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ABSTRACT  
 
The effect of  suspended particles, rotation and magnetic field  on the Thermosolutal instability 
in porous medium is investigated. By applying normal mode analysis method, dispersion relation 
governing the effect of the solute concentration, suspended particles, rotation, magnetic field and 
medium permeability is derived. It has been found that for stationary convection, the Maxwell 
visco-elastic fluid behaves like an ordinary Newtonian fluid due to the vanishing of the visco-
elastic parameter. The suspended particles have destabilizing effect whereas rotation and solute 
concentration have stabilizing effect on the system. The magnetic field and medium permeability 
have stabilizing/destabilizing effect on the system depending upon certain conditions. The mode 
may be non oscillatory or oscillatory. The sufficient conditions for non-existence of overstability 
are also found. 
 
Key Words: Thermal instability, Maxwell viscoelastic fluids, suspended particles, magnetic field, 
rotation, porous medium. 
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NOMENCLATURE 
ρ  density,  
P  pressure, 

H
r

  uniform vertical magnetic field having components H (0,0,H), 

 g
r

  gravity force g (0,0,g), 

q
r

   filter velocity of fluid having components (u,v,w), 

 dq
r

  particle velocity having components (l,r,s), 

C′     velocity of light, 

1N    electron number density, 

e     charge of electron, 
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k  wave number of disturbance, 
n   growth rate of disturbance, 
d  depth of fluid layer, 

δρ     perturbation in density, 

pδ    perturbation in pressure, 
k1  medium permeability, 

( )wvuq ,,
r

  perturbation in fluid velocity (initially zero),  
( )  ,, srlqd

r
  perturbation in particle velocity, 

( )zyx h,h,hh 
r

 perturbation in magnetic field, 

Greek Symbols 
α  thermal coefficient of expansion,  

α′    analogous solvent coefficient of expansion,  
µ  viscosity,  

eµ   magnetic permeability,  

υ  kinematic viscosity, 
 κ    thermal diffusivity, 

κ′    solute diffusivity, 
Ω.    angular velocity, 

β   uniform temperature gradient, 

β ′   uniform solute concentration gradient,  

η ′    radius of suspended particle, 

λ   relaxation time, 
η    resistivity, 
�  curly operator, 
�  constant value, 
θ    perturbation in temperature,  
γ   perturbation in solute concentration, 
�  porosity 
ς    z-component of vorticity,  

ξ   z-component of current density. 

 
INTRODUCTION 

 
With the growing importance of non-Newtonian fluids in modern technology and industries, the 
investigations on such fluids are desirable. The fluid that show distinct deviation from 
“Newtonian hypothesis” (stress on fluid is linearly proportional to strain rate of fluid) is called 
non-Newtonian fluids. Non-Newtonian fluids are those in which viscosity at a given pressure and 
temperature is a function of velocity gradient. Such fluids are colloidal suspension; emulsion and 
gel is included in these classifications. Non-Newtonian fluids help us understand the wide variety 
of fluids that exist in the physical world. Plastic solids, power-law fluids, visco-elastic fluids, and 
time-dependent viscosity fluids are others that exhibit complex and counterintuitive relationships 
between shear stress and viscosity /elasticity. The non-Newtonian fluids characterized by power-
law model have some limitations, as they do not exhibit any elastic proposed to describe the non-
Newtonian behavior  of such fluids. This model was first proposed to describe the non-
Newtonian behavior of such fluids. The wok on visco-elastic fluid appears to be that of Herbert 
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on plane coquette flow heated from below. He found a finite elastic stress in the undistributed 
state to be required for the elasticity to affect the stability. Using a three constants rheological 
model due to Oldroyd[1], he demonstrated, for finite rate of strain, that the elasticity has a 
destabilizing effect, which results solely from the change  in apparent viscosity.  
 
A detailed account of thermal instability of Newtonian fluids under varying assumptions of 
hydrodynamics and hydromagnetics, has been given by Chandrasekhar [2]. Veronis [3] has 
investigated the thermosolutal convection in a layer of a fluid heated from below and subjected 
to a stable solute gradient, the solute being salt. Vest and Arpaci [4] have studied the stability of 
a horizontal layer of Maxwell’s viscoelastic fluid heated from below. Generally, the magnetic 
field has a stabilizing effect on the stability, but there are a few exceptions. Bhatia  et  al.  [5]  
studied  the problem of thermal instability of a Maxwellian visco-elastic fluid in the presence of 
rotation and found that rotation has a destabilizing influence in contrast to its stabilizing effect 
on a viscous Newtonian fluid. Lapwood [6] has studied the stability of convective flow in 
hydromagnetics in a porous medium using Rayleigh’s procedure. Most often in geophysical 
situation the fluid is not pure but usually permeated with suspended particles or dust particles. 
Sufficient motivation for the study of suspended particles is the fact that knowledge concerning 
fluid-particle mixture is not commensurate with their industrial and scientific importance. 
Scanlon and Segel [7] considered the effect of suspended particles on Benard convection and 
found that the critical Rayleigh number was reduced solely because the heat capacity of pure gas 
was supplemented by that of particles. And it found that suspended particles destabilize the layer. 
Rotation too has profound effect on the onset of instability.  It induces the number of new 
elements into the problem and some of its consequence at the first sight unexpected. Buoyancy 
forces can arise not only from density differences due to variation in temperature but also from 
those but also those due to variation in solute concentration. The problem in porous medium is of 
importance in soil, ground water hydrology and in atmosphere. When the fluid slowly percolates 
through the pores of a macroscopically homogeneous and isotropic porous medium, the gross 
effect is represented by Darcy’s law. In the present problem an attempt has been made to study 
the effects of suspended particles and rotation on Thermosolutal instability of Maxwell Visco-
elastic fluid in porous medium. 
 
Mathematical Model 
Consider an infinite horizontal layer of Maxwellian viscous-elastic fluid of thickness‘d’ bounded 
by plane z = 0 and z = d in porous medium of porosity ε and medium permeability k1. The layer 
is rotating with angular velocity Ω.  Choose a Cartesian system of coordinate O(x, y, z) rotating 
with layer, with the origin half - way between the planes, Oz vertically upwards and Ox, Oy be 
two perpendicular horizontal directions. The layer is heated and saluted from below such that a 

uniform temperature gradient 






=
dz

dTβ  and a uniform solute concentration gradient 







=′

dz

dCβ

are maintained, where T and C denote the temperature and solute concentration respectively. Let 
the system is acted upon by uniform vertical magnetic field H (0,0,H) and gravity force g (0,0,g). 
Let κκυµµααρ ′′  and ,,,,,,,, eTp  be the pressure, density, temperature, thermal coefficient of 

expansion, and an analogous solvent coefficient of expansion, viscosity, magnetic permeability, 
kinematic viscosity, thermal diffusivity and solute diffusivity of fluid respectively. 
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As the fluid flow through a porous medium the gross effect is represented by Darcy’s law[6]. 

According to which the usually viscous term is replaced by the resistance term q
k

r









−

1

µ
, in the 

equation of motion, q
r

 is filter velocity of fluid; the fluid velocity v
r

 and filter velocity q
r

 are 

connected by relation 
ε
q

v
r

r = . 

 
The equation of motion, continuity and heat conduction for Maxwellian visco-elastic fluid 
through porous medium are  
 

( ){ } ( ) ( ) q
k

qq
d

q
SN

HHegp
tdt

qd

t

rrrrrrr
r

1

2

4
11

µ
ε
ρ

επ

µ
ρλλ

ε
ρ −












Ω×+−+××∇++∇−









∂
∂+=









∂
∂+ (1) 

0. =∇q
r

,                       (2) 

( ) TT
d

q
t

f
C

pt
mNC

Tq
t

T
E 2

0
. ∇=




 ∇+
∂
∂+∇+

∂
∂ κε

ρ
rr

.                             (3) 

An analogous solute concentration equation is  

( ) CC
d

q
t

f
C

pt
mNC

Cq
t

C
E 2

0
. ∇′=




 ∇+
∂
∂+∇+

∂
∂ κε

ρ
rr

,                                                                  (4)  

 

where λ is the relaxation time, ( )
f

C
S

C
sE
0

1
ρ

ρ
εε ++=  and ssf CC ,;, .0 ρρ  stands for density and 

heat capacity of fluid and solid matrix respectively, Cpt is the heat capacity of particles E ′   is the 
analogous solute parameter. 
Assuming a uniform particle size, spherical shape and small relative velocities between fluid and 
suspended particles, the presence of suspended particles adds an extra term in equation of motion 
which is proportional to the ( )qq

SN
d

rr −
ε

, where t),xN(  , dqq
rr

 denote respectively the fluid 

velocity, particle velocity and number density of particles. ηπµ ′== 6 S and z)y,(x,x is the 
Stokes drag constant η ′  is the radius of suspended particle. Since the force exerted by the fluid 
on particles is equal and opposite to that exerted by the particles on fluid; thus there must be an 
extra force term, equal in magnitude and opposite in sign, in equation of motion for particles. 
The buoyancy forces on the particles are neglected. Interparticle reaction are also not considered 
as we assume that distances between particles are quite large as compared with their diameter 
and if mN is the mass of particle per unit volume, then the equation of motion and continuity for 
particle under above assumptions are 

( ) ( )
d

qqSN
d

q
d

q
t
d

q
mN

rrrr

r

−=













∇+

∂

∂

ε
1  ,              (5) 

( ) 0. =∇+
∂
∂

d
qN

t

N rε ,                  (6) 
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The Maxwell’s equation yield 

( ) HqH
dt

Hd rrr
r

2. ∇+∇= εηε ,                                                                                  (7) 

and 
0. =∇ H

r
,                                        (8) 

 

where ( )∇+
∂
∂= q
tdt

d r

ε
1

 stands for convection derivative and  eNC ,,, 1 η′  denotes respectively 

the  velocity of light, electron number density, resistivity, and charge of electron.     
The equation of state is 
 

[ ])()(1 000 CCTT −′+−−= ααρρ ,                           (9) 

 
where the suffix zero refers to values at reference level z = 0, i.e. ρ0, T0 and C0 stands for density,  
temperature and solute concentration at lower boundary z =0. 
 The steady state solution is  

( ) ( ) ,,,0,0,0 ,0,0,0 00 zCCzTTqq d ββ ′−=−=== rr
 and ),1(0 zαβρρ +=  where 

d

TT 10 −
=β  is the 

magnitude of uniform temperature gradient, which is maintained and  
d

CC 10 −
=′β  is the 

magnitude of uniform solute gradient. 
 

Let ( ) ( ) ( )zyx h,h,hh and  ,,,,,,,,,,
rrr

srlqwvuqp dγθδδρ  denote respectively the perturbation in 

density, pressure, temperature, solute concentration, fluid velocity (initially zero), particle 
velocity (initially zero) and magnetic field. 
 
Then the linearised thermosolutal hydromagnetic perturbations equation of flow through porous 
medium, following the Boussineq approximations are, 
 

( ){ } ( ) ( ) q
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qqq
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e rrrrrrr
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4
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




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




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







∂
∂+        (10)                                                                                                    

qq
tS

m
d

rr =






 +
∂
∂

1 ,                (11) 

0. =∇ q
r

,                                                                 (12) 

( ) ( ) θκβθε 2∇++=
∂
∂+ bsw

t
bE ,                                                                                 (13) 

( ) ( ) γκβγε 2∇′++′=
∂
∂+′ bsw

t
bE ,                                                                            (14) 

( ) hqH
dt

h rrr
r

2. ∇+∇=∂ εηε ,                                                              (15) 

0. =∇h
r

,                                         (16) 
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where 
f

pt

C

mNC
b

0ρ
= . 

 
The change in density δρ caused by the perturbation in temperature θ and solute concentration γ 
is given by  

[ ]γααθρδρ ′+−= 0 .                             (17) 

 
Eliminating qd from (10) and (11), we get 
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where τ = m/S. 
 in the Cartesian form equation (18 ) and (12) – (16) with help of equation (17) can be written as 
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z
z h

z

w
H
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∂
∂ εηε ,                                          (28) 
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Operating equation (19) by 
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∂ and equation (20) by 
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∂  ; then adding and making use of 

equation (22) ,  we get  
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Now eliminating δp from (21) and (29), we get 
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Again operating equation (19) by 
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where 
y

u

x

v

∂
∂−

∂
∂=ς , is z-component of vorticity and y

h

x

h
xy

∂
∂−

∂
∂

=ξ  is z-component of current 

density. 
 
Equations (24), (25) and (28) can be written as  
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Dispersion Relation 
Analyzing the disturbances into the normal modes and assuming that the perturbed quantities are 
of the form 
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[ ] [ ] ( )ntyikxikzXzZzKzzzWhw yxz ++ΓΘ= exp)(),(),(),(),(),(,,,,, ξςγθ ,                       (35) 

 
where kx, ky are horizontal wave numbers in x and y direction respectively,k2= k2

x+k2
y is  the 

resultant wave number, n is growth rate of disturbances. 
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From equation (26) and (27), we get  
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Expressing the coordinate (x, y, z) = (x*d, y*d, z*d), D* = d/dz* in new unit of length ‘d’ 
thereafter dropping the superscript for simplicity and also putting  
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Equations (36) – (41) in non-dimensional form can be written as  
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we consider the case where both the boundaries are free and perfect conductor of heat, while 
adjoining medium is assumed to be electrically non-conducting. Thus boundary conditions for 
this case are  
 
W = D2W = DZ = X = Θ = 0  at z = 0 and  z=1.                                                       (48) 
 
Eliminating Θ, K, Z, X and Γ between (43) – (47), we get 
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   (49) 

where 
κν
αβ 4

0 dg
R =  is the thermal Rayleigh number, 

νκ
βα
′

′′
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4
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S  is the analogous solute 

Rayleigh number, 
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µ
0
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Q e=  is the Chandrasekhar number, 
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TA is Taylor number. 

Using the boundary conditions (48) it can be shown that all the even order derivative of W 
vanish at the boundary and hence the proper solution of equation (49)  characterizing lowest 
mode is  
 W = W0sin πz,                                                                                                               (50)  
where W0 is constant. Substituting the (55) in equation (54) and letting  
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We obtain the following dispersion relation 
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                                (51) 
 
Stationary Convection 
When the instability sets in as a stationary convection, the marginal state will be characterized by 
σ = 0. on putting  σ =0 (σ1 =0 ) in equation (51) it reduces to  
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thus for the stationary convection the stress relaxation time parameter vanish with σ and hence 
Maxwellian visco-elastic  fluid behaves like a ordinary Newtonian  fluid. In order to investigate 
the effect of rotation, suspended particles, stable solute gradient, magnetic field and medium 

permeability; we examine the behaviour of   
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thus rotation  has stabilizing effect on the thermosolutal convection in porous medium. Also it 
follows from equation (52) hat 
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thus suspended particles has destabilizing effect on the thermosolutal convection in porous 
medium. 

From equation (52) 01
1

1 >=
dS

dR
 , 

 
 it implies that solute gradient has stabilizing effect on the thermosolutal convection in porous 
medium. 
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From equation (52), we have  
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thus magnetic field has stabilizing effect and medium permeability have destabilizing effect on 
the thermosolutal convection in porous medium.  
 
If 0 and 0 then 
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thus magnetic field has destabilizing effect and medium permeability have stabilizing effect on 
the thermosolutal convection in porous medium.  
 
Oscillatory Modes 
Here we examine the possibility of oscillatory modes, if any on the stability problem due to the 
magnetic field, hall currents and suspended particles. Multiplying the equation (42) by W* (the 
complex conjugate of W), integrating over range of z and making use of the equation (43) –(47) 
and boundary condition (48); we get 
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                                                                                                                                             (53) 
where σ* is conjugate  σ  and 
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(54) 
 
Integrals I1-I10 are positive definite. Letting σ = σr + iσI in equation (53) where σr,  σI are real and 
equating real and imaginary parts we get 
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(55) 
                                                                                                    
 
From equation (55) it follow that σr,  is negative or positive, therefore system may be stable or 
unstable. 
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Equation (56) it follow that σi=0 or σI # 0 which mean that modes may be non oscillatory or 
oscillatory. In the absence of rotation, magnetic field suspended particles and solute 
concentration equation (56) reduces to  
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The term inside the bracket is zero if Fε<Pl  which implies that σi=0, thus the mode are non 
oscillatory and principle of exchange of stabilities is satisfied. 
 
Thus Fε < Pl is the necessary condition for the validity of principle of exchange of stabilities for 
Maxwellian Visco-elastic fluid in porous medium when rotation, solute concentration and 
suspended particles are absent. 
 
Case of overstability 
Here we discuss the possibility of as to whether instability may occur as overstability. Equating 
the real and imaginary part of equation (51) and eliminating R1 between them, we obtain the 
polynomial equation of type  
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where C1=σI
 2 , b  = 1+ x  and 
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the constants A1 – A7 involving large number of terms have been not written here. Since σ1 is 
real for over stability therefore all value of C1 are positive.  
 
The product of roots ( =A0/A8) is positive 
 
A8 is negative if  
 
E1p1 > E2q1, E1p1 > p2                                                                                                                                             (60) 
 

   and A0 is positive if 
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inequalities (60) and (61) are sufficient condition for non-existence of overstability. 

 
CONCLUSION 

 
In the present paper Thermosolutal instability of dusty rotating  Maxwell visco-elastic fluid in 
porous medium is studied. In case of stationary convection the Maxwell visco-elastic fluid 
behaves like an ordinary Newtonian fluid due to the vanishing of the visco-elastic parameter. 
The suspended particles have destabilizing effect whereas rotation and solute concentration have 
stabilizing effect on the system. The magnetic field and medium permeability have 
stabilizing/destabilizing effect on the system depending upon certain conditions. The mode may 
be non oscillatory or oscillatory. The sufficient conditions for non-existence of overstability are 
also found. 
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