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ABSTRACT 
 
A numerical solution of buoyancy-driven unsteady natural convection boundary layer flow past a vertical cone 
embedded in a non-Darcian isotropic porous regime is considered. The heat and mass flux at the surface of the cone 

is modeled as a power-law according to ( ) m
wq x x=  and * ( ) n

wq x x= respectively, where x denotes the coordinate 

along the slant face of the cone. Both Darcian drag and Forchheimer quadratic porous impedance are incorporated 
into the two-dimensional viscous flow model. The transient boundary layer equations are then non-dimensionalized 
and solved by the Crank-Nicolson implicit difference method. The velocity, temperature and concentration fields 
have been studied for the effect of Grashof number, Darcy number, Forchheimer number, Prandtl number, surface 
heat flux power-law exponent (m), surface mass flux power-law exponent (n), Schmidt number, buoyancy ratio 
parameter and semi-vertical angle of the cone. Present results for selected variables for the purely fluid regime are 
compared with the non-porous study by Hossain and Paul [9] and are found to be in excellent agreement. The local 
skin friction, Nusselt number and Sherwood number are also analyzed graphically. The study finds important 
applications in geophysical heat transfer, industrial manufacturing processes and hybrid solar energy systems.     
 
Key words: cone; non-Darcian porous media; finite difference method; flux; AMS Subject Classification: 35Q35, 
76R10, 76S99, 76W05 
 
1. NOMENCLATURE 
x, y   coordinates along the cone generator and normal to the generator 
u,v velocity components along the x- and y-directions 
g gravitational acceleration 
r   local radius of cone  
t′  time 
t dimensionless time 
T′  temperature 
T dimensionless temperature 
C′  concentration 
C dimensionless concentration 
D mass diffusion coefficient 
K permeability of porous medium 

wq  heat flux (i.e. heat transfer rate per unit area) 
*
wq  mass flux (i.e. mass transfer rate per unit area) 

k thermal conductivity of fluid 
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L reference length  
X, Y   dimensionless coordinates along the cone generator and normal to the generator 
U,V dimensionless velocity components along the X- and Y-directions 
b Forchheimer geometrical constant  
Da Darcy number 
Fs Forchheimer number 
GrL Grashof number  
Pr Prandtl number 
N buoyancy ratio parameter 
Sc Schmidt number  
m power-law index for surface heat flux relation  
n power-law index for surface mass flux relation  
Nux local Nusselt number  
NuX dimensionless local Nusselt number 
Shx local Sherwood number 
ShX non-dimensional local Sherwood number 
R dimensionless local radius of cone  
 
Greek symbols 
µ dynamic viscosity of fluid 
ν kinematic viscosity of fluid 
φ semi-vertical cone angle 
α thermal diffusivity 
β volumetric thermal expansion coefficient 
θ dimensionless temperature function 
τ dimensionless time 
τX dimensionless local shear stress function (skin friction)  
 
Subscripts 
w  condition on the wall 
∞ free stream condition 
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Heat and mass transfer in fluid-saturated porous media finds applications in a variety of engineering processes such 
as heat exchanger devices, petroleum reservoirs, chemical catalytic reactors and processes and others. A thorough 
discussion of these and other applications is available in the monographs by Ingham and Pop [11] and Nield and 
Bejan [13]. Comprehensive reviews of the much of the work communicated in porous media transport phenomena 
have been presented by Vafai [17] and Trevisan and Bejan [15]. Most studies dealing with porous media have 
employed the Darcy law. However, for high velocity flow situations, the Darcy law is inapplicable, since it does not 
account for inertial effects in the porous medium. Such flows can arise for example in the near-wellbore region of 
high capacity gas and condensate petroleum reservoirs and also in highly porous filtration systems under high 
blowing rates. The most popular approach for simulating high-velocity transport in porous media is the Darcy–
Forchheimer drag force model. This adds a second-order (quadratic) drag force to the momentum transport equation. 
This term is related to the geometrical features of the porous medium and is independent of viscosity. Vafai and 
Tien [16] presented a seminal study discussing the influence of Forchheimer inertial effects in porous media 
convection. Chen and Chen [4] studied the mixed convective boundary layer flow from a vertical surface in a fluid-
saturated non-Darcian porous medium including Forchheimer inertial effects. Yih [18] studied numerically the free 
convection heat and mass transfer from truncated cone embedded in a saturated porous medium. Hossain and Paul 
[10] studied thermal convection boundary layer flow with buoyancy and suction/blowing effects from a cone with 
non-uniform surface temperature. They extended this study [9] to consider non-uniform surface heat flux, both 
studies employing numerical methods. Chamkha et al. [3] studied the double-diffusive convection heat and mass 
transfer over a cone (and wedge) in Darcy-Forchheimer porous media. Thusfar the transient thermal convection flow 
over a cone in Darcy-Forchheimer porous media has not been studied in the literature despite important applications 
in geothermics, geophysics and materials processing. 
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MATHEMATICAL MODEL 
 

An axisymmetric unsteady natural convection boundary layer flow past a vertical cone with variable heat and mass 
flux in a Darcy-Forchheimer fluid saturated porous medium in a cartesian (x, y) coordinate system is formulated 
mathematically in this section. Initially, it is assumed that the cone surface and the surrounding fluid which are at 

rest possess the same temperatureT∞′  and concentration levelC∞′ everywhere in the fluid. At time 0t′ > , heat 

supplied from the cone surface to the fluid, concentration level near the cone surface are raised at a rate of 

( ) m
wq x x= and   ( )* n

wq x x= respectively, and they are maintained at the same level. It is assumed that the 

concentration C′ of the diffusing species in the binary mixture is very less in comparison to the other chemical 
species, which are present and hence the Soret and Dufour effects are negligible. We consider viscous flow where 
pressure work, viscous dissipation and thermal dispersion effects are neglected. The coordinate system chosen (as 
shown in Fig.1) is such that the x-direction is measured along the cone surface from the leading edge O, and the y-
direction is normal to the cone generator. The cone apex is located at the origin(x=y=0).  
 Hereφ  designates the semi-vertical angle of the cone and r is the local radius of the cone.  

                           
Figure 1: Physical Model 

 
Then under the above assumptions, the governing boundary layer equations with Boussinesq’s approximation are  

( ) ( )
0

ur vr

x y

∂ ∂
+ =

∂ ∂
                                 (1) 

2
* 2

2
cos ( ) cos ( )

u u u u b
u v g T T g C C u u

t x y y K K

νν β φ β φ∞ ∞
∂ ∂ ∂ ∂ ′ ′ ′ ′+ + = + − + − − −

′∂ ∂ ∂ ∂
                         (2) 

2

2
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u v

t x y y
α

′ ′ ′ ′∂ ∂ ∂ ∂+ + =
′∂ ∂ ∂ ∂

                                (3) 

2

2

C C C C
u v D

t x y y

′ ′ ′ ′∂ ∂ ∂ ∂+ + =
′∂ ∂ ∂ ∂

                                (4) 

where all terms are defined in the nomenclature. Under the Boussinesq approximation buoyancy effects are 
simulated only in the momentum equation, which is coupled to the energy equation, constituting a free convection 
regime. The corresponding spatial and temporal initial and boundary conditions at the surface and far from the cone 
take the form:     
 

0 : 0 , 0 , ,t u v T T C C∞ ∞′ ′ ′ ′ ′≤ = = = =               for all x, y, 
*( ) ( )

0 : 0 , 0 , ,w wq x q xT C
t u v

y k y D

′ ′∂ ∂′ > = = = − = −
∂ ∂

at  y = 0, 

0 , ,u T T C C∞ ∞′ ′ ′ ′= = =                             at  x = 0,                                       (5) 

g 

y,Y 

x,X 

O 

φ
γ 

r 

Fluid-saturated 
porous medium 
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0 , ,u T T C C∞ ∞′ ′ ′ ′→ → →     as y → ∞ . 

 
where all the parameters defined in the nomenclature.  
 
The equations (1) to (4) are highly coupled, parabolic and nonlinear. An analytical solution is clearly intractable and 
in order to facilitate a numerical solution we non-dimensionalize the model. Proceeding with the analysis we now 
introduce the following transformations:  
 

x
X

L
= , ( )

1

4
L

y
Y Gr

L
= ,  

r
R

L
= , where sinr x φ= , 

( )
1

4
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= , ( )
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= , ( )
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2
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The transport equations (1) to (4) are thereby reduced to the following dimensionless form 

( ) ( )
0

UR VR

X Y

∂ ∂
+ =

∂ ∂
                                 (7) 

2
2

2
cos cos

L

U U U U U Fs
U V T NC U

t X Y Y DaGr Da
φ φ∂ ∂ ∂ ∂+ + = + + − −

∂ ∂ ∂ ∂
                           (8) 

2

2

1

Pr

T T T T
U V

t X Y Y

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

                                (9) 

2

2

1C C C C
U V

t X Y Sc Y

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

                             (10) 

The corresponding non-dimensional initial and boundary conditions are given by 
0 : 0 , 0 , 0 , 0t U V T C≤ = = = =   for all X, Y, 

0 : 0 , 0 , ,m nT C
t U V X X

Y Y

∂ ∂> = = = − = −
∂ ∂

 at  Y = 0,                        (11) 

0U = ,      0T = ,   0C =                    at  X = 0, 

0,U →     0,T →   0C →                    as Y → ∞ . 

 
Where again all the parameters are given in the nomenclature. The dimensionless local values of the skin friction, 
Nusselt number and the Sherwood number are given by the following expressions  
 

0
x

Y

U

Y
τ

=

∂ = − ∂ 
                                            (12) 

0
x

Y

T
Nu X

Y =

∂ = −  ∂ 
                                            (13) 

0
x

Y

C
Sh X

Y =

∂ = −  ∂ 
                                            (14) 

 
4. NUMERICAL SOLUTION  
In order to solve the unsteady, non-linear, coupled equations (7) – (10) under the conditions (11), an implicit finite 
difference scheme of Crank-Nicolson type has been employed which is discussed by many authors [1], [6], [7], [12] 
and [14]. The finite difference scheme of dimensionless governing equations is reduced to tri-diagonal system of 
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equations and is solved by Thomas algorithm as discussed in Carnahan et al. [2]. The region of integration is 

considered as a rectangle with max 1X = and max 22Y =  where maxY corresponds to Y = ∞  which lies very well 

out side both the momentum and thermal boundary layers. The maximum of Y was chosen as 22, after some 
preliminary investigation so that the last two boundary conditions of (11) are satisfied within the tolerance 

limit 510− . The mesh sizes have been fixed as 0.05X∆ = , 0.05Y∆ =  with time step 0.01t∆ = . The 
computations are carried out first by reducing the spatial mesh sizes by 50% in one direction, and later in both 
directions by 50%. The results are compared. It is observed in all cases, that the results differ only in the fifth 
decimal place. Hence, the choice of the mesh sizes seems to be appropriate. The scheme is unconditionally stable. 

The local truncation error is 2 2( )O t Y X∆ + ∆ + ∆ and it tends to zero as ,t X∆ ∆  and Y∆ tend to zero. Hence, 

the scheme is compatible. Stability and compatibility ensure the convergence. The derivatives involved in Equations 
(12) – (14) are evaluated using five point approximation formula. 
 

RESULTS AND DISCUSSION 
 

Only selective figures have been reproduced here for brevity. In the numerical computations the following values for 

the dimensionless thermophysical parameters are prescribed: Grashof number ( LGr ) = 1.0, Darcy number (Da) = 

0.1 (high permeability), Forchheimer number (Fs) = 0.1 (weak quadratic drag), Prandtl number (Pr) = 7.0 (water), 
Schmidt number (Sc) = 0.6 (oxygen diffusing in air), surface heat flux power law exponent (m) = 0.5, surface mass 
flux power law exponent (n) = 0.5, buoyancy ratio parameter (N) = 1.0 and semi-vertical angle of the cone (φ ) = 

200. All graphs therefore correspond to these values unless otherwise indicated. To test the accuracy of the 
computations the local shear stress and local Nusselt number computations for the non-porous case are compared 
with those of Hossain and Paul [9] for a heat flux gradient of m = 0.5 and X = 1.0 in the steady state, in Tables 1, 2 
respectively, and are found to be in good agreement.   
 
Table 1 Comparison of local skin friction values at X = 1.0 and m = 0.5 with those of  Hossain-Paul [9] for steady state purely fluid (Da →→→→ 

∞∞∞∞ in present model) case. 
 

Pr 
Hossain and Paul [9] 

ΓΓΓΓX/GrL
3/5 

Present 
results 

0.01 5.13457 5.13424 
0.05 2.93993 2.93180 
0.1 2.29051 2.29044 

 
Table 2 Comparison of local Nusselt number values at X = 1.0 and m = 0.5 with those of  Hossain-Paul [9] for steady state purely fluid 

(Da →→→→ ∞∞∞∞ in present model) case. 
 

Pr 
Hossain and Paul [9] 

NuX/GrL
3/5 

Present 
results 

0.01 0.14633 0.14648 
0.05 0.26212 0.26227 
0.1 0.33174 0.33648 
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In Figures 1(a) and 1(b), the influence of Grashof number (lGr ) on steady state velocity(U) and temperature (T) 

distributions with Y-coordinate are shown. Free convection i.e. thermal buoyancy effects are analyzed via the 

Grashof number. For an increasing lGr  from 0.1 through 1.0, 10.0, 50.0 to 100.0 cooling of the cone by free 

convection occurs i.e. heat is conducted away from the cone to the surrounding regime.  
 
Figures 2(a) and 2(b) show the effect of Darcy number (Da) on dimensionless velocity (U) and temperature (T) 
with transformed radial coordinate (Y) close to the leading edge (i.e. cone apex) at X = 1.0. To study the influence 
of regime permeability from sparsely packed media to densely packed materials the following values Da = 1.0, 0.1, 

0.01, 0.001 are considered. Da = 2K L for a fixed value of the reference length (L) is directly proportional to 

permeability (K) of the porous regime. Increasing Da increases the porous medium permeability and simultaneously 
decreases the Darcian impedance since progressively less solid fibers are present in the regime. The flow is therefore 
accelerated for higher Da values causing an increase in the velocity U as shown in Figure 2(a). Maximum effect of 
rising Darcy number is observed at intermediate distance from the cone surface around Y ∼ 1. Conversely 
temperature T depicted in Figure 2(b) is opposed by increasing Darcy number. The presence of fewer solid fibers in 
the regime with increasing Da inhibits the thermal conduction in the medium which reduces distribution of thermal 
energy. The regime is therefore cooled when more fluid is present and T values in the thermal boundary layer are 
decreased. Profiles for both velocity and temperature are smoothly asymptotic decays to the free stream indicating 
that excellent convergence (and stability) is obtained with the numerical method. Velocity boundary layer thickness 
will be increased with a rise in Da and thermal boundary layer thickness reduced. The effect of the Forchheimer 
inertial drag parameter (Fs) on dimensionless temperature (T) profiles is shown in Figure 3. The Forchheimer drag 
force is a second order retarding force simulated in the momentum conservation equation. Increasing Fs values from 
0.0 through 0.1,1.0,5.0,10.0,20.0 and 50.0 causes a strong increase in Forchheimer drag which decelerates the flow 
i.e. reduces velocities. For higher values of Fs it is expected that the porous medium flow becomes increasingly 
chaotic. Temperature (T) however is slightly increased with a rise in Forchheimer parameter. The effects of the 
Prandtl number (Pr) on velocity profiles are depicted in Figure 4. Pr encapsulates the ratio of momentum diffusivity 
to thermal diffusivity. Larger Pr values imply a thinner thermal boundary layer thickness and more uniform 
temperature distributions across the boundary layer. Hence thermal boundary layer will be much less thick than the 
hydrodynamic (translational velocity) boundary layer. Smaller Pr fluids have higher thermal conductivities, so that 
heat can diffuse away from the cone surface faster than for higher Pr fluids (thicker boundary layers). Physically the 
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lower values of Pr correspond to liquid metals (Pr ∼ 0.02, 0.05), Pr = 0.7 is accurate for air or hydrogen and Pr = 7.0 
for water. The computations show that translational velocity U is therefore reduced as Pr rises from 0.72 through 
1.0, 2.0, 5.0, 7.0 and 10.0 since the fluid is increasingly viscous as Pr rises. Figure 4(b) indicates that a rise in Pr 
substantially reduces the temperature T in saturated porous regime. The profiles become increasingly parabolic as Pr 
increases above 0.1, for which the profile is approximately a linear decay. For all cases T decays to zero as Y → ∞, 
i.e. in the free stream. There is however a rapid decay to zero for the maximum Pr (= 10) where the temperature 
plummets to zero in the near-wall region.  Concentration function values are seen to increase slightly with an 
increase in Pr.   
 
Figure 5 shows the effect of the Schmidt number (Sc) on the dimensionless concentration (C).  We note that the 
Schmidt number (Sc) embodies the ratio of the momentum to the mass diffusivity. Sc therefore quantifies the 
relative effectiveness of momentum and mass transport by diffusion in the hydrodynamic (velocity) and 
concentration (species) boundary layers. Smaller Sc values can represent for example hydrogen gas as the species 
diffusing in air , Sc = 2.0 implies hydrocarbon diffusing in air, and higher values to petroleum derivatives diffusing 
in fluids (e.g. ethyl benzene) as indicated by Gebhart et al. [8]. As Sc increases, Figure 5 shows that C values are 
strongly decreased, as larger values of Sc correspond to a decrease in the chemical molecular diffusing i.e. less 
diffusion therefore takes place by mass transport. The dimensionless concentration profiles all decay from a 
maximum concentration to zero in the freestream. Greater Sc values correspond to lower chemical molecular 
diffusivity of the parent fluid so that less diffusion of the species occurs in the regime. Concentration boundary layer 
thickness will therefore be reduced. For low Sc fluid greater species diffusion occurs and concentration boundary 
layer thickness increased. For Sc = 1, the Concentration and velocity boundary layers will have approximately the 
same thickness i.e. species and momentum will be diffused at the same rates. With lower Sc values the decay of 
concentration from the cone surface is more controlled, for increasing values of Sc the profiles descend more and 
more steeply and concentration falls faster from the surface to a short distance into the boundary layer regime. 
 
The effect of surface heat flux power exponent (m) on the steady state temperature (T) is shown in Figure 6. An 
increase in the value of m reduces the temperature. It is also seen that the time required to reach the steady state 
temperature is more at lower values of m. Figure 7 depict the distribution of concentration (C) with radial 
coordinate (Y) for various values of the surface mass flux power law exponent (n). The concentration reduces with 
the increasing n values from 0.0 through 0.25, 0.50, 0.75 and 1.0. 
 
Increasing Fs clearly reduces the local Nusselt number as shown in Figure 8.  
 
A slight increase in local Nusselt number accompanies the increment in Pr as shown in Figure 9. The influence of 
the concentration to thermal buoyancy ratio parameter (N), on dimensionless temperature (T) with radial coordinate 
(Y) is shown in Figure 10. N = 0 indicates that thermal and species buoyancy forces are both absent. For N > 0, 
thermal and species buoyancy forces aid each other. N = 1 implies that both buoyancy forces are of the same order 
of magnitude. A rise in N from 0.0 through 1.0, 2.0, 3.0 and 5.0 induces a retarding effect on the flow in the porous 
regime i.e. velocities are decreased.  Increasing N (thermal and concentration buoyancy forces assisting each other) 
decreases temperatures in the regime i.e. cools the boundary layer regime. The effect of semi-vertical angle of the 
cone (φ) on dimensionless temperature (T) with Y-coordinate is shown in Figure 11. It is observed that a rise in φ 
substantially increases the temperature T in the boundary layer regime. And more time is required to reach the 
steady state. 
 

CONCLUSION 
 

Numerical solutions have been presented for the buoyancy-driven unsteady natural convection boundary layer flow 
past a vertical cone embedded in a non Darcian isotropic porous regime. Present results are compared with those of 
Hossain and Paul [9] and found to be in excellent agreement. The following conclusions are drawn. 
• Increasing Grashof number boosts the translational velocity in the cone surface regime and decreases temperature 
throughout the flow regime. 
• Increasing Darcy number accelerates the flow i.e. increases translational velocities. However the temperature is 
reduced with a rise in Darcy number. 
• An increase in the Forchheimer inertial drag parameter is observed to slightly increase the temperature, but 
reduces both velocity and local Nusselt number. 
• An increase in Prandtl number is observed to decrease both temperature and velocity, but the concentration is 
slightly increased. A slight increase in local Nusselt number accompanies the increment in Pr. 
• The concentration is observed to significantly decrease with an increase in Schmidt number. 
• The temperature is observed to decrease with an increase in buoyancy ratio parameter, but decrease with an 
increase in semi-vertical angle of the cone. The time taken to reach the steady state increases with increasing φ. 
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