond at position C2 and C7.
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[11]. Clinically, it is clear that aggregates of
misfolded IAPP are a prominent pathological
feature in the development of T2DM
(reviewed in [12]). The human IAPP
polypeptide is presented in Figure 1.
Proteins must properly fold into three-
dimensional structures in order to carry out
their proper functions within the cell and
organism. One model of dysfunctional protein
aggregation represented in Figure 2 involves
the following intracellular events: 1)
misfolding or unfolding of native protein
exposes hydrophobic regions; 2)
conformational changes result in unstable
intermediates that have a propensity to form
oligomers; 3) oligomers form pathogenic
subunits and crossed beta-pleated sheets; and
4) in the case of T2DM, amyloid fibrils are
formed with subsequent stabilization by
accessory molecules, such as serum amyloid
P, perlecan, and apolipoprotein E [6]. When
precision folding goes awry, the misfolded,
soluble oligomeric proteins begin to
accumulate, become toxic, and promote
apoptosis [7, 13]. Misfolded IAPP stabilizes

into crossed beta-pleated formations that are
deposited within the adjacent surrounding
extracellular matrix, resulting in space-
occupying lesions within the islets of the
pancreas. The following discussion outlines
cellular stressors in T2DM that contribute to
protein misfolding and aggregation. One of
the most important stressors leading to these
protein conformation abnormalities is redox
stress (discussed later in the review).
Once unfolded, IAPP may become refolded in
the ER-Golgi complex, accompanied by the
support of ATP-dependent chaperone
proteins. Kinetic refolding experiments using
intermediate proteins associated with known
conformational diseases have revealed that
there is a higher energy requirement to
achieve successful refolding due to the
increased exposure of hydrophobic regions in
unfolded or partially-folded proteins.
Therefore, exposed hydrogen ions may cause
a folding pathway to produce a relatively
stable intermediate form of protein that is
'kinetically trapped' if the ER cannot
overcome this higher energy barrier [14].

Figure 2. Improper folding of islet amyloid polypeptide (IAPP) results in insoluble fibrils.
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Figure 3. Islet amyloid polypeptide
(IAPP) misfolding leads to protein
aggregates. This cartoon depicts the
endoplasmic reticulum (ER), Golgi
apparatus, and the lysosome-
proteasome complex in relation to the
unfolding and misfolding of IAPP.
IAPP is transcribed from chromosome
12 (1). Translation of IAPP gene occurs
(2). In the absence of significant ER
stress, chaperones are able to properly
fold IAPP. Post-translational
modifications of IAPP include the
formation of a disulfide bond at
positions C2 and C7, as well as amide
formation at the C-terminal tyrosine.
The vulnerability of the disulfide bond
may play an important role in the
unfolding of IAPP (3a) or in the
presence of significant ER stress, IAPP
may become unfolded and misfolded
(3b). IAPP oligomers may form. IAPP
is transported to the Golgi apparatus
(4). Normal processing in the absence
of significant ER stress results in
cosecretion of normal insulin and IAPP
in insulin secretory granules (4a). Once
unfolded and misfolded, aberrant IAPP
is processed initially in the Golgi
apparatus, and there is an additional
attempt to refold the misfolded protein.
If this is unsuccessful, the misfolded
protein then goes to the lysosome-
proteasome complex for degradation to
its constituent amino acids (4b).
Ubiquitination pathways are also
employed to facilitate trafficking to the
lysosome-proteasome complex (5).

When these organelles are overwhelmed, as occurs in early T2DM before beta cell failure, the result will be apoptosis
of the beta cell and the accumulation and aggregation of protofibrils into beta-pleated sheets. Subsequently, islet
amyloid is formed (6).

When this quality control system is
overwhelmed and IAPP is not capable of
being correctly refolded, this protein can
become a soluble toxic monomer due to the
innate amyloidogenic properties of the
NFGAILSS region of IAPP in amino acid
positions 22-29 [15].
Soluble IAPP oligomers have been shown to
be cytotoxic and possibly responsible for beta
cell apoptosis in T2DM [7, 16, 17].
Additionally, beta cells with a high turnover
(replication) rate have been found to be more
susceptible to apoptosis by IAPP oligomers
[17]. It is the delicate balance between
refolding and degradation, maintained by the

quality control system that determines the
amount of mutant protein allowed to
accumulate. The adaptive and apoptotic
mechanisms of the quality control system are
so selective that even minor perturbations in
protein folding efficiency can cause the
rejection of nascent IAPP proteins and,
consequently, their accumulation or
degradation. Accumulation of mature islet
amyloid is responsible for the space-
occupying lesion with associated secretory
and absorptive defects within the islet and is
accelerated by free radical polymerization due
to reactive oxygen species (ROS). These
concepts are summarized in Figure 3.
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Researchers have also addressed whether
genetic differences in IAPP could predispose
to T2DM development. To date, only one
missense mutation has been identified in
human IAPP. It is the S20G mutation (glycine
is substituted for serine at position 20), and
this change in the amino acid sequence results
in more rapid amyloid formation and early
onset T2DM in Japanese, Korean, Chinese
and New Zealand Maori populations (1.9-
2.6% of subjects studied thus far) [18, 19, 20,
21, 22, 23, 24, 25]. Although this mutation is
restricted to the ethnic groups mentioned, its
existence points to the possibility of it being
more widespread and that other mutations
might contribute to the amyloidogenic
properties of IAPP.
Under adverse conditions, and due to its
intrinsic conformational instability, the
normally soluble IAPP protein quite readily
undergoes the structural change to form the
crossed beta pleated sheet necessary for
aggregation. Due to its propensity to
aggregate, IAPP is able to endure free radical

polymerization; a process that is further
promoted through the cell’s decreased ability
to clear misfolded proteins. This is the very
beginning of the pre-diabetic condition [26].
Once formed, islet amyloid is quite resistant
to the normal proteolytic defenses within the
body and is therefore allowed to accumulate
and undergo an even more rapid free radical
polymerization in an islet milieu of increased
reactive oxygen species (ROS) [27, 28]. The
question arises, how do inherent beta cell
characteristics contribute to the development
of abnormally folded proteins which
culminate as islet amyloid?

Beta Cell and ER Stress

As is true for other cells performing protein
synthesis, beta cells regulate the production of
their synthesized protein indirectly via
glucose sensors and not directly via the levels
of insulin which they produce. These same
glucose sensors act on molecular pathways in
other endocrine cells that maintain glycolysis

Table 2. Putative model of stages of type 2 diabetes mellitus (T2DM) considered as a conformational disease.

STAGE I (Latent period)
Increased production of reactive oxygen, nitrogen and thiol species
Beta cell endoplasmic reticulum (ER) stress
Compensatory insulin processing
Protein misfolding/unfolding
Unfolded protein response (UPR) activation/chaperone challenge
Impaired first phase insulin secretory response
Prolific free radical polymerization of islet amyloid polypeptide (IAPP) monomers

STAGE II (Transition period)
Ongoing redox stress
Islet amyloid polypeptide (IAPP) oligomerization/fibril formation
Impaired insulin secretory response
Early beta cell apoptosis
Beta cell protein quality control severely challenged

STAGE III (Impaired glucose tolerance period)
Appearance of advanced glycation endproducts (AGEs)
50-75% amyloid involvement in islet architecture
Impaired  beta cell function

STAGE IV (Impaired fasting glucose period)
Increasing global insulin resistance
Increased fasting blood glucose levels
Excess hepatic and renal gluconeogenesis
Progressive amyloid deposition

STAGE V (Overt type 2 diabetes mellitus)
50% loss of beta cell function
75-100% amyloid deposition
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and nutrient homeostasis. Thus, transcription
in beta cells is not regulated by insulin itself
but by translational and post-translational
events that are themselves regulated by
extracellular glucose levels [29, 30, 31].
Chronic activation of the beta cells’ quality
control system favors the induction of more
apoptotic pathways of the UPR [2] which is
described in greater detail later in this review.
The islet beta cell is known to have a highly
developed ER, apparently due to an excessive
demand for compensatory insulin secretion
[32]. An increased demand for insulin
secretion may result in beta cell overload
ultimately leading to deficient insulin
secretion. Beta cell mass (both number and
volume of cells) is reduced in the later phases
of T2DM as a result of apoptosis, especially
in rapidly replicating beta cells [33]. The
toxic effects of oligomeric IAPP result in
apoptosis of the beta cells, but for a period of
time, the more primordial ductal cells of the
exocrine pancreas (replicative pool) can
replace the damaged, apoptotic beta cells and
continue the compensatory hyperinsulinemia
causing further beta cell damage. These
effects culminate in the development of a
defective diffusion barrier within the islet
[34]. Table 2 presents a putative model of
how accumulations of IAPP-derived protein
aggregates may relate to T2DM pathogenesis.
The beta cell ER has unique responses to
unfolded or misfolded proteins [32]. The first
response is up-regulation of genes encoding
antioxidants and ER chaperone proteins, such
as BiP/GRP78 and GRP94, to increase protein
folding activity and prevent protein
aggregation [35, 36, 37]. The second response
consists of translational attenuation to reduce
the load of new protein synthesis and prevent
further accumulation of unfolded proteins.
The third is degradation of misfolded proteins
in the ER (endoplasmic reticulum-associated
degradation, ERAD) [35]. The misfolded
proteins are transported from the ER to the
cytosol, where most are tagged with
ubiquitin-conjugating enzymes for
degradation by the 26S proteasome, as well as
the lysosome [38]. The fourth is
transcriptionally-activated apoptosis, which

occurs when the ER is chronically
overwhelmed and its function has been
severely impaired [35]. These mechanisms
will be described in greater detail in a
forthcoming section of this review.

Insulin Secretory Granule in a
Conformational Disease

Post-translational processing of pro-IAPP in
the insulin secretory granule (ISG) yields the
soluble, functional IAPP hormone. The same
prohormone convertases 1, 2 and 3 process
pro-IAPP and pro-insulin, and cosecrete the
cleaved forms of both into the circulation
[39]. It has been proposed that a balance of
these ISG components, including C-peptide,
Ca2+ and Zn2+, contributes to maintaining
IAPP and insulin in their mature native
conformations, thereby hindering aggregate
formation [40]. The authors of this study
conjectured that if these factors are in an
inappropriate concentration, conditions could
favor IAPP aggregation. Further, in T2DM,
alterations in the proportions of insulin and
IAPP in granules could favor fibril formation
[41]. Preserving a normal physiologic ratio of
proinsulin to insulin in ISGs disfavors fibril
formation and beta-pleated sheet formation of
IAPP [41]. Several studies have
demonstrated, in both human and animal
models of T2DM and fasting hyperglycemia,
a disproportionate ratio of proinsulin to
insulin, relative to the overall increase of both
in plasma concentrations [42, 43, 44, 45, 46].
Whether this increase in proinsulin is due to
chronic hyperglycemia or impaired glucose
tolerance, the resulting disturbance to the
proper functioning of the ISG could
exacerbate protein misfolding. The abnormal
processing of proIAPP with incomplete
conversion to IAPP could result in increased
IAPP-derived islet amyloid deposition, as
proIAPP is also amyloidogenic [40, 47, 48].
Thus, incomplete processing of proinsulin and
proIAPP could each present a mode for
increased aggregation of misfolded proteins.
The glycosaminoglycan called perlecan is a
ubiquitous part of beta cell’s basement
membrane, synthesized in the islets [49].
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Although not a structural element, perlecan
does provide stability to amyloid fibrils by
allowing binding of IAPP to the basement
membranes surrounding islet capillaries. This
pathologically promiscuous binding decreases
the secretory response of the ISG as a result
of an adsorptive barrier created by thickened
basement membranes. This condition may
well be the beginning of structural
transformations within the islet which
provides a located environment with a
predilection toward a disproportionate ratio of
IAPP to insulin secretion.

Chaperones and Conformational Disease

Molecular chaperones are ubiquitous, highly
conserved small proteins present in all
eukaryotic cells (reviewed in [50]). As noted
above, their overall purpose is to minimize
aggregation by assisting target proteins, such
as IAPP, in proper folding and to covalently
transport functional proteins across
extracellular space. Under conditions of
sustained redox stress, the ability of
chaperones to regenerate the redox potential
of the cell is compromised due to the
increased occupation of chaperones by
nascent polypeptides (reviewed in [51]).
Consequently, protein misfolding occurs,
amplifying the chaperone requirements, and
in the case of T2DM, causes islets to be more
susceptible to the deleterious effects of redox
stress.
In most conformational diseases studied, the
soluble, partially-folded intermediates contain
an area of exposed hydrophobic regions that
are, in the protein’s native state, buried and
protected against non-native interactions.
These areas of increased hydrophobicity have
been implicated in allowing non-native
interactions to occur that result in the crossed
beta-pleated sheet structure seen in protein
aggregates [14] and Figure 2. Thus, it
becomes necessary to overcome a higher
energy barrier in order for the folding process
to continue to completion. Chaperones assure
that the correct stoichiometric amounts of
folding co-factors are present so that these
non-native isoforms can achieve their

functional quaternary structure. As very
important components of the quality control
repertoire, the cell dedicates a substantial
amount of metabolic energy to performing
chaperone functions.

The Unfolded Protein Response (UPR) and
the Balance of Quality Control
Mechanisms

An accumulation of misfolded/unfolded
polypeptides in the ER of cells presents a
challenge to chaperones in the cell [52, 53].
Due to prolonged interactions with these
mutant proteins, chaperones are challenged to
fulfill their folding duties in a timely manner.
The overall function of molecular chaperones
is to minimize protein aggregation by
ensuring proper protein folding and providing
transport to target proteins through covalent
cross-linking [54] (see section below). Under
challenge, a process known as the UPR
recruits existing proteases and ubiquitination
enzymes to help deal with this accumulation
[55, 56]. As a point of fact, in normal cells,
many of the substrates for proteases 'are'
misfolded proteins, reflecting the importance
of conformation in determining protein
selection for degradation.
After existing proteases have been consumed,
the UPR will induce survival and apoptotic
pathways in response to the particular stress.
Survival responses include transcriptional
regulation (antioxidant and chaperone
production) and translational regulation
(protein synthesis inhibition). Apoptotic
responses of the UPR include protease
synthesis (26S proteasome), ubiquitin-
conjugating enzymes, and caspases (in the
case of chronic stress/severe ER impairment)
[57, 58, 59]. The integrity of the quality
control system is of paramount importance at
this step. Maintaining a balance between
folding and degradation determines the
amount of mutant protein that can accumulate
and potentially cause conformational diseases
[1]. An imbalance in the quality control
system created by, among other things,
abnormal temperatures, high/low glucose
concentrations, glycosylation inhibitors,
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influx of Ca2+ ions, alterations in local pH, or
redox stress will cause further accumulation
of misfolded/unfolded proteins.
In the setting of hyperinsulinemia, the beta
cell likely has significantly increased ER
activity and can become stressed in
responding to the demands of the peripheral
tissues to prevent hyperglycemia [32].
Previously, this process has been referred to
as ‘beta cell fatigue’, but a more
encompassing explanation can invoke ER
stress and an overwhelmed UPR. The basic
pathways of the UPR have been exhaustively
explored in recent years [60]. The
significance of these studies is that they can
partly explain how a stressed cell becomes
committed to survival or to apoptosis [57].
The UPR is initiated under various conditions
of stress which compromise protein folding in
the ER. Three major survival pathways are
employed as the transcriptional response to
this ER stress (Figure 4). Each pathway
involves an ER-resident transmembrane

protein that senses ER stress or the presence
of unfolded proteins: IRE1, ATF4/PERK and
ATF6. IRE1 and ATF4/PERK, which both
have cytoplasmic serine/threonine kinase
domains, are activated by ER stress and
undergo homodimerization and
phosphorylation [61, 62, 63]. The
accumulation of inappropriately folded
proteins in the ER lumen results in ATF6
translocation to the ER [55]. ATF6 cleaves its
cytosolic domain then translocates to the
nucleus to activate transcription of the
chaperones GRP78 (BiP) and other co-factors
of ER stress target genes [64]. The
downstream sequelae of the UPR are
transcriptional activation of chaperones,
antioxidants, co-factors and regulators
involved in ER-associated protein degradation
(i.e. ERAD) and inhibition of new protein
synthesis. These responses presumably
conserve cellular resources in the face of
increasing stress. Activation of UPR
pathways is also intrinsically important in the
initiation of proapoptotic responses (protease
and caspase synthesis). Chaperone
participation in these responses, as well,
provides an additional quality control
mechanism. However, the means by which
cells commit to apoptosis rather than survival
are less well understood.

Redox Stress in the Formation of Islet
Amyloid

1. Reactive Oxygen Species (ROS)

Multiple biochemical pathways and
mechanisms of action have been implicated in
the deleterious effects of chronic
hyperglycemia and oxidative stress on the
function of the kidney, retina, vascular tissues
and, to a lesser extent, pancreatic islets in
T2DM [65]. There is currently wide
acceptance for the destructive potential of
oxidative stress on the islets and arterial
vessel walls in patients with T2DM. The
damaging effects of ROS and other free
radicals on proteins, nucleic acids and fats is
key to a better understanding of the formation
of amyloid within the islets of patients with

Figure 4. The unfolded protein response (UPR) to
endoplasmic reticulum (ER) stress. The UPR is a
particularly important cellular response for cells that
must accommodate high loads of secretory proteins
like the beta cell. The UPR is principally mediated by
ATF4/PERK, ATF6 and IRE which are activated by
the abundant ER chaperone BiP. Misfolded proteins
activate IRE1 and PERK by phosphorylation. IRE1 is a
kinase that contains an ER regulatory domain and an
RNaseL domain. IRE1 activation leads to upregulation
of XBP1 which subsequently activates a family of
genes encoding ER chaperones. PERK activation
results in the phosphorylation of eIF2alpha that leads to
a generalized inhibition of translation initiation.
Finally, ATF6, a leucine-zipper transcription factor,
transits into the Golgi following activation where it is
cleaved into an active transcription factor for
chaperones.



JOP. J Pancreas (Online) 2005; 6(4):287-302.

JOP. Journal of the Pancreas – http://www.joplink.net – Vol. 6, No. 4 – July 2005. [ISSN 1590-8577] 296

T2DM. Excessive redox stress may lead to
protein accumulation and aggregation in the
ER, with severe consequences for the cell
[66].
ROS may impact disulfide bond formation
[67] and subsequently influence the
development of IAPP misfolding. Disulfide
bonds formed in newly synthesized proteins
in the ER of cells are important for proper
protein folding, protein structure, biological
activity, and stability of many secreted and
membrane proteins [66, 68, 69]. Protein
folding in eukaryotes takes place in the ER
with assistance from many redox-sensitive
chaperones and oxidoreductases (e.g., protein
disulfide isomerase, ERp44, ERp72, ERp57,
GRP58, Hsp33) [69]. The effects of excessive
ROS on native IAPP within the ER may cause
covalent breakage of the disulfide bond at
positions Cys2 and Cys7 in this 37 amino acid
polypeptide, allowing it to unfold or
preventing it from properly folding.
ROS may have an effect on both proteins and
lipids within the ER by altering the ER bi-
lipid membrane [70]. Hyperglycemia may
have an additive effect by altering the protein
content of the ER membrane through
formation of advanced glycation endproducts
(AGEs) [71]. Oxidative stress, combined with
hyperglycemia, has been shown to alter a
protein’s susceptibility to glycation (the
process of forming irreversible Amadori
products from reversible Schiff bases with
non-enzymatic rearrangement reactions) [72,
73]. These AGEs, which are prone to cross-
linking and aggregation, can modify IAPP
through post-translational attachments [74].
Upon proteoglycan binding, there is an
observed increase and acceleration in total
amyloid fibril formation. Amadori products
are currently used as a clinical marker of
glucose control because they exist in
equilibrium with glucose levels [75]. AGEs,
on the other hand, become irreversibly bound
to protein. It is this long-term consequence of
glycation, leading to the formation of AGEs
that can take years to complete and can be
detrimental to the patient with diabetes.
These processes (oxidation and glycation)
may contribute to a dysfunctional ER

membrane, allowing the abnormal leakage of
misfolded proteins into the cytosol before
they are properly folded into their native 3-
dimensional conformation. This same ER
membrane leak may also allow the influx of
ROS into the ER lumen, disrupting the redox-
sensitive milieu within, and allowing for an
even greater unfolding and misfolding of
proteins to occur.

2. Reactive Nitrogen Species (RNS)

RNS are increased in T2DM [76] and could
contribute to protein misfolding. Growing
evidence implicates both ROS and RNS (such
as the reaction of superoxide anion (O2

-) with
nitric oxide (NO) to form peroxynitrite and
other RNS) as important molecules in the
development of diabetes [77, 78, 79, 80, 81].
In other conformational diseases, such as
Alzheimer's disease and Parkinson's disease,
abnormal NO production is involved in
protein misfolding leading to aggregates and
proteasome dysfunction on ubiquinated
material [82]. Peroxynitrite is an RNS
important in the evolution of diabetes [76].
Peroxynitrite reacts relatively slowly with
most biological molecules and as a result
becomes a potent selective oxidant.
Peroxynitrite specifically modifies tyrosine in
proteins/polypeptides to create nitrotyrosine,
which leaves an indelible footprint detectable
in vivo. Nitrotyrosine and nitrosylated
arginine (nitroarginine), known biomarkers of
redox stress, are capable of competing with
the natural substrate L-arginine for the
production of endothelial nitric oxide (eNO)
via the endothelial nitric oxide synthase
(eNOS) reaction [83]. The presence of RNS
in the plasma of diabetic patients suggests a
possible involvement of peroxynitrite in the
development of diabetic complications [84].
Could RNS-induced protein modifications
also increase the propensity for IAPP to
become misfolded? Post-translational events,
such as nitrosylation, can affect the 3-
dimensional configuration of proteins [85].
Nitrosylation of various amino groups could
therefore result in prevention of the proper
folding of IAPP.
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3. Reactive Thiol Species

Although thiols are traditionally viewed as
non-enzymatic antioxidants, reactive thiol
species may be yet another consequence of
redox stress that promotes conformational
disease. In all antioxidant reactions
employing thiols, thiyl radicals are
simultaneously formed from the reduction of
the disulfide bridges and subsequent oxidation
of the sulfhydryl groups [86]. Maintaining a
balance in the redox state of the cell ensures
that thiols can continue their biological action
as necessary antioxidants, and, just as
importantly, that these thiyl radicals are
efficiently reduced to thiols again. An
elevated and sustained tension of redox stress
in the ER, such as with T2DM, has the
potential to disrupt this delicate balance,
initiating a process termed 'disulfide
reshuffling', in which newly synthesized
polypeptides undergo disulfide rearrangement
with free thiol groups [86]. These
thiol/disulfide exchange reactions promote
polymerization of other amyloidogenic
proteins such as prion protein PrP found in
spongiform encephalopathies [87] and can
therefore presumably stabilize aggregates of
other proteins, considering the generally
reducing environment of the cytoplasm.
Hence, not only are IAPP aggregates
stabilized by the extensive non-covalent
hydrogen bonding of crossed beta-sheet
formation, but also this conformational
change may provide covalent protection to
intermolecular disulfide bonds, hindering any
attempt of the UPR at aggregate disassembly.
This concept lends support to the widely held
belief that amyloid fibrils form via a
nucleation-dependent kinetic process [6, 9,
88].

4. Redox Stress in T2DM: Conclusion

The beta cell is poorly equipped to handle
redox stress as compared to other cells such
as hepatocytes [76, 83], and this very
sensitivity has allowed researchers to use the
oxidizing agents streptozotocin and alloxan to
create diabetic animal models. Not only is the

islet inundated with ROS but also the beta cell
within is known to be deficient in the classic
antioxidants to protect itself from the
surrounding redox stress [65, 89].
Additionally, once overt T2DM has
developed, the antioxidant reserve is known
to be compromised with a systemic deficiency
of catalase, superoxide dismutase, and
glutathione peroxidase [90, 91, 92, 93].
Redox stress, as manifested by increased
ROS, RNS and reactive thiol species, may
significantly post-translationally modify IAPP
to the extent that protein misfolding is
favored. Additionally, these redox stressors
can overwhelm the beta cell’s ER folding
complex, chaperone-induction signaling
mechanism, lysosome-proteasome pathway
and attenuate the secretory capacity of this
cell [94, 95]. These effects likely result in
augmented beta cell apoptosis and the
accumulation of islet amyloid.

Conclusion

If T2DM is viewed as a conformational
disease, it may be possible to rationally
design therapies that specifically focus on the
forces which lead to protein misfolding and
deposition. This can include decreasing the
redox stress associated with increased
metabolic demand in obesity or promoting
plaque destabilization. New small molecule
therapeutics can modify the kinetics of
amyloid formation or promote their amyloid
resorption. For example, small molecule
drugs can be used to stabilize the
amyloidogenic protein precursor, or to act on
the partially folded intermediates in the
folding process, or to actually interact with
mature amyloid fibrils to weaken their
structural stability. Displacing important
cofactors of amyloid deposits such as
glycosaminoglycans and serum amyloid P
component with these small molecules can
favor dissolution of the fibril aggregate [96].
Antibodies can also be used to reduce the
ability of an amyloidogenic protein to form
partly unfolded species and can be an
effective method of preventing its aggregation
[97]. Thus, it is possible that in the future, as
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these therapeutics are developed, it will be
possible to slow or prevent the inexorable
progression of disease so frequently seen in
conformational disease.
Seeing T2DM as another type of
conformational disease may facilitate a
broader understanding of islet biology beyond
the regularly understood parameters of this
disease. For example, islet cell stress may
lead to a form of T2DM in type 1 diabetic
patients bearing islet transplants. It is known
that human islets rapidly form amyloid when
transplanted into immunodeficient mice [98].
In this relatively successful ‘Edmonton era’ of
islet transplantation, the hope for a cure for
type 1 diabetes is diminished by a
disappointing loss of function in a significant
percentage of recipients [99] which can occur
only months after transplantation. It is
intriguing that a foundational component of
modern era transplant success resides in
sustaining an optimal islet mass [100]. Could
gradual loss of islet cells due to immune
attack be compounded by a conformational
disease akin to T2DM in limiting the long
term success of islet transplants? This and
other questions may be addressed if T2DM
and non-autoimmune beta cell dysfunction are
viewed as a conformational disease. New
avenues of therapy that are directed at
minimizing forces leading to deleterious
accumulations of proteins may offer hope to
patients at risk for T2DM.
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