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ABSTRACT 
 
The effect of thermal radiation and thermo-diffusion on the unsteady combined heat and mass transfer of a viscous 
incompressible fluid in a corrugated pipe in the presence of a constant heat source. The unsteadiness is due to a 
traveling thermal wave imposed on the boundary. Taking the slope of the boundary wall of the pipe as a 
perturbation parameter, the equations governing the flow, heat and mass transfer have been solved. The velocity, 
the temperature and the concentration have been evaluated for different variations. The effect of the waviness of the 
boundary on the flow phenomenon has been exhibited through various profiles of the velocity, the temperature and 
the concentration. The shear stress, the rate of heat and mass transfer are analyzed computationally for different 
parameters. 
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_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Transport phenomena involving the combined influence of thermal and concentration buoyancy are often 
encountered in many Engineering systems and Natural environments. There are many applications of such transport 
processes in the industry notably in chemical distilleries, heat exchangers, solar energy collectors and thermal 
protection systems. In all such classes of flows, the driving force is provided by a combination of thermal and 
chemical diffusion effects. In atmospheric flows thermal convection of the earth by sunlight is affected by 
differences in water vapor concentration. This buoyancy driven convection due to coupled heat and mass transfer in 
porous medium has also many important applications in energy related engineering. These include moisture 
migration, fibrous insulation, spreading of chemical pollution in saturated soils, extraction of geothermal energy and 
under ground disposal of nuclear waste. This problem of combined buoyancy driven thermal and mass diffusion has 
been studied in parallel plate geometries by a few authors notably Gebhart [8], Lai [15], Chen, Yuh and Moutsoglov 
[4], Poulikakos [21], Pop et al [20], Angiras et al [3], Trevisan and Bejan [27]. Recently Angirasa et al [3] have 
presented the analysis for combined heat and mass transfer by natural convection for aiding and opposing 
buoyancies in fluid saturated porous enclosures. 
 
In most of the studies pertaining to convection flows through the pipes, the axial dependence of the flow variables 
[5, 7, 9, 10, 16, 17 and 29] is neglected and either the temperature or its gradient is maintained non-uniform on the 
boundary. Also the heat transfer analysis is investigated in the absence of any internal heat sources in the flow field. 
The heat transfer in a flow through a pipe in the presence of additional internal heat source has direct application to 
the modified chemical vapor deposition process. This MCVD process is being used to make high quality optical 
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glass fibers [25,28,29].In commercialization of this product it is desirable to increase the efficiency of the 
thermophoretic deposition rate, since the cost of the fibers depends on the prediction of problems. Keeping these 
facts in view Krishna et al [13, 14] have discussed the combined free and forced convection flow of a viscous 
incompressible fluid through an axially varying vertical pipe. The problem is analyzed as a regular perturbation 
problem assuming the slope of the pipe wall to be small. The behavior of the velocity, temperature and heat transfer 
coefficient is discussed based on numerical computations in detail. Recently Neeraja [18] has investigated the 
unsteady mixed convection flow in a pipe of varying gap in which the flow is maintained by a prescribed oscillatory 
flux and the pipe is maintained at a constant temperature. Seshasailaja et al [24a] have studied the effect of non-
uniform temperature on convective heat transfer flow in an axially varying pipe 
 
In all these studies the thermal diffusion is not considered. This assumption is true only when the flow takes place at 
low concentration level. There are however some exceptions. The thermal –diffusion effect(commonly known as 
Soret effect) for instances has been utilized for isotope separation and in mixture between gases with very light 
molecular weight(H2,He) and the medium molecular weight(N2,air) the diffusion-thermo effect was found to be of a 
magnitude such that it cannot be neglected [6]. In view of the importance of this diffusion-thermo effect Jha and 
Singh [11], Kafoussias [12], Ajay Kumar Singh [2], Rajput et al [22], Abdul et al [1] have analyzed the convection 
heat and mass transfer with Soret effect under different conditions. Reddy [25a] has discussed the unsteady double 
diffusive convective heat transfer flow of a viscous fluid in a vertical wavy pipe. 
                                       
FORMULATION OF THE PROBLEM 
Consider the unsteady axisymmetric flow of an incompressible, viscous fluid in a vertical pipe of variable cross-
section on which a traveling thermal wave is imposed. The Boussinesq approximation is used so that the density 
variation will be retained only in the buoyancy force. The viscous dissipation is neglected in comparison to the heat 
flow by convection. The cylindrical polar system O(r,x) is chose with x-axis along the axis of the pipe. The 
boundary of the pipe is assumed to be  
 

)/( axafr δ=  

 
where ‘a ‘ is characteristic radial length, f is a twice differentiable function and ‘δ’ is a small parameter proportional 
to the boundary slope. The flow is maintained by a constant volume flow rate for which a characteristic velocity U is 
defined as 
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The equations governing the flow and heat transfer are 
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Where ρe is the density of the fluid in the equilibrium state, q is the velocity, ς is the vorticity, p is the pressure, T, C 
are the temperature and concentration in the flow region, 
 
ρ is the density of the fluid, Cp is the specific heat at constant pressure, Q is the strength of the heat source, λ is the 
coefficient of thermal conductivity, β1 is the coefficient of volume expansion, β* is the coefficient of expansion with 
mass fraction , D1

  is molecular diffusivity , k11  is the cross diffusivity and qR is the radiative heat flux.  
 
Invoking Roseland approximation (Brewster (3a)) the radiative heat flux is given by 
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and expanding 4T ′ by Taylor’s expansion after neglecting higher order terms we get 
4
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Where p = pe + pd    ;  pd being the hydrodynamic pressure. 
 
Using equation (2.6) & (2.9) the equation of momentum (2.2) reduces to 
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Taking curl on both sides of equation (2.10) and introducing the stream function ψ  
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where u is the axial velocity and v is the radial velocity component the equation in terms of ψ  is 
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On introducing the non-dimensional variables 
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The equations (2.4),(2.5)&(2.10)(after dropping the dashes)  reduce to 
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Introducing the transformation 
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Substituting (2.17) in equations (2.14)-(2.16) and separating the like powers of  δ the equations corresponding to the 
zeroth order are 
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The corresponding conditions on 0ψ , 0θ  and  Co  are 
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The equations to the first order are 
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The corresponding boundary conditions are on 111, Candθψ    are 
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SOLUTION OF THE PROBLEM 
Solving the coupled equations (2.20)-(2.22) subject to the boundary conditions (2.23), we get the expressions for 
first order is 
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Where A1, A2,……, A49 are the constants  
 

NUSSELT NUMBER AND SHERWOOD NUMBER 
The shear stress for the motion on the pipe 
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The shear stress on the pipe )(xfr =  in the non-dimensional form is given by  
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The local rate of heat transfer (Nusselt number) on the boundary of the pipe is calculated by using the formula 
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The local rate of mass transfer (Sherwood number) on the boundary of the pipe is calculated by using the formula 
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RESULTS AND DISCUSSION  
 

In this analysis we discuss the effect of radiation on the unsteady mixed convective heat and mass transfer flow of a 
viscous fluid in a vertical wavy cylinder on whose wall a traveling thermal wave is imposed. The governing 
equations are solved by using a regular perturbation technique. The velocity, temperature and concentrations are 
discussed for different values of G, R, N1,β, α and x+γt. 
 

Table 1 Shear stress (τ) at η = 1 
 

 
Table 2   Nusselt number (Nu) at η= 1 

 
G I II III IV V VI VII VIII IX X XI XII XIII 

103 -3.9112 -3.8198 -3.7180 -3.9404 -3.9450 -4.0684 -4.0346 -4.0251 -4.4888 -3.4576 -3.9982 -4.1274 -3.87876 
3X103 -3.8797 -3.7408 -3.5731 -3.8956 -3.8856 -4.0552 -4.0295 -4.0260 -4.4682 -3.4109 -3.9946 -4.1706 -3.83738 
-103 -3.9435 -3.9028 -3.8757 -3.9865 -4.0063 -4.0817 -4.0397 -4.0242 -4.5096 -3.7060 -4.0017 -4.0857 -3.92145 

-3X103 -3.9766 -3.9903 -4.0482 -4.0338 -4.0697 -4.0952 -4.0448 -4.0232 -4.5307 -3.5565 -4.0052 -4.0454   -3.96552 
N1 0.5 1.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
α 2 2 2 4 6 -2 -4 -6 2 2 2 2 2 
β 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5 0.5 0.5 

X+γt π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/2 π 2π 
 

Table 3   Sherwood number (Sh) at η= 1 
 

G I II III IV V VI VII VIII IX X XI XII XIII 
103 9.68006 10.20625 10.89693 9.18277 9.22955 7.19662 7.57397 7.64158 10.11684 7.84714 9.35733 8.93187 9.80953 

3X103 10.84539 12.48020 15.04357 10.61554 10.92302 7.54915 7.73577 7.80729 10.50500 8.022122 10.03019 9.02452 11.18615 
-103 8.66185 8.42249 8.10100 7.97077 7.66830 6.86164 7.41589 7.67605 9.74597 7.42704 8.73595 8.83985 8.63320 

-3X103 7.76457 6.98609 6.08853 6.93218 6.45489 6.54297 7.26143 7.71068 9.39126 5.64449 8.16037 8.74846 7.61641 
N1 0.5 1.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
α 2 2 2 4 6 -2 -4 -6 2 2 2 2 2 
β 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5 0.5 0.5 

X+γt π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/2 π 2π 

 
The axial velocity (u) is shown in figs. 1-4 for different values of N1,β, α and x+γt.  The influence of the surface 
geometry on u in shown in fig 1. It is found that higher the dilation of the pipe larger the velocity in the flow region 
(0, 0.6) and in the remaining region the axial velocity reduces with β≤0.7 and enhances with higher β≥0.9. From fig 
2 we find that an increase in the radiation parameter N1 leads to an enhancement in u. The influence of heat sources 
on u is shown in fig 3. It is observed that the axial velocity enhances with increase in α>0 and depreciates with |α|. 
An increase in the phase x+γt ≤ π of the traveling thermal wave enhances u and reduces with higher x+γt ≥ 2π (fig 
4).  
 
The secondary velocity (v) which is due to the waviness of the pipe is shown in fig. 5-8 for different parametric 
values.  Higher the dilation of the pipe larger |v| in the flow region (fig 5). The effect of radiative heat transfer on v 
is shown in fig 6. |v| experiences depreciation with increase in the radiation parameter N1. An increase in the 
strength of heat source/sink results in a marginal depreciation in the secondary velocity (fig 7). From fig 8 we find 
that |v| enhances with increase in x+γt ≤ π and depreciates with higher x+γt ≥ 2π. 
 

G I II III IV V VI VII VIII IX X XI XII XIII 
103 -0.6479 -0.6986 -0.7615 -1.1430 -2.4902 -0.5816 -0.5774 -0.5598 -0.884 -0.603 -0.6450 -0.6480 -0.6479 

3X103 -1.3886 -1.8509 -2.4234 -5.8813 -18.056 -0.7551 -0.7189 -0.5746 -1.127 -1.021 -1.3886 -1.3886 -1.3887 
-103 -0.6553 -0.7080 -0.7731 -1.1627 -2.5267 -0.5769 -0.5731 -0.5601 -0.889 -0.583 -0.6552 -0.6552 -0.6553 

-3X103 -1.4107 -1.8792 -2.4582 -5.9406 -18.165 -0.7410 -0.7059 -0.5754 -1.1172 -1.0501 -1.41053 -1.41028 -1.4107 
N1 0.5 1.5 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
α 2 2 2 4 6 -2 -4 -6 2 2 2 2 2 
β 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5 0.5 0.5 

X+γt π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/4 π/2 π 2π 
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Then non-dimensional temperature distribution (θ) is shown in figs 9-12 for different values of the governing 
parameters. The influence of wall waviness on θ is shown in fig 9. Higher the dilation of the wavy cylinder larger 
the actual temperature. From fig 10 we find that higher the radiative heat flux larger the actual temperature. The 
actual temperature enhances with increase in α<0 and reduces with |α| (fig 11). The variation of θ with phase x+γt 
shows that the actual temperature enhances with x+γt ≤ π. Thus it fluctuates with x+γt. This is in view of the 
traveling thermal wave impose on η = 1(fig 12).  
 
The non-dimensional concentration (C) is shown in figs. 13-16 for different parametric values. The variation of C 
with dilatation parameter β>0 shows that the higher the dilation of the pipe lesser the actual concentration in the 
entire flow region (fig 13). From fig 14 we notice that lesser the radiative heat flux larger the actual concentration in 
the entire flow region. The actual concentration reduces with increase in α>0 and enhances with |α| in the entire 
region (fig 15). The variation of C with phase x+γt shows that it reduces with x+γt ≤ π and enhances with higher 
x+γt ≥ 2π(fig 16) 
 
The Shear stress (τ) the boundary η = 1 of the wavy cylinder is exhibited in table 1 for different values of  α, β, N1 
and x+γt. The variation of τ with heat source parameter α shows that an increase in the strength of the heat source 
enhances |τ| at η = 1. An increase in the strength of heat sink (|α| ≤ 4) reduces |τ| and for (|α| ≤ 6) |τ| reduces in the 
heating case and enhances in the cooling case.  It is found that higher the dilation of the wavy pipe (β≤0.7) lesser the 
stress at η = 1 and for further higher dilation β≥0.9, larger the stress at the pipe. An increase in N1 reduces |τ| for 
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G>0 and enhances it for G<0 at η = 1. An increase in the phase x+γt ≤ π thermal wave |τ| enhances in the heating 
case and reduces in the cooling case while for higher x+γt ≥ 2π, a reversed effect is noticed in the behavior of |τ| at η 
= 1. 
 
The average Nusselt number (Nu) at η = 1 is shown in table 2 for different parametric values. It is found that |Nu| 
enhances with α>0 and depreciates with increase |α|. We find that higher the dilation of the wavy pipe smaller |Nu| 
at η = 1. Also |Nu| experiences an enhancement with increase in the radiation parameter N1. An increase in the phase 
x+γt ≤ π enhances |Nu| and reduces |Nu| with higher x+γt ≥ 2π.  
 
The Sherwood number (Sh) at η = 1 is shown in table 3 for different parametric values. The variation of Sh with 
heat source parameter α is shows |Sh| enhances with α>0 and reduces with increase in |α|. Higher the dilation of the 
wavy pipe smaller |Sh| at η = 1 (table. 8). We find that the rate of mass transfer reduces with increase in the 
radiation parameter N1. The variation of Sh with phase x+γt shows that the rate of mass transfer enhances with 
increase in x+γt ≤ π and reduces with higher values of x+γt ≥ 2π. 

 
CONCLUSION 

 
An increase in the radiation parameter N1 leads to an enhancement in axial velocity, actual temperature and 
depreciation in the secondary velocity. Lesser the radiative heat flux larger the actual concentration in the entire 
flow region. An increase in N1 reduces |τ| for G>0 and enhances it for G<0 at η = 1. |Nu|, |Sh| experiences an 
enhancement with increase in the radiation parameter N1. The axial velocity, the actual temperature enhances and 
the actual concentration reduces with increase in α>0 and u, θ depreciates and C enhances with |α| in the entire 
region. An increase in the strength of heat source/sink results in a marginal depreciation in the secondary velocity. 
An increase in the strength of the heat source enhances |τ| at η = 1, and with an increase in the strength of heat sink 
(|α| ≤ 4) reduces |τ| and for (|α| ≤ 6). |τ| reduces in the heating case and enhances in the cooling case. |Nu|, |Sh| 
enhances with α>0 and depreciates with increase |α|. Higher the dilation of the pipe larger the velocity in the flow 
region (0, 0.6) and in the remaining region the axial velocity reduces with β≤0.7 and enhances with higher β≥0.9. 
 
Higher the dilation of the pipe larger |v|, the actual temperature and lesser the actual concentration in the flow 
region. Higher dilation of the pipe larger the stress, smaller |Nu|, |Sh| at the boundary of the pipe. An increase in the 
phase x+γt ≤ π of the traveling thermal wave enhances u and reduces with higher x+γt ≥ 2π. |v| enhances with 
increase in x+γt ≤ π and depreciates with higher x+γt ≥ 2π, the actual temperature enhances with x+γt ≤ π. The 
variation of C with phase x+γt shows that it reduces with x+γt ≤ π and enhances with higher x+γt ≥ 2π. An increase 
in the phase x+γt ≤ π thermal wave |τ| enhances in the heating case and reduces in the cooling case while for higher 
x+γt ≥ 2π, An increase in the phase x+γt ≤ π enhances |Nu| and reduces |Nu| with higher x+γt ≥ 2π, rate of mass 
transfer enhances with increase in x+γt ≤ π and reduces with higher values of x+γt ≥ 2π.  
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