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ABSTRACT 
 
Sodium Cyanide crystal shows many interesting properties which arise from the molecular character of the CN ion 
group. Higher order elastic constants of Sodium Cyanide crystal in orientationally disordered crystalline (ODIC) 
phase have been evaluated by a method based on Börn model of ionic solids. NaCN exhibit NaCl-type face centered 
cubic crystal structure above critical temperature 288K. Starting from the nearest neighbor distance and hardness 
parameter the second and third order elastic constants of NaCN have been computed at elevated temperatures (up 
to the nearest melting point).The computed values of higher order elastic constants have been used to calculate 
anharmonic property related other constants like first order pressure derivatives of  third order elastic constants.  
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INTRODUCTION 
 
Elastic constants are one of the fundamental mechanical and the thermodynamic properties of any substance. 
Several physical properties and crystal anharmonicities such as thermal expansion, specific heat at higher 
temperature, temperature variation of acoustic velocity and attenuation, the first order pressure derivatives (FOPDs) 
of second order elastic constants( SOECs), Gru¨neisen numbers and temperature derivatives of SOECs are directly 
related to SOECs and third order elastic constants( TOECs). In the last few decades, considerable interest has been 
taken in the investigation of anharmonic properties of materials of various kinds [1–10]. In this present work 
formulations have been developed for quantifying anharmonic properties such as higher order elastic constants of 
materials which possess face centered cubic (FCC) crystal structure starting from primary physical parameters viz. 
nearest-neighbor distance and hardness parameter using long- and short-range potentials. The elastic energy density 
for a deformed crystal can be expanded as a power series of strains using Taylor’s series expansion. The coefficients 
of quadratic, cubic and quartic terms are known as the second-, third- and fourth-order elastic constants (SOECs, 
TOECs and FOECs) respectively. The model we have used has been proved to be highly successful in predicting the 
elastic properties of alkali halides. The special interest in NaCN lies in the fact that this exhibits the NaCl like 
structure above critical temperature 288K. It is of interest to test the applicability of our present model to Sodium 
Cyanide (NaCN). 
 
NaCN is an ionic crystal with a pseudo cubic (NaCl, Fm3m) high temperature phase. It undergoes an order-disorder 
transition from a cubic (Fm3m) structure with the CN- ion distributed randomly along [1 1 1] direction to an 
orthorhombic (Immm) structure with the CN- ions along one of the cubic [1 1 0] direction [11,12].Since the 
discovery by Haussuhl [13] of the anomalous behavior of the C44 elastic constant in the orientationally 
disordered(ODIC) crystalline phase of KCN,the elastic properties of this material and of NaCN [13-18] have been 
the subject of many theoretical and experimental investigations. 
 
The present work is concerned with the formulation to evaluate the TOECs and the FOPDs of the TOECs; using 
long- and short-range potentials starting from the nearest-neighbor distance and hardness parameter. Section 2 deals 
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with the brief description of the theory. In Section 3, the theory is tested for NaCN. The results thus obtained are 
widely discussed in Section 4. 
 
FORMULATION  
The elastic energy density for a crystal of a cubic symmetry can be expanded up to quartic terms as shown below 
[19]; 
 
U0 =U2 + U3 + U4= [1/2!] Ci jkl αi j αkl  + [1/3!] Ci jklmn  αi j  αkl  αmn + [1/4!] Ci jklmnpq αi j  αkl  αmn αpq                     (1)   

 
Where Cijkl , Cijklmn and Cijklmnpq are the SOECs, TOECs and FOECs in tensorial form; αij are the Lagrangian strain 
components; The SOECs, TOECs and FOECs are as given below: 
 

0
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                                                                                           (2) 
 
CIJ, CIJK and CIJKL are the SOECs, TOECs and FOECs in Brügger’s definition and voigt notations [20].    
 
The free energy density of a crystal at a finite temperature T is 
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Where U0 is the internal energy per unit volume of the crystal when all ions are at rest on their lattice points, Uvib is 
the vibrational free energy, Vc is the volume of the primitive cell, N is the number of the primitive cells in the crystal 
and s is the number of ions in the elementary cell. Other notations used in this equation have their usual meanings. 
 
An elastic constant consists of two parts as follows: 

vib
IJIJIJ CCC += 0

, 
vib
IJKIJKIJK CCC += 0

  and
vib
IJKLIJKLIJKL CCC += 0

                                                 (4) 
 

 The first part is the strain derivative of the internal energy Uo and is known as static elastic constant and the second 
part is the strain derivative of the vibrational free energy Uvib and is called vibrational elastic constant. The 
superscript 0 has been introduced to emphasize that the static elastic constants correspond to 0 K. 
 
The energy density of the non- deformed crystal is expressed as: 
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                                                                                 (5) 

Where mo
uvR  is the distance between the v-th ion in the o-th cell and the u-th ion in the m-th cell and Quv is the 

interaction potential between the ions. The indices (v, o) and (u, m) are sometimes dropped when no confusion 
occurs. One assumes that Quv is the sum of the long-range Coulomb and the short-range Börn-Mayer potentials. 

)/exp()/()( 00
2
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Where e is the electric charge, ±  sign apply to like and unlike ions respectively, r0 is the nearest-neighbour 
distance, q is hardness parameter and A is 

)]/2exp(22)//[exp()/(29126.0 00
4
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(7)  

 
It is assumed that the crystal is deformed homogeneously. When the crystal is deformed homogeneously, the 

distance between (v, o) and (u, m) ion in the deformed and non- deformed states, mo
uvR  and mo

uvr , are related to the 

Lagrangian strains eab as follows: 
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Where mo
uviY  is the i-th Cartesian component of the vector mo

uvr . The definition of the quantity mo
uvZ  is also expressed 

in Eq.(8). The internal energy U0 given by Eq. (5) can be expanded in terms ofmo
uvZ , which will yield cubic terms as 

given below: 
 

rRc RQDZVU =∑= ]!3/)([']2/1[ 33
3 rRnmlkjimncdabc RQDYYYYYYeeeV =∑= )]('][12/1[ 3

                        

(9)  
                                                                                                     
 With reference to Eqs. (3) and (4) and comparison of Eqs. (1) and (9), one may obtain the static elastic constants. 
For a central force model, there are only three independent TOECs at absolute zero temperature. As in the case of 
the internal energy U0, the vibrational free energy is also expanded in terms of strains, the cubic terms are as below:    
       

0
'''

3 ])'''('''[''']!3/1[ =∑∑∑= Z
vib

c UDDDZZZVU ijklmnmncdabc feeeV ]6/1[=                                              (10) 

Where          

rR
vib
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On comparison Eqs. (1) and (10); one determines the vibrational elastic constants. Vibrational contributions to 
TOECs are shown as a combination of εn’s and ηn

’s which are evaluated by taking crystal’s symmetry into account 
and the expressions for εn and ηn are presented below. By adding the vibrational elastic constants to the static elastic 
constants, one may get TOECs at any temperature for monovalent FCC crystals.  
 
Expression for the TOECs for fcc Crystals 
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Expression for ηn’s for fcc Crystals 
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EVALUATION 
The theory for the calculation of different anharmonic properties of the substances possessing FCC crystal structures 
is given in the preceding section 2. The TOECs for NaCN is evaluated from 300K to an elevated temperature (near 
melting point). Throughout this temperature range NaCN exhibits FCC crystal structure. Selecting a few data 
obtained in this study, the values of TOECs at room temperature are given in Tables 2. The FOPDs of TOECs have 
been evaluated utilizing data of TOECs and SOECs and the results are shown in Tables 3. The whole evaluation is 
based on the assumption that the FCC crystal structure of the material does not change when temperature varies up 
to their melting point. The values [6] of the nearest-neighbor distance (r0) and hardness parameter (q) are given in 
Table 1.   
 

RESULTS AND DISCUSSION 
 

The TOECs in 1011dyne/cm2 at room temperature for NaCN are given in Tables 2. The FOPDs of the TOECs are 
presented in Table 3. The temperature variation of anharmonic properties TOECs and FOPDs of TOECs for NaCN 
are represented graphically in Fig 1 – 4. There are six third order elastic constants. Among the calculated third-order 
elastic constants of this material, C111’s are the largest in their absolute values and an order of magnitude larger than 
the SOEC. Magnitude of other Cijk’s are markedly smaller than those of C111. 
 
For NaCN, the values of C111, C112 and C166 are negative in nature, while C123, C144 and C456 are positive in nature. 
The values of C111, C123, C144 and C166 increase, the values of C112 decrease as temperature increases, C456 remaining 
constant. The temperature variations of TOECs are given in Fig. 1, 2. 
 
The values of dC111/dp, dC112/dp, dC123/dp, dC144/dp, dC166/dp increase as temperature increases, and the values of 
dC456/dp decrease as temperature increases.   
 
The higher order elastic constants are strongly related to other anharmonic properties; such as thermal expansion, 
thermo elastic constants and thermal conductivity. The knowledge of TOECs along with other physical properties 
may provide further critical data for testing the machines for non-destructive-testing. These elastic constants are 
used to compute ultrasonic parameters such as ultrasonic velocities, thermal relaxation time etc [21- 23]. The 
variation of elastic constants [24-27] with respect to pressure can reveal many important features of the short range 
forces at high pressure. The ultrasonic studies [28, 29] can provide interesting information on the specificities of ion-
solvent interaction related to the structure of the solute and the reciprocal effects which arises in the solvent. The 
data obtained in present investigation will be helpful to those workers who are engaged in studying the temperature 
variation of anharmonic properties of solids at higher temperatures [30, 31]. 
 

Table 1: The nearest neighbour distance (r0) and hardness parameter (q) in 10-8 cm and SOECs in 1011 dyne/cm2 of NaCN at room 
temperature 

 
MP(K) r 0 q C11 C12 C44 
836.7 2.0721 0.266 16.066 5.186 5.523 

 
Table 2: The TOECs of NaCN in 1011 dyne/cm2 at room temperature 

 
C111 C112 C123 C144 C166 C456 

-164.238 -46.178 10.651 9.406 -21.93 8.489 
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Table 3: The FOPDs of TOECs of NaCN at room temperature 

 
dC111 dC112 dC123 dC144 dC166 dC456 
-5.342 9.423 2.252 0.973 2.131 2.287 

 

   
Fig.1. Temperature variation of TOEC for NaCN            Fig.2.Temperature variation of TOEC for NaCN 

 
Fig. 3. Temperature variation of FOPDs for NaCN                       Fig. 4. Temperature variation of FOPDs for NaCN 

 
REFERENCES 

 
[1] I. Ohno, K. Harada, C. Yoshitomi, Phys. Chem. Minerals 2006, 33, 1. 
[2] C. Falter, Phys. Stat. Sol. B, 2005, 242, 30. 
[3] S. Kwon, J. Kim, Mining Tech.: IMM Trans. A, 2005, 114, 89. 
[4] B.P. Singh, H. Chandra, Physica B, 2005, 358, 1. 
[5] Kailash, S.K. Kor, Physica B, 1987, 145, 209. 
[6] Kailash, Acta Phys. Pol. A, 1996, 89, 75. 
[7] Kailash, K.S. Kushwaha, S.K. Shrivastava, K. Raju, J. Pure Appl.Ultra., 2005, 27, 29. 
[8] S.K. Shrivastava, A. Kailash, K.M. Raju, Ind. J. Phys., 2005, 79, 547. 
[9] M. Nastar, W. William, Phys. Rev. B, 1995, 31, 6896. 
[10] B.N. Onwvagba, Solid State Commun., 1994, 89, 289. 
[11] A Cimino, G S Parry and A R Ubbelohde, Proc. R. Soc. London , 1959, A252, 445.       
[12] J M Rowe, D. Hinks, D. L. Price, S Susman , J. Rush, J. Chem. Phys., 1973, 58, 2039.  
[13] S. Haussu¨ hl, Solid State Commun., 1973, 13, 147. 
[14] Krasser, Buchenau and Haussu¨ hl, Solid State Commun., 1976, 18, 287. 
[15] M. Boissier, R Vacher, D. Fontaine and R. M. Pick, J. Physique, 1978, 39, 205 
[16] S. Haussu¨ hl, J. Eekstein, K. Rocker, F.  Sofen, Acta Crystallogr., 1977, A33, 847. 
[17] D. Sahu, S.D. Mohanti, Phys. Rev. B, 1982, 26, 2981. 
[18] S. Haussu¨ hl, Solid State Commun., 1979, 32, 181. 
[19] Ghate P. B., Phys. Rev., 1965, 139, A1666. 
[20] K. Brugger, Phys. Rev. A, 1964, 133, 1604. 

300 400 500 600 700 800

-160

-140

-120

-100

-80

-60

-40

-20

0

20

TO
E

C
 in

 1
011

dy
ne

/c
m

2

Temperature(K)

 C111
 C112
 C123

300 400 500 600 700 800

-20

-15

-10

-5

0

5

10

TO
E

C
 in

 1
011

dy
ne

/c
m

2

Temperature(K)

 C144
 C456
 C166

300 400 500 600 700 800
-40

-20

0

20

40

60

80

100

FO
P

D
s 

of
 T

O
E

C
s

Temperature(K)

 dC111/dP
 dC112/dP
 dC123/dP

300 400 500 600 700 800

1.0

1.5

2.0

2.5

3.0

3.5

FO
P

D
s 

of
 T

O
E

C
s

Temperature(K)

 dC144/dP
 dC166/dP
 dC456/dP



A. K. Choudhary and Kailash                               Adv. Appl. Sci. Res., 2013, 4(4):350-355       
 _____________________________________________________________________________ 

355 
Pelagia Research Library 

[21] Awasthi O. N. and Pundhir V.  K., Ind. J. Pure Appl. Phys., 2007, 45, 434.   
[22] Singh D. and Pandey D. K., Pramana, 2009, 32, 389. 
[23] Singh D., Pandey D. K. and Yadawa P. K., Cent. J. Phys, 2009, 7, 198. 
[24] Arya B.S., Aynyas M.  and Sanyal S. P., Ind.  J. Phys., 2009, 83, 153. 
[25] Rukmangad A., Aynyas M.  and Sanyal S. P., Ind.  J. Pure Appl. Phys., 2009, 47, 114. 
[26] Rao C. S.  and Reddy C. E., Ind. J. Pure Appl. Phys., 2009, 47, 54. 
[27] Yuan P.F.  and Ding Z. J., Physica B, 2008, 403, 1996. 
[28] Udo K., Friecter E. and Karl L., Measur. Sc. Tech., 2008, 19, 62001. 
[29] Thirumaran S. and Sabu K. J., Ind. J. Pure Appl. Phys., 2009, 47,  87. 
[30] Kailash, Raju K. M. et al., Physica B, 2007, 390, 270. 
[31] Upadhyay A. K. and Sharma B. S., Ind. J. Pure Appl. Phys., 2009, 47, 362.  

 
 
 
 


