

Pelagia Research Library

Advances in Applied Science Research, 2012, 3 (4):2369-2373

Thickness-dependent structural properties of chemically deposited ${\rm Bi_2S_3}$ thin films

V. Balasubramanian^{a*}, N. Suriyanarayanan^b, S. Prabahar^a

^aDepartment of Physics, Tamilnadu College of Engineering, Karumathampatti, Coimbatore, India ^bDepartment of Physics, Government College of Technology, Coimbatore, India

ABSTRACT

Thin films of Bi_2S_3 have been prepared by chemical bath deposition method using Bismuth nitrate and Sodium thiosulphate. Films were deposited onto well cleaned glass substrates with different bath temperatures. The effect of bath temperature on thickness was studied. The thickness goes on increasing with bath temperature reaches to maximum at $60^{\circ}C$ and decreases further increases in temperature after $60^{\circ}C$. The good quality of film is obtained at $60^{\circ}C$. The X-ray diffraction pattern revealed that bismuth sulphide thin films exhibit orthorhombic structure with polycrystalline in nature. The structural parameters (grain size 25-358Å, dislocation density 0.7789-159.57X10¹⁵ l/m^2 and strain (ϵ) 14.61-1.027X10⁻³) have been calculated. Grain size increases with film thickness but the strain and dislocation density decreases. The films are oriented in (330) direction.

Keywords: Bismuth sulphide, Chemical bath deposition, Structural properties, Thin films

INTRODUCTION

Presently nanocrystalline materials have opened a new chapter in the field of electronic applications, since material properties could be changed by changing the grain size and thickness of the film [1]. Bismuth trisulphide in thin film form is a particularly challenging material because of its midway band gap ($E_g=1.7eV$), absorption coefficient of the order of 10^4 to 10^5 cm⁻¹, reasonable conversion efficiency and stability together with low cost [2, 3]. Several methods such as cathodic electrodeposition, anoidic electrodeposition, vacuum evaporation, the hot wall method, solution gas interface, spray pyrolysis and chemical deposition have been used for Bi₂S₃ film preparation[4-7]. As compared to other methods, chemical deposition is simple, economic and suited for a large area of any configuration [8].

The present work describes a chemical method for deposition of Bi_2S_3 thin film using thiosulfate as a sulphide ion source. The thickness of the films was varied by changing the bath temperature its effect on the structural parameters (grain size, dislocation density and strain) was studied and results are reported.

MATERIALS AND METHODS

2 Experimental details

Bismuth nitrate $(Bi(No_3)_3)$, sodium thiosulfate $(Na_2S_2O_3)$ and ethylene di amine tetra acetic acid (EDTA) were used to prepare the Bi_2S_3 films. Glass was used as the substrate. Before the deposition of the films, the glass substrate was firstly ultrasonically cleaned by acetone and the ultrasonically cleaned by distilled water.

For the deposition of the Bi_2S_3 films, $Bi(No_3)_3$ solution was added into EDTA solution, finally $Na_2S_2O_3$ solution was added to the mixed solution. The concentration of $Bi(No_3)_3$, EDTA and $Na_2S_2O_3$ in the deposition solution was 0.2M, 0.1M and 0.2M respectively. After the preparation of the deposition solution, glass substrates were immersed

into the solution. The temperature of the solution was increased slowly up to 60° C, and then it was kept at room temperature for 12 hrs deposition time period. Likewise, the films were prepared at different bath temperatures (40° C, 50° C and 70° C), rinsed in distilled water and dried.

RESULTS AND DISCUSSION

The deposition process of Bi_2S_3 is based on the slow release of Bi^{3+} and S^{2-} ions in the solution which then condenses ion by ion basis on the substrates. Deposition of Bi_2S_3 thin films occurs when the ionic product Bi^{3+} and S^{2-} ions exceeds the solubility product of Bi_2S_3 . The concentration of Bi^{3+} and S^{2-} ions in the solution controls the rate of Bi_2S_3 formation. The rate of Bi^{3+} ions is controlled by EDTA, which forms a complex $Bi[(EDTA)n]^{3+}$ with Bi^{3+} . The chemical reaction responsible for Bi_2S_3 film from an acidic bath using $Na_2S_2O_3$ as the sulphide ion source [5] could be:

$$Na_2S_2O_3 \rightarrow 2Na^+ + S_2O_3^{-2}$$
 (1)

 $Na_2S_2O_3$ is a reducing agent by a virtue of the half-cell reaction as:

$$6S_2O_3^{-2} \to 3S_4O_6^{-2} + 6e^{-4}$$
(2)

In acidic medium, dissociation of $S_2O_3^{-2}$ takes place as:

 $3S_2O_3^{-2} + 3H^+ \rightarrow 3HSO_3^{-} + 3S$ (3)

The released electrons react with sulphur as:

$$3S + 6e^- \rightarrow 3S^{-2} \tag{4}$$

Bi³⁺ from Bi (NO₃)₃ solution or a complex of Bi³⁺ formed by EDTA react to give

$$2\mathrm{Bi}^{3+} + 3\mathrm{S}^{-2} \to \mathrm{Bi}_2\mathrm{S}_3 \tag{5}$$

3.1 Structural Characterisation

The X-ray diffraction patterns of chemically deposited Bi_2S_3 thin films of four different bath temperatures (40^oC, 50^oC, 60^oC and 70^oC) for 12 hrs deposition time period are shown in Figure 1-4. The presence of the peaks in diffractogram suggests the polycrystalline nature with orthorhombic structure of the film [9, 10, 11]. The observed 'd' spacing and hkl planes (Table 1) are good in agreement with the JCPDS data file(65-2435). From XRD profiles, the grain size, dislocation density, strain and orientation factor were calculated in Table 2 and Table 3. The degree of structural order of Bi_2S_3 films improves with an increase in film thickness.

There is an increase in grain size and decrease in strain as well as dislocation density with the increase in the film thickness [12-14]. Temperature effect on Bi_2S_3 films indicates that the thickness goes on increasing with bath temperature, reaches to maximum at 60^oC and decreases with further increase in temperature after 60^oC. This may be due to etching process involved at temperature higher than optimum [15]. The Full width at Half maximum (FWHM) was found to decreases remarkably with film thickness. Such a decrease reflects the decrease in the concentration of lattice imperfection due to a decrease in the internal micro strain with in the films and increase in grain size [16]. Table 3 shows that f(330) is greater compared to other orientations in all films, it can be concluded that Bi_2S_3 films have the preferential orientation along (330) plane.

Fig.1. X-ray diffraction pattern of Bi₂S₃ thin films of thickness 191 nm (bath temperature 40⁰C)

Fig.2. X-ray diffraction pattern of Bi₂S₃ thin films of thickness 590 nm (bath temperature 50^oC)

Fig.3. X-ray diffraction pattern of Bi₂S₃ thin films of thickness 860 nm (bath temperature 60⁰C)

Fio	4	X-ray	diffraction	nattern	of BisSa	thin	films	of thickne	ss 500	nm	(hath	temr	perature	70 ⁰ C	ľ
T IZ		л-1 a у	unn acuon	pattern	UI DI 203	um	inne v	or unickine	33 200	11111	(Dath	temp	<i>JCI atul C</i>	70 C	1

Table 1 Comparison of XRD data for Bi_2S_3 thin films with the JCPDS card (65-2435)

Temperature	Thickness (nm)	Planes (hkl)	20 (d	values legree)	d-spacing	FWHM (β)	
()			JCPDS	Experiment	JCPDS	Experiment	(degree)
	191	310	25.288	25.26	3.5190	3.5036	3.4172
40		230	28.729	28.79	3.1049	3.1645	0.8696
		330	34.017	34.06	2.6334	2.6342	0.6496
	590	310	25.288	25.26	3.5190	3.5867	0.6926
		230	28.729	28.76	3.1049	3.1985	0.6269
50		330	34.017	34.09	2.6334	2.6743	0.6016
		520	43.751	43.79	2.4404	2.4786	0.8456
		531	53.118	53.16	2.0674	2.0626	0.9145
	860	310	25.288	25.26	1.7228	1.7469	0.4864
		230	28.729	28.79	3.1049	3.1475	0.4334
60		330	34.017	34.06	2.6334	2.6899	0.2448
00		321	36.799	36.70	2.4404	2.4450	0.6864
		520	43.751	43.76	2.0674	2.0776	0.4416
		531	53.118	53.12	1.7228	1.7958	0.6811
	500	310	25.288	25.26	3.5190	3.5678	0.6806
		230	28.729	28.79	3.1049	3.1957	0.4679
70		330	34.017	34.06	2.6334	2.6976	0.3916
70		321	36.799	36.76	2.4404	2.4796	0.6969
		520	43.751	43.79	2.0674	2.0956	0.6796
		531	53.118	53.16	1.7228	1.9826	0.9446

Table 2 The Structural parameters of the deposited Bi₂S₃ films

Temperature (°C)	Thickness (nm)	Planes (hkl)	Grain size d (Å)	Dislocation Density X10 ¹⁵ lines/m ²	Strain ε X10 ⁻³
	191	310	25.033	159.57	14.610
40		230	98.965	10.210	3.6950
		330	133.88	5.5790	2.7317
	590	310	98.184	10.373	2.9612
		230	137.28	5.3062	2.6642
50		330	135.75	5.3238	1.9085
		520	105.35	9.0101	3.4717
		531	100.33	9.9343	3.6452
	860	310	176.70	3.2027	2.0698
		230	199.77	2.5057	1.8308
60		330	358.30	0.7789	1.0207
00		321	128.73	6.0344	2.8410
		520	204.66	2.3874	1.7871
		531	137.66	5.2769	2.6567
	500	310	125.69	6.3299	2.9097
		230	183.92	2.9795	1.9886
70		330	222.06	2.0279	1.6471
70		321	125.53	6.3460	2.9134
		520	126.04	6.2948	2.9017
		531	97.13	10.599	3.7655

Temperature	Thickness	Plane	Orientation factor			
(⁰ C)	(nm)	(hkl)	(f)			
		310	0.0766			
40	191	230	0.7700			
		330	0.9912			
		310 0.3291				
		230	0.3174			
50	590	330	0.3606			
		520	0.1563			
		531	0.1250			
		310	0.1847			
		0.2131				
60	860	330	0.4122			
00	800	321	0.1177			
		520	0.2071			
		531	0.1105			
		310	0.1711			
		230	0.2892			
70	500	330	0.3621			
70	500	321	0.1525			
		520	0.1854			
		531	0.0836			

Table 3 Preferential orientation factor of Bi₂S₃ thin films

The significant improvement in crystallite size is due to controlled slow release of bismuth ions form its complex $[Bi(EDTA)]^+$ in the solutions which give probability of growth of larger particles [15]. But after 60^oC, grain size decreases with film thickness[17]. This may be reason due to etching process involved at temperature higher than optimum (above 60^oC).

CONCLUSION

The films are found to be polycrystalline in nature with orthorhombic structure. The films are oriented in (330) direction. The grain size of Bi_2S_3 thin films are found to increase with increase of film thickness. The good quality of films are obtained at $60^{\circ}C$ (optimum temperature).

REFERENCES

[1] Tanaka, A., Onari. S & Arai, T, Physics Review, 1993, B47.

[2] Bhattacharya, R.N., Pramanik P.P, Journal of Electrochemical Society, 1983, 128, 332.

[3] Lokhande, C.D, Materials Chemistry and Physics, 1991, 29, 1.

[4] Meshram, R.S., Suryavanshi, B.M.and Thombre, R.M., *Pelagia Research Library- Advances in Applied Science Research*, **2012**, 3 (3), 1563-1571.

[5] Jeroh, M.D. and Okoli, D.N, *Pelagia Research Library-Advances in Applied Science Research*, **2012**, 3 (2), 691-697.

[6] Jeroh, M.D. and Okoli, D.N, *Pelagia Research Library-Advances in Applied Science Research*, **2012**, 3 (2), 793-800.

[7] Prerna Dhawade and Ramanand Jagtap, Pelagia Research Library-Der Chemica Sinica, 2012, 3(3), 589-601.

[8] Lokhande, C.D, Ubale A.U.& Patil, P.S, Thin Solid Films, 1997, 302, 1-4.

[9] Mahmoud, S.A, Physica B, 2001, 301, 310-317.

[10] Okereke, N. A and Ekpunobi, A. J. *Pelagia Research Library -Advances in Applied Science Research*, **2012**, 3 (3), 1244-1249.

[11] Patil, T.K.and Talele, M. I, *Pelagia Research Library-Advances in Applied Science Research*, **2012**, 3 (3), 1702-1708.

[12] Balasubramanian, V, Suriyanarayanan N., Prabahar S, & Srikanth .S, *Chalcogenide Letters*, **2011**, Vol.8, No.11, November, 671-681.

[13] Balasubramanian, V, Suriyanarayanan N.& Prabahar S, Archives of Physics Research, 2012, 3 (2),88-92.

[14] Suriyanarayanan N, Prabahar S, Srikanth S, Balasubramanian V and Kathirvel D, Archives of Physics Research, **2010**, 1 (3), 81-88.

- [15] Ubale A.U, Materials Chemistry and Physics, 2010, 121, 555-560.
- [16] Patil, S.S & Pawar, P.H, Chalcogenide letters, 2012, Volume 9, No.4, April, P 133-143.
- [17] Sonawane, P.S, Wani, P.A, Patil, L.A & Tanay Seth, Material Chemistry and Physics, 2004, 84, 221-227.