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Abstract

The balance between calcium and vitamin D is essential in
mammalian development. Calbindin-D28K (CaBP-28K) and
calbindin-D9K (CaBP-9K) are cytosolic vitamin D–
dependent calcium-binding proteins that mediate the
dynamic equilibrium of vitamin D and calcium, particularly
in the absorption of intestinal calcium, in urinary calcium
excretion, and in bone formation. However, the precise
roles of CaBP-28K and CaBP-9K are not well understood.
CaBP-9K/CaBP-28K double-knockout (KO) mice have a
normal phenotype under conditions of normal dietary
intake of calcium. Conversely, when given a calcium-
deficient diet, these double-KO mice have greater
reductions in serum calcium levels and bone length than
do wild-type mice. In this review, we summarize and
interpret the body of literature regarding the relationship
of vitamin D and its receptor with CaBP-28K and CaBP-9K
in mammals.
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Introduction
Calcium is vital to the human body. Calcium ion homeostasis

is necessary for cell membrane integrity, excitability of the
musculoskeletal system, blood coagulation, secretion of
neurotransmitters and hormones, and myocardial contraction
[1,2]. Maintenance of the calcium balance requires the
cooperation of numerous calcium transport proteins, including
transient receptor potential vanilloid type 5 (TRPV5) [3],
transient receptor potential vanilloid type 6 (TRPV6) [4],
plasma membrane Ca2+ ATPase (PMCA) [5], parvalbumins (PVs)
[6], calbindin-D9K (CaBP-9K) [7], calbindin-D28K (CaBP-28K),
calretinin (CR) [8], and sodium-calcium exchanger 1 (NCX1)

[9,10]. Of these, CaBP-9K and CaBP-28K are the 2 so-called
vitamin D–dependent calcium-binding proteins [11,12]. In the
modulation of calcium homeostasis, vitamin D, CaBP-9K, and
CaBP-28K play important roles [13,14] in the absorption of
intestinal calcium, in urinary calcium excretion, and in bone
formation.

Literature Review

Association of vitamin D and its receptor with
CaBP-9K and CaBP-28K

Many reviews have addressed the vitamin D endocrine
system and the mechanisms of action of vitamin D [15-18]. The
human body can obtain vitamin D via photosynthesis in the
skin or by dietary intake. The active form of vitamin D
hormone, 1α,25-dihydroxyvitamin D3 (1,25[OH]2D3), binds and
activates its receptor (VDR), a nuclear transcription factor [19].
Vitamin D deficiency or a mutation that inactivates VDR can
yield rickets and numerous extra-skeletal biologic responses,
such as inhibition of progression of colon, breast, and prostate
cancer cells; effects on the cardiovascular system; and
protection against several autoimmune diseases, including
inflammatory bowel disease and multiple sclerosis [20,21].
Supplementation of exogenous vitamin D can reverse rachitic
bone to some extent. However, the dosage of vitamin D
supplementation is still under debate, in part because the role
of vitamin D signaling in calcium handling systems especially in
bone is not understood fully.

The cytoplasmic proteins CaBP-9K and CaBP-28K bind Ca2+

and are regulated by 1,25(OH)2D3. CaBP-28K first was
described as a 28-kDa protein in the chicken duodenal mucosa
and the rat intestinal mucosa; the protein isolated from the rat
intestinal mucosa later was identified as the 9-kDa CaBP-9K
[22-24]. These proteins belong to different subfamilies and
share little sequence homology, but both involve the EF-hand
structural motif. CaBP-28K (human gene symbol, CALB1)
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belongs to the CALB family of proteins and comprises 6 EF-
hand domains; CaBP-9K is a member of the large S100 family
(human gene symbol, S100G) and is composed of 2 EF-hand
domains [25-27]. The CaBP-9K and CaBP-28K genes and cDNA
have been cloned by means of reverse transcription and
polymerase chain reaction (RT-PCR) [28-30]. CaBP-9K has been
found in a variety of tissues, including bone, uterus, placenta,
intestine, kidney, and pituitary gland [31-34]. CaBP-28K has
been found in bone, kidney, brain, pancreas, intestine, and
teeth [35-43].

Vitamin D regulates CaBP-9K and CaBP-28K in a tissue-
specific manner. In the intestine and kidney, CaBP-28K and
CaBP-9K are dependent on 1,25(OH)2D3. However, CaBP-9K
functions in the uterus, placenta, and lung independently of
1,25(OH)2D3 [29,44-46], and CaBP-28K is not regulated by
1,25(OH)2D3 in chick brain tissue [47]. In enamel cells, CaBP-9K
is dependent on expression of 1,25(OH)2D3, whereas CaBP-28K
is not [40]. Herein, we review data on the correlation of
1,25(OH)2D3 and VDR with CaBP-9K and CaBP-28K in the
intestine, kidney, and bone to summarize our understanding of
the processes of calcium absorption, excretion, and
incorporation.

Regulation of CaBP-9K and CaBP-28K in
intestinal calcium absorption

Among mammals, the primary source of calcium absorption
is dietary intake. Calcium transport in the intestine is
considered to occur via 3 pathways. In the duodenum and
upper jejunum, transport proceeds primarily via the
transcellular pathway [48,49], which involves entry of calcium
via an apical calcium channel (TRPV6 or TRPV5), CaBP-9K–
facilitated translocation of calcium through the interior of an
enterocyte, and basolateral extrusion of calcium by an
intestinal plasma membrane pump (PMCA1b or NCX1).
Another shuttling process is vesicular calcium transport, in
which calcium is sequestered and moved primarily via
lysosomes [50-53]. The third process is paracellular transport,
which is a mode of rapid, energy-independent, concentration-
dependent diffusion that takes place throughout the intestine
[54,55]. In the transcellular and vesicular pathways, the
regulation of calcium absorption is dependent on 1,25(OH)2D3
and requires the presence of VDR [56]. The paracellular
pathway is neither saturation nor concentration dependent;
when the calcium concentration in the intestinal lumen
exceeds approximately 2 to 6 mmol/L, paracellular transport is
the main mode of absorption [57].

Vitamin D and its receptor are crucial regulators of intestinal
calcium absorption [58]. Under conditions of vitamin D
deficiency, mice lacking VDR have reduced intestinal calcium
absorption [59-62]. With advancements in research regarding
intestinal calcium absorption, the roles of CaBP-9K/CaBP-28K
and 1,25(OH)2D3/VDR have evolved. CaBP-9K has been found
mainly in the mammalian (eg, pig) intestine. CaBP-9K is highly
expressed in the duodenum; its expression decreases gradually
through the intestine and is undetectable in the distal ileum
[63,64]. CaBP-9K originally was thought to cooperate with
1,25(OH)2D3/VDR in the regulation of intestinal calcium

absorption. In rat intestinal tissue, the -449 and -485 regions of
the 5' end of the CaBP-9K gene were found to have a vitamin
D–responsive element region (VDRE) [65]. In vitamin D–
deficient, VDR-knockout (KO), or 1α-hydroxylase–KO mice, the
expression of CaBP-9K in the intestine was significantly
decreased, compared with controls [66-68]. Despite the
presence of vitamin D, intestinal CaBP-9K mRNA and protein
levels were reduced in VDR KO mice [68]. Hence, CaBP-9K
transcription is mediated by binding of VDR to the VDRE
located within promoter regions. In chickens and mice, low
calcium can stimulate the expression of CaBP-9K in the
duodenum, and high calcium can inhibit its expression.
Moreover, the influence of calcium on intestinal CaBP-9K
requires the presence of VDR [69-71].

In the human intestine, investigators have determined that
CaBP-9K mRNA levels increase with age, vitamin D levels
decrease with age, and VDR mRNA levels do not correlate with
age [72,73]. Thus, intestinal calcium absorption in humans
seems not to depend on a relationship between CaBP-9K and
1,25(OH)2D3/VDR. CaBP-9K KO mice have a normal phenotype
and can survive for more than 1 year [74]; TRPV6 and PMCA1
are upregulated in these animals, potentially to compensate
for the absence of CaBP-9K [75,76]. Thus, CaBP-9K appears to
have only a minor role in intestinal calcium absorption, but
further clarification of this role should be sought. Few studies
have addressed CaBP-28K in the intestine. Although CaBP-28K
has been found in the intestine, it occurs at a much lower level
than does CaBP-9K. A low calcium concentration can stimulate
the expression of CaBP-28K, and elevated calcium inhibits its
expression. In the chick duodenum, vitamin D–dependent
CaBP-28K is localized in lysosomal vesicles. When vitamin D–
deficient chicks are treated with 1,25(OH)2D3, lysosomes in the
intestinal epithelial cells exhibit 1,25(OH)2D3–mediated
upregulation in calcium content and CaBP-28K expression [77].
Vitamin D has a greater stimulatory effect on calcium uptake
than on calcium transport; this phenomenon may be
attributed to rapid 1,25(OH)2D3–enhanced vectorial calcium
absorption during lysosomal transport [52,55] (Figure 1).

Calcium absorption in the intestine is complex and involves
multiple pathways with numerous contributing factors,
including CaBP-9K and CaBP-28K. Transcellular absorption
occurs primarily in the duodenum and upper jejunum,
whereas paracellular absorption may occur at any intestinal
site. Vesicular calcium transport has not been characterized
fully. Further research is needed to ascertain how these
pathways function in series and/or in parallel to affect optimal
calcium absorption in response to the available calcium source
and quantity.

Relationship between 1,25(OH)2D3/VDR and
CaBP-9K/CaBP-28K in the kidney

The amount of calcium excreted in the urine ranges from
100 to 200 mg per day. The renal tubules reabsorb 98% to 99%
of calcium as urine is conveyed. The distal tubule is the chief
site for regulation of calcium excretion, and reabsorption of
calcium in the distal tubule primarily occurs via the
transcellular route. Calcium absorption in the kidney
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resembles that of the intestine, albeit with different molecular
mediators. Specifically, kidney absorption processes include
entry of calcium through TRPV5, cytosolic transfer of calcium
by binding to CaBP-9K/CaBP-28K, and extrusion of calcium by
the Na+/Ca2+ exchanger (NCX1) and PMCA1b1 [78-81].

Figure 1 Vitamin D stimulates both vesicular and
transcellular calcium transport via upregulation of CaBP-28K
and CaBP-9K.

CaBP-9K and CaBP-28K are coexpressed in the distal tubule.
Because these factors exhibit potent calcium-binding
capacities, CaBP-9K and CaBP-28K have been presumed to be
vital for vitamin D–dependent regulation of calcium
reabsorption in the kidney. When vitamin D–deficient mice are
treated with 1,25(OH)2D3, both CaBP-9K and CaBP-28K are
upregulated in the kidney [82]. However, in wild-type (WT)
mice fed a low-calcium (0.02%) or a high-calcium (2%) diet, the
expression of CaBP-9K was increased or decreased,
respectively, whereas the expression of CaBP-28K was
unaffected. In rats, increased plasma calcium had no effect on
the concentration of renal CaBP-28K [83].

The effects of 1,25(OH)2D3/VDR on CaBP-9K/CaBP-28K are
conditional. In primary renal tubular cells obtained from mice,
CaBP-9K is tightly regulated by 1,25(OH)2D3 [84]. In rats, the
expression of renal CaBP-28K is increased by high levels of
1,25(OH)2D3 but is not sensitive to minor changes in
1,25(OH)2D3 [83]. In VDR KO mice, investigators found a 90%
reduction in renal CaBP-9K (compared with WT mice) but near-
normal renal expression of CaBP-28K [66]. In 1α-hydroxylase
KO mice, CaBP-9K and CaBP-28K both are reduced in the
kidney [85]. Therefore, vitamin D may control calcium
reabsorption in the kidneys by affecting CaBP-28K
independently of VDR.

Research regarding the significance of CaBP-9K and
CaBP-28K in renal calcium absorption is ongoing. Results of
studies involving CaBP-9K KO mice and CaBP-28K KO mice

suggest that CaBP-9K and CaBP-28K are redundant for urinary
calcium reabsorption; these KO mice had normal serum
calcium levels [86,87]. Other calcium transporters (eg, TRPV5/
TRPV6 and PMCA1b) may compensate for CaBP-9K during
renal calcium reabsorption in mice [74]. Findings with VDR KO
mice and CaBP-9K/CaBP-28K double-KO mice indicate that
CaBP-28K does not affect body calcium levels or renal calcium
reabsorption; in contrast, CaBP-9K is tightly regulated by
1,25(OH)2D3/VDR and plays an important role in renal calcium
reabsorption under calcium-deficient conditions [66,88].
When compared with VDR KO mice, VDR/CaBP-28K double-KO
mice had higher urinary calcium excretion [89]. CaBP-28K KO
mice fed a high-calcium diet were found to have a 2- to 3-fold
increase in urinary calcium [90]. Thus, CaBP-28K may play a
role in kidney calcium reabsorption by a VDR-independent
process (Figure 2).

Figure 2 25(OH)D3 is activated by CYP27B1 in proximal renal
tubule cells. When this activation pathway is blocked, levels
of CaBP-28K and CaBP-9K are reduced. In the context of
VDR KO, only CaBP-9K is reduced. Vitamin D (1,25[OH]2D3)
and VDR are capable of stimulating CaBP-9K by binding
VDRE. Regulation of CaBP-28K by 1,25(OH)2D3 occurs
through a VDR-independent pathway that has not been fully
characterized.

CaBP-9K and CaBP-28K may exert indirect effects on
paracellular calcium reabsorption, which is regulated by tight-
junction proteins. Specifically, genes that encode tight
junctions, such as ZO-1, CLDN1, CLDN4, CLDN5, CLDN10b, and
CLDN16 can be differently upregulated in mice lacking
CaBP-9K, CaBP-28K, or both CaBP-9K and CaBP-28K when the
mice are fed a diet deficient in calcium or deficient in both
calcium and vitamin D [91]. In the regulation of kidney calcium
homeostasis, CaBP-9K and CaBP-28K have complex, potentially
important, roles that involve both intracellular and paracellular
pathways.

Regulation of CaBP-9K/CaBP-28K by
1,25(OH)2D3/VDR in bone

Vitamin D (1,25[OH]2D3) has crucial functions in bone
calcium homeostasis [92]. Calcium is a major constituent of
bone, and bone constitutes the largest source of calcium in the
body. Several hypotheses have been proposed regarding the

Biochemistry & Molecular Biology Journal

ISSN 2471-8084 Vol.4 No.3:23

2018

© Copyright iMedPub 3



function of 1,25(OH)2D3/VDR in bone. One is that
1,25(OH)2D3/VDR has bidirectional activities. A physiologically
optimal concentration of 1,25(OH)2D3 may facilitate bone
formation, whereas a deficiency or excess of 1,25(OH)2D3 may
limit mineralization. Cyp24a1(25-hydroxyvitamin D-24-
hydroxylase)-null mice exhibit intramembranous bone lesions;
this defect is absent in Cyp24a1/VDR double-null mice. Hence,
elevated 1,25(OH)2D3 interacting with VDR appears to produce
bone defects [93,94]. Under normal conditions,
1,25(OH)2D3/VDR promotes mineralization and can produce
anti-rickets effects in skeletal tissues. However, high-dose or
prolonged treatment with 1,25(OH)2D3 can yield bone mineral
loss and impaired mineralization [95-97]. Maternal
hypervitaminosis D reduces fetal bone mass and mineral
acquisition and can be lethal to the neonate [98].

A deficiency in 1,25(OH)2D3 or the absence of VDR or
CYP27B1 (25-hydroxyvitamin D-1 alpha hydroxylase) can lead
to the rickets phenotype, characterized by reduced calcium
binding in the bone matrix, decreased bone mineral density,
and osteomalacia [20,21,67,95,96,99,100]. Proliferation of
osteoblast-like osteosarcoma cells is stimulated at physiologic
levels of 1,25(OH)2D3 (0.1 nM) but is hindered at higher doses
(10 nM) [97-100]. Hence, physiologic levels of 1,25(OH)2D3 in
bone appear to be tightly regulated such that an optimal level
facilitates bone formation, and an imbalance in 1,25(OH)2D3
serves as an antimineralization signal.

The functions of 1,25(OH)2D3 and VDR in bone depend on
the calcium balance [101]. If VDR is impaired in the intestine or
if dietary intake of calcium is low (i.e., a negative calcium
balance), VDR signaling in osteogenic cells produces increased
bone resorption and impaired bone mineralization; this
preserves serum calcium levels. In a mouse model of intestinal
VDR deficiency, calcium is significantly mobilized from the
bone to preserve normal serum calcium levels; this occurs via
upregulation of the ratio of receptor activator of nuclear
factor-κ B ligand (RANKL)/ osteoprotegerin(OPG) in osteoblasts
to increase the generation of osteoclasts [61]. In addition to
stimulating bone resorption, 1,25(OH)2D3 inhibits bone matrix
mineralization by upregulating Ennp1, Enpp3, and Ank; these
factors increase pyrophosphate, a potent mineralization
inhibitor [61,102,103]. If calcium levels are normal or elevated
(ie, a positive calcium balance) and serum levels of
1,25(OH)2D3 are normal, intestinal calcium absorption is
facilitated, and sufficient calcium is delivered for
mineralization of bone matrix. Hence, the role of VDR signaling
in bone cells during positive calcium balance involves
maintenance of calcium homeostasis.

The function of 1,25(OH)2D3/VDR in bone cells differs by cell
type and stage. For instance, the effect of 1,25(OH)2D3/VDR in
bone depends on the osteoblast differentiation stage. VDR
signaling in osteoprogenitors and osteoblasts induces
osteoclast formation and bone resorption; this negatively
regulates bone mass [104]. In mature osteoblasts, VDR
increases bone mass by decreasing the ratio of RANKL/OPG
and increasing LRP-5 expression [105-107]. VDR signaling in
osteocytes may be redundant because VDR inactivation has no

effect on mature osteoblasts or osteocytes in terms of bone
mass and mineralization [61]. Because these differentiation
stages coexist, the functions of VDR signaling in osteogenic
cells are complex and warrant further investigation.

Discussion
CaBP-9K and CaBP-28K have been found in calcium-

transporting epithelia and are co-expressed in mineralized
tissues-such as ameloblasts, odontoblasts, osteoblasts, and
osteocytes—as well as in chondrocytes [12,108-110].
CaBP-28K inhibits the apoptosis of osteoblast cells [111]. The
roles of CaBP-9K and CaBP-28K in calcium regulation in vivo
have been assessed by means of CaBP-9K KO mice and
CaBP-28K KO mice. These KO mice have a phenotype that
resembles that of WT mice, and the growth, life span, serum
calcium levels, and serum phosphate levels of the KO mice are
within normal ranges [87,112].

Results of early studies in this field suggested that CaBP-9K
and CaBP-28K were of minor importance in calcium
homeostasis because they could be functionally substituted by
other calcium transporters. Subsequent findings involving
CaBP-9K and CaBP-28K double-KO mice were that the mice
appeared normal under conditions of normal dietary intake of
calcium; however, under calcium-deficient conditions, the
double-KO mice had more decreased serum calcium levels and
bone length than did WT mice [88]. More recent work involved
VDR/CaBP-D28K double-KO mice. Compared with VDR KO
mice, VDR/CaBP-28K double-KO mice exhibit worsened growth
retardation, lower body weight, and a more severe rachitic
skeletal phenotype. When fed a normal diet, the double-KO
mice had lower bone mineral density and a more distorted
growth plate, with more osteoid formation in the trabecular
region. When both VDR KO mice and VDR/CaBP-28K double-
KO mice were fed a high-calcium, high-lactose diet, serum
calcium levels were normalized in both the VDR KO and the
double-KO mice, whereas skeletal abnormalities were resolved
in the VDR KO mice but not in the double-KO mice [89]. The
phenotypes of different gene KO mice were showed below
(Table 1).

In research involving CaBP-28K KO mice, significantly
increased femora and tibia cortical bone volumes were noted
(113). These effects resulted from a decrease in the marrow
cavity area, significantly decreased endosteal perimeters, and
an increased trabecular number, compared with WT mice.
CaBP-28K KO mice had stiffer bones, increased failure loads,
and a decreased ratio of bone surface to bone volume,
compared with WT mice. CaBP-28K KO mice also had
decreased serum osteocalcin, which is an indicator of bone
formation rate [113]. The increased bone volume and stiffness
and decreased bone formation rate among CaBP-28K KO mice
indicated that CaBP-28K plays an important role in bone
homeostasis [114]. These results demonstrate that CaBP-9K
and especially CaBP-28K are vital contributors to bone calcium
homeostasis and skeletal mineralization [115]. Advancements
in our understanding of calcium balance in bone development
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likely will hinge on clarification of the regulatory processes
between 1,25(OH)2D3/VDR and CaBP-9K/CaBP-28K.

Table 1 The phenotypes of different gene KO mice were showed.

KO-gene CaBP9K CaBP28K vdr VDR/CaBP28K CaBP9K/CaBP28K

Serum

Ca N N N

P N N N

PTH N

1,25(OH)2D3

URINE

Ca N

P

Bone

Bone length N N N

Cortical bone volume

Bone marrow cavity area

Endosteal circumference

Bone hardness

Bone load

Trabecular bone

Body weight N N N

N: normal ; : down or weaken; : up or enhanced; blank: Unknown

Conclusion
Vitamin D (1,25[OH]2D3) and calcium are maintained in

balance, at least in part, by CaBP-9K and CaBP-28K. Intestinal
calcium absorption involves participation of CaBP-28K in the
vesicular transport pathway, which is regulated by
1,25(OH)2D3/VDR but is not well understood.

In maintenance of kidney calcium, CaBP-9K appears to be
regulated directly by 1,25(OH)2D3/VDR, whereas CaBP-28K
participates in calcium regulation via a poorly characterized,
1,25(OH)2D3-dependent and VDR-independent manner. In
bone, CaBP-28K regulates development of the growth plate
and can affect bone formation and mineralization. Additional
work involving the relationship of CaBP-9K/CaBP-28K with
1,25(OH)2D3/VDR during calcium homeostasis is warranted
and may offer insight regarding the diagnosis and treatment of
vitamin D- and calcium-imbalance diseases.
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