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ABSTRACT

The effect of suspended particles, rotation and magnetic field on the Thermosolutal instability
in porous medium is investigated. By applying normal mode analysis method, dispersion relation
governing the effect of the solute concentration, suspended particles, rotation, magnetic field and
medium permeability is derived. It has been found that for stationary convection, the Maxwell
visco-elagtic fluid behaves like an ordinary Newtonian fluid due to the vanishing of the visco-
elastic parameter. The suspended particles have destabilizing effect whereas rotation and solute
concentration have stabilizing effect on the system. The magnetic field and medium permeability
have stabilizing/destabilizing effect on the system depending upon certain conditions. The mode
may be non oscillatory or oscillatory. The sufficient conditions for non-existence of overstability
are also found.

Key Words: Thermal instability, Maxwell viscoelastic fluidsjspended particles, magnetic field,
rotation, porous medium.

MSC MATHEMATICS SUBJECT CLASS FICATION: 76A05,76A10,76M40,7605

NOMENCLATURE

o density,

P pressure,
H uniform vertical magnetic field having components H (0,0,H),
g gravity force g (0,0,g),

o} filter velocity of fluid having components (u,v,w),

ad particle velocity having components (1,r,s),

velocity of light,
electron number density,
charge of electron,

® = 0
£
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k wave number of disturbance,
n growth rate of disturbance,
d depth of fluid layer,

oo perturbation in density,

X perturbation in pressure,

k1 medi um permeability,

a(u,v,w) perturbation in fluid velocity (initially zero),
G, (1.r.s) perturbation in particle velocity,
h(h,.h,.h,)  perturbationin magnetic field,

Greek Symbols

thermal coefficient of expansion,

anal ogous sol vent coefficient of expansion,

viscosity,

magnetic permeability,

kinematic viscosity,

thermal diffusivity,

solute diffusivity,
angular velocity,

uniformtemperature gradient,

uniform sol ute concentration gradient,
radius of suspended particle,
relaxation time,

resistivity,

curly operator,

constant value,

perturbation in temperature,
perturbation in solute concentration,
porosity

z-component of vorticity,

M ATSTDIEI>I P XT X TR

z-component of current density.
INTRODUCTION

With the growing importance of non-Newtonian fluidsmodern technology and industries, the
investigations on such fluids are desirable. Th&dflthat show distinct deviation from
“Newtonian hypothesis” (stress on fluid is lineagdsoportional to strain rate of fluid) is called
non-Newtonian fluids. Non-Newtonian fluids are thas which viscosity at a given pressure and
temperature is a function of velocity gradient. I5€laids are colloidal suspension; emulsion and
gel is included in these classifications. Non-Neviaa fluids help us understand the wide variety
of fluids that exist in the physical world. Plassialids, power-law fluids, visco-elastic fluids,dan
time-dependent viscosity fluids are others thail@klbomplex and counterintuitive relationships
between shear stress and viscosity /elasticity.ridmeNewtonian fluids characterized by power-
law model have some limitations, as they do notlekhny elastic proposed to describe the non-
Newtonian behavior of such fluids. This model wiast proposed to describe the non-
Newtonian behavior of such fluids. The wok on vistastic fluid appears to be that of Herbert
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on plane coquette flow heated from below. He foanfthite elastic stress in thendistributed
state to be required for the elasticity to affdet stability. Using a three constants rheological
model due to Oldroyd[1], he demonstrated, for &niaite of strain, that the elasticity has a
destabilizing effect, which results solely from ttteange in apparent viscosity.

A detailed account of thermal instability of Newi@m fluids under varying assumptions of
hydrodynamics and hydromagnetics, has been givehgndrasekhar [2]. Veronis [3] has
investigated the thermosolutal convection in adayea fluid heated fom below and subjected
to a stable solute gradient, the solute being galit and Arpaci [4] have studied the stability of
a horizontal layer of Maxwell's viscoelastic fluiceated from below. Generally, the magnetic
field has a stabilizing effect on the stability,tlthere are a few exceptions. Bhatsh al. [5]
studied the problem of thermal instability of aXMeellian visco-elastic fluid in the presence of
rotation and found that rotation has a destabdjzinfluence in contrast to its stabilizing effect
on a viscous Newtonian fluid. Lapwood [6] has stddihe stability of convective flow in
hydromagnetics in a porous medium using Rayleigitecedure. Most often in geophysical
situation the fluid is not pure but usually perneeltvith suspended particles or dust patrticles.
Sufficient motivation for the study of suspendedtipkes is the fact that knowledge concerning
fluid-particle mixture is not commensurate with ithendustrial and scientific importance.
Scanlon and Segel [7] considered the effect of esusdgd particles on Benard convection and
found that the critical Rayleigh number was reduselély because the heat capacity of pure gas
was supplemented by that of particles. And it fotlat suspended particles destabilize the layer.
Rotation too has profound effect on the onset sfaipility. It induces the number of new
elements into the problem and some of its consesuahthe first sight unexpected. Buoyancy
forces can arise not only from density differendas to variation in temperature but also from
those but also those due to variation in soluteeotration. The problem in porous medium is of
importance in soil, ground water hydrology and tm@sphere. When the fluid slowly percolates
through the pores of a macroscopically homogenemasisotropic porous medium, the gross
effect is represented by Darcy's laln.the present problem an attempt has been masieidy
the effects of suspended particles and rotatio teermosolutal instability of Maxwell Visco-
elastic fluid in porous medium.

Mathematical M odel

Consider an infinite horizontal layer of Maxwelligiscous-elastic fluid of thickness'd’ bounded
by plane z = 0 and z = d in porous medium of peyasand medium permeability, KThe layer

is rotating with angular velocit@2. Choose a Cartesian system of coordinate O(Z) sotating
with layer, with the origin half - way between thkanes, Oz vertically upwards and Ox, Oy be
two perpendicular horizontal directions. The laigeheated and saluted from below such that a

uniform temperature gradier,ﬁ(z ((jjT
z

j and a uniform solute concentration gradi;eﬁt “i—ij

are maintained, where T and C denote the temperahd solute concentration respectively. Let
the system is acted upon by uniform vertical magrfeid H (0,0,H) and gravity force g (0,0,9).
Let p,p,T,a,a',u, l.,u,k andk’ be the pressure, density, temperature, thermdficieat of
expansion, and an analogous solvent coefficiemxptnsion, viscosity, magnetic permeability,
kinematic viscosity, thermal diffusivity and solud#gfusivity of fluid respectively.
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As the fluid flow through a porous medium the gre$®ct is represented by Darcy’s law[6].

According to which the usually viscous term is emgld by the resistance tefﬂEkﬂjq, in the

1
equation of motiong is filter velocity of fluid; the fluid velocityv and filter velocityq are

connected by relatiofi =

K

The equation of motion, continuity and heat coniductfor Maxwellian visco-elastic fluid
through porous medium are

£(1+/]ﬂj@:(1+A2j{—mp+pg+:l—2{(mxﬁ)x |:|}+$(qd -q)+2_'0(qxfz)}—€q (1)

£ ot ) dt ot £ £
04 =0, )
mNC
Ea—T+(q.D)T + Pt [£2+q D}T = k0T . (3)
ot poCs L ot d
An analogous solute concentration equation is
mNC
%+ (go)c+—Pt {£i+q D}C = xk02C, ()
ot PCs L ot d

whereA is the relaxation timeg = ¢ + (1+ g)zszs and p,,C;; p, ,C, stands for density and
0~ f

heat capacity of fluid and solid matrix respectyvél,: is the heat capacity of particl&s is the
analogous solute parameter.
Assuming a uniform particle size, spherical shagsksanall relative velocities between fluid and
suspended patrticles, the presence of suspendetgsmadds an extra term in equation of motion
which is proportional to th@(qd _4)> where g, qd, N(x,t) denote respectively the fluid

&

velocity, particle velocity and number density odrticles. X = (x,y,z)andS= 67un' is the
Stokes drag constant is the radius of suspended particle. Since theefexerted by the fluid
on particles is equal and opposite to that exdrtethe particles on fluid; thus there must be an
extra force term, equal in magnitude and oppositsign, in equation of motion for particles.
The buoyancy forces on the particles are neglettéetparticle reaction are also not considered
as we assume that distances between particlesudeclarge as compared with their diameter
and if mN is the mass of particle per unit volurtiien the equation of motion and continuity for
particle under above assumptions are

mN(m;—td+%(qu)adJ:S|\|(q—qd), ()
£%—T+(D.qu):0, (6)
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The Maxwell’s equation yield
e ([ )+ enn2i )

and

O.H =0, (8)

where% —%+ (0) stands for convection derivative an@',N,,;7,e denotes respectively
£

the velocity of light, electron number densitysistivity, and charge of electron.
The equation of state is

p=pll-a(T-T)+a'(C-C,)]. ©)
where the suffix zero refers to values at referdacel z = 0, i.epy, To and Gstands for density,

temperature and solute concentration at lower baynz =0.
The steady state solution is

. . T,-T, .
d=(000),6, =(000),T=T,-2C=C,- B2 and p=p,a+ak). Where 5= g is the

C,-C

magnitude of uniform temperature gradient, whichmaintained and g’ = L is the

magnitude of uniform solute gradient.

Let Jp,ci),ﬁ,y,,q(u,v,w),qd(I,r,s) andﬁ(hx,hy,hz) denote respectively the perturbation in

density, pressure, temperature, solute concentrafioid velocity (initially zero), particle
velocity (initially zero) and magnetic field.

Then the linearised thermosolutal hydromagneti¢cupleations equation of flow through porous
medium, following the Boussineq approximations are,

X 0 o =

i(lm GJ:;‘ (1+/1 1 prog it {(th)xH}+— (q, -9+ (qu)} é’q (10)
0

(rgat+1jqd =g, (11)
0.G=0, (12)
(E+ be) = B(w+bs)+ %9, (13)
(e +b£) = B (w+bs)+xT%y, (14)

— = (H.D)q +en?h, (15)
Oh=0, (16)
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mNC
whereb = )

PoC
The change in densi®yp caused by the perturbation in temperafuend solute concentratign
is given by
I = -pylad +a'y]. (17)
Eliminating qifrom (10) and (11), we get

g (18)

?\_‘<

[1+/1§Ji 1+$a g?+ploElda—Q[Zj—ﬁ{(ﬂxﬁ)xﬁ}—i(”xﬁ) =
po(l"'ratj

1

wheret = m/S.
in the Cartesian form equation (18 ) and (12)6) (@ith help of equation (17) can be written as

(1+/16J } 1+m7N @+ii _’ueH ahx _ﬂ —EV :—Lu, (19)
ot) € ( 6) ot p,0x 4mp,| 0z Ox| & K,
Po 1+7 -
(- at -
[Majl 1e MN Jov, 19 w{ﬁhah}m __Vv, (20)
ot ) & po[l”;) ot p, dy amp, | 0z dy & K,
(1+/]ij 1 1+L a_W+ii5p—g(ag—a'y) :—Lw, (21)
( aj ot p, 0z K,
Po| 1+ T
ot
6_u+@+6_vv=0’ (22)
ox o9y o0z
oh
Pl B (23)
ox ody oz
06 2
(E+be)—= = Aw+bg+476, (24)
(E'+ be)% = B'(w+bs)+xD?y, (25)
oh ou 2
E—>=H—+e&n0h
ot 0z = (26)
oh ov
e—L=H—+e&0°h
ot 0z =Ty 7)
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oh 0
£ atz = Ha—\;v+£/7D2hz, (28)
32 a2 92

where 2 _

0x2 0y2 022

Operating equation (19) by and equation (20) bys ; then adding and making use of
0 X oy
equation (22) , we get

ONL)p, MmN [ofow)_ (o, 9%y HeH 1,20 | v ow.(29)
[1+,16t] ; 1+p( j at(azj (D azzjap {on}+ =2 ¢ | =
0

1+ Ti pO 4@0 2 I(1 62
ot

Now eliminatingdp from (21) and (29), we get

(1+/16j e M g(Dzw)‘g iz+i2 (a6-a'y)- £ {DZ ahz}era( =Yy (30)
o) e [ aj ot x> oy 4rp, 0z €dz| Kk
Po| 1+T
ot
Again operating equation (19) hy @ and equation (20) b;gl, we get
ay X
(1v2 2 )| Lloe —MN___3c_seH 0 200w/ v (31)
at (1+rij ot  4mp, 0z £ 0z K,
Po at
_h &
whereczﬂ—a—u, is z-component of vorticity ané‘&‘_ Is z-component of current
ox dy oy
density.
Equations (24), (25) and (28) can be written as
{(E + be)% - mz}e = B(w+bs), (32)
{(E' + bf)% - K'DZ}V: B (w+bs), (33)
0 5 ow
g —-n0°|h, =H —. 34
( Frand ) 2 32 (34)

Dispersion Relation
Analyzing the disturbances into the normal modaesassuming that the perturbed quantities are
of the form
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[w.8,y,h,,¢,¢]=W(2),0(2),I(2),K(2),Z(2), X (2)|explik,x +ik,y +nt), (35)

where k ky are horizontal wave numbers in x and y directiospeetively,k= k+k% is the
resultant wave number, n is growth rate of distndes.

Using equation (35), equations (30) — (34) becomes

(1+/1n){1{ }r{ { Z}K szz} - V{dz kz}w (36)
e pli+m 47113) dz|dZ £ dz| k |dZ
1+/]n) mN nZ - He H dX 2Q aw —KZ, (37)
£ po [+ m) amp, dz £ dz | Kk
{E+b£n P kJ}O:,B(W+bs), (38)
dz*
d2
{E +be)n- /( d22 kz}l’=ﬁ’(w+bs), (39)
d? dw
&en-n — -k |tK=H—
{ ,7( dz® j} dz - (40)
From equation (26) and (27), we get
—5 H ‘;C v en02F (41)
wheres = W
m+1

Expressing the coordinate (x, y, z) = (x*d, y*d,dz* D* = d/dz* in new unit of length ‘d’
thereafter dropping the superscript for simpli@hd also putting

2
q = kd, o= nd ’M :m_N’Tl :E27E1:E+bg’E2 :E’+b€,B:b+l ) =£ is the
Lo d K
Prandtl number,p, =" is the magnetic Prandtl number, d_ k. is the dimensionless
n R
. . _Av
medium permeability and g

Equations (36) — (41) in non-dimensional form cambitten as

b e T S,

+1,0 4myv &v %
Il ML Fa) g = Al 200, (43)
" (+10) P Ay v
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D2-a?-op,]K = —[%)DW , (44)
D2-a?-op,|x = —(%) DZ , (45)
- d?( B+r1,0

D?-a?-0E,p,Jo = -2 : 46
' 1p1] K [1+710')W’ (46)
' d?*( B+r1,0

D?-a’-oE,q [ =-~ ! : 47
| alr=-22 ( 1+Tlajw @)

we consider the case where both the boundariefregeand perfect conductor of heat, while
adjoining medium is assumed to be electrically noneducting. Thus boundary conditions for
this case are

W=D’W=DZ=X=0=0 atz=0and z=1. (48)

Eliminating®, K, Z, X andl" between (43) — (47), we get

sl -l - ] o MO o
Ta

=—4(0 -a - p| 0 ~& - £ [P 2 - p DA+ {D? - —cpz)(B+ Tlaj

£ l+r0

{L{H (1+“:1 d}Jl*;”)'l}(Dz & —cp2)+SD2}az[(D2 ~& -cEq)R -0 - ~Enjsv

(49)

4

g,a'Bd*

9.9 . : _ .
is the thermal Rayleigh numbeﬁ—T is the analogous solute

where R=

!

| _HHd® _

Rayleigh numberQ = DU is the Chandrasekhar numbéy, =
0

Using the boundary conditions (48) it can be shdhat all the even order derivative of W
vanish at the boundary and hence the proper solaicequation (49) characterizing lowest
mode is
W = Wesin 1z, (50)
where W is constant. Substituting the (55) in equation) ¢4d letting

2

2
j is Taylor number.

a’ =, =£,Sl=i legz,iaz%andP:#Pl.
7 7 7 7

We obtain the following dispersion relation
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Farinen)+)

M), [+ioeF
1+io, T, P

{(1+x)(1+x+ialE1pl){ial(1+ M }(1*“’1”2 F)'l+Q(1+X)]}+TA{(1+x+ialE1p2)2}

e " 1+iontr, P £ £ |(1+x+io,E,q,)

{Wﬁzn}(l+x+ialEqu){iq(l+ . j+(1+ialn2|:) (1+x+ialp2)+(§}

svio oo ) 1

XR, =

1+io,mr £ 1+io,rr, P

+XSl (1+X+ia-1E1 pl)
(1+ X+iJlE2q1)

(51)
Stationary Convection

When the instability sets in as a stationary cotivacthe marginal state will be characterized by
0 = 0. on puttingo =0 (01 =0) in equation (51) it reduces to

R = lox(lrx, O LX) . (52)

xB P £ é_gBX(1+x+Qlj
P £

thus for the stationary convection the stress eglar time parameter vanish withand hence
Maxwellian visco-elastic fluid behaves like a oraiy Newtonian fluid. In order to investigate
the effect of rotation, suspended particles, staolete gradient, magnetic field and medium

permeability; we examine the behaviour diR.. Ry dR, dR, . AR, gpalytically.
dT, ' dB dS, dQ, = dP

Equation (52) yield,
dR _ (1+x)’ -0

dT, «&?B 1+x+%
P £

thus rotation has stabilizing effect on the thesolotal convection in porous medium. Also it
follows from equation (52) hat

de=_1+;< (1+X)+&+ T, <0
daB xB P £ 2 1+x+%
P P

thus suspended particles has destabilizing effacthe thermosolutal convection in porous
medium.

drR
From equation (52)5 =1>0,
1

it implies that solute gradient has stabilizinfeef on the thermosolutal convection in porous
medium.
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From equation (52), we have

dR, _ 1+x [52(1+ X) £ Q%+ (1 X)(ZeF()gl _TAH[“ X +&rand

dQ, &x/AB p? P £

2 -2
dR1:_1+x 8(1:X)+Q21+(1+x ﬂ_TA 1+_x+&
dP &xAB P P P P

> OandOIR <0

if 25 T, then R,

1

thus magnetic field has stabilizing effect and roedipermeability have destabilizing effect on
the thermosolutal convection in porous medium.

If &<TAthen &< 0 and &>0
P d dpP

1

thus magnetic field has destabilizing effect andlion® permeability have stabilizing effect on
the thermosolutal convection in porous medium.

Oscillatory Modes

Here we examine the possibility of oscillatory medé any on the stability problem due to the
magnetic field, hall currents and suspended peagidultiplying the equation (42) by W* (the
complex conjugate of W), integrating over range @ind making use of the equation (43) —(47)
and boundary condition (48); we get

B

0K | +ro
VB | B+,

&n . I+r,o
I.+o pl a —
l/(5 P2 ) % VB\ B+1,0°

j(l +TEp ) +g,a J(' +0'E,ply) =0

(53)
wherec* is conjugatec and

f

0
1 1

|DK \ +a2\K\ jdz,l5 = j(\DX \2 +a2\x\2jdz,I6 = j(\X\Z)dz
0 0

1 1
\2\2) (\De\ +a2lo|? )dz,|8 = j(\@\z)dz, g = ;(\Dr\Z +a2\r\2)dz
0 0

P ez,

o—pr

6

1
g,(
1
a7
1
{(
(54)

Integrals |-11pare positive definite. Letting = o + ig, in equation (53) where,, g, are real and
equating real and imaginary parts we get
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M

l{1+ }I +d?) +'ue—£,7(pl +p.d?l )
(3 (1 4 2'37 P g
£ +rlar 47;00|/
r 2

v | Brro B EiPlg™ 5 2%'10

=- m(l +d?| )+—ﬂegf7 (I +d?| )-goa 0y fa, _aw
R 1 4 ampyv 2 5 v |B+ro, |l B 7509

(55)

From equation (55) it follow that;, is negative or positive, therefore system mawtabéle or
unstable.

1|1+M +o°r? F

1 1eEN 2
— +d?l [, —d?l,)-L=2 |,+d°l
{ { ‘1_'_02 zj }( ) P ‘1_'_0 F2 )}( 4) preyy pz( 3 6)
9,2°( (B-Dr, |[ax, _ak' | _((B+o'ry \ak _ak
v (Bz_'_o_izz_lz ,3 I7 ,3' IQ Bz+0_i21_12 ﬁ E1p1|8 ,3' Equllo

Equation (56) it follow that;=0 or o, # O which mean that modes may be non oscillatory or
oscillatory. In the absence of rotation, magnetieldf suspended particles and solute
concentration equation (56) reduces to

1 F goa%
al{2-E e8| <o

The term inside the bracket is zerd=#<P, which implies thai;=0, thus the mode are non
oscillatory and principle of exchange of stabiltie satisfied.

. (56)

ThusFe < Py is the necessary condition for the validity ofngiple of exchange of stabilities for
Maxwellian Visco-elastic fluid in porous medium wheotation, solute concentration and
suspended particles are absent.

Case of overstability

Here we discuss the possibility of as to whethstaibility may occur as overstability. Equating
the real and imaginary part of equation (51) anchiehting R between them, we obtain the
polynomial equation of type

AC)+AC +AC] +AC] + AC +AC+A, CI +AC, + A =0, (57)

where G=0,%, b =1+ x and

552
Pelagia Research Library



Ramesh Chand et al Adv. Appl. Sci. Res,, 2011, 2(6):541-553

A= F“ﬁElEzo{ 1Elplp2+7fFrar(Elpl Eq)+7Fpr{Ep - pz)}@s)

As_ll(l ﬂzFJ (b&J b-1(Ep, - 772F)]b8 Hgﬁjf+(g+%jzf8(b—n(rl_p)]b7

e P

e

the constants A— A;involving large number of terms have been not emithere. Since; is
real for over stability therefore all value of &e positive.

(59)

The product of roots ( =fAs) is positive

Ag is negative if

Eip1> Extp, E1p1> 2 (60)
and A is positive if

1 _m°F b _T

E>T ,E, 1>;72F(1+F—|Dj Elp1>p2,E2q1>n2F,E>£—§,rl>F (61)

inequalities (60) and (61) are sufficient conditfonnon-existence of overstability.
CONCLUSION

In the present paper Thermosolutal instability o$tgt rotating Maxwell visco-elastic fluid in
porous medium is studied. In case of stationaryvection the Maxwell visco-elastic fluid
behaves like an ordinary Newtonian fluid due to #aaishing of the visco-elastic parameter.
The suspended particles have destabilizing effbetr@as rotation and solute concentration have
stabilizing effect on the system. The magnetic dfiehknd medium permeability have
stabilizing/destabilizing effect on the system defieg upon certain conditions. The mode may
be non oscillatory or oscillatory. The sufficiemdndlitions for non-existence of overstability are
also found.
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