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ABSTRACT

The effect of uniform vertical magnetic field and uniform vertical rotation on thermosolutal convection in a layer of
an electrically conducting couple-stress fluid heated and soluted from below is considered. For the case of
stationary convection, it is clear that stable solute gradient, magnetic field, couple-stress postpone the onset of the
convection, where as rotation hastens the onset of convection in compressible, couple-stress fluid heated from below
in the presence of a magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict
the stability characteristics. Further, the solute gradient, magnetic field, rotation is found to introduce oscillatory
modes in the systems that were non-existent in their absence. The sufficient conditions for the non-existence of
over stability are also obtained.

Key Words. Thermosolutal Convection, Couple-Stress Fluid, timf Vertical Magnetic Field and Uniform
Vertical Rotation.

INTRODUCTION

The thermal instability of a fluid layer with ma&ihed adverse temperature gradient when heatedifebow, plays
an important role in geophysics, interior of thetleaoceanography and atmospheric physics etc. ubee of
Boussinesq approximation has been made througthwitth states that the density may be treated astaohin all
the terms in the equation of motion except the rexeforce term. The theoretical and experimenésults on
thermal convection in a fluid layer, in the abseaoel presence of magnetic field or rotation hasligeen by
Chandrasekhar (1981). Vernonis (1965) has investigthe problem of thermohaline convection in atayf fluid
heated from below and subjected to a stable salinédient. Brakke (1955) explained a double-diffasnstability
that occurs when a solution of a slowly diffusimotein is layered over a denser solution of maapidly diffusive
sucrose. Nason et al. (1969) found that this inlttakvhich is deleterious to certain biochemicaparations can be
suppressed by rotation in the ultra centrifuge.

The theory of couple stress fluid has been fornedlaby Stoke’s (1966). Wallicki and Walicka (199%vk
modelled synovial fluid as a couple-stress fluichirman joints. One of the applications of coupteess fluid is its
use to the study of the mechanisms of lubricatiohsynovial joints, which has become the objecscientific
research. A human joint is a dynamically loadedibgavhich has articular cartilage as the bearingd #oe synovial
fluid as the lubricant. When a fluid is generatsdueeze — film action is capable of providing cdesible
protection to the cartilage surface. The shouldekle, knee and hip joints are the loading — bgasiynovial joints
of the human body and these joints have a lowidrctoefficient and negligible wear. Normal syndviaid is
clear or yellowish and is a viscous, non-Newtorflai. According to the theory of Stoke’s (1966puple-stresses
are found to appear in noticeable magnitudes iglwith very large molecules. The long chain hyatic acid
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molecules are found as additives in synovial fluidsvallicki and Walicka (1999) have studied the effe of
couple-stresses and inertia effects on the chaistate of squeeze-film behaviour in the thrustvilimear bearings
with references to synovial joints. On the basisStitke’s couple-stress fluid model, Wallicki and litlea (1999)
have made mathematical modelling of some biolodieakings.

Darcy's law governs the flow of Newtonian fluid tlugh isotropic and homogeneous porous medium. Heryéy
be mathematically compatiable and physically cdesiswith the Navier-stokes equations, Brinkman4g)9

heuristically proposed the introduction of the tef'g'nD2 g (now known as Brinkman term) in addition to Darcian
£

term —(ﬂjq . But the main effect is through Darcian term amel Brinkman term contributes a very little effect,
1

for flow through porous medium. Therefore, Darcldsv is proposed to govern the flow of this non-Nemé&n

couple-stress fluid. Sharma and Chandel (2002) Istwdied on superposed couple-stress fluids iaysomedium

in hydrodynamics and pardeep et al. (2004,200%) tudied couple-stress fluid with rotation andlule-diffusion

without and with porous medium have found very usahd effective results. In another study Kumad &ingh

(2009,2009,2011, 2012) have been found usefultgsaltheir research.

Keeping in mind the importance of non-Newtoniand$y like the themosolutal convection and compheélitsi, the
present study considers a layer of compressibleleotstress fluid heated from below in the presesfagniform
magnetic field and rotation.

2. Formulation of the Problem and Perturbation Equations
Here we consider an infinite , horizontal, incongsible, electrically conduction couple-stress flléger of

thickness d, heated from below so that, the tentpers and densities at the bottom surface z = Tgaemdp, and
at the upper surface z = d arg anhd py respectively and that a uniform temperature gratdé= |dT/d4) is

maintained. The gravity fieI@ = (0, 0, -g), a uniform vertical magnetic fiekd = (0, 0, H) and a uniform vertical

rotation é = (0,0, Q) act on the system.

The initial state is, therefore a state in whick fluid velocity, temperature, pressure, solutecemtration and
density at any point in the fluid are given Eb/: 0, T=T(2), p=p(z), C=C(zp =p(z), respectively, where
T(2) = Tn- Bz 0

p@) =tn-9 [ O +Pry)dZ
0

C=G-Bz,

P@) = Pull=a,(T-T,) + K, (p—p,) +a'(C-C,)] (2.1)

and a, = —(%g—?ln , (=asay) al = —(%g—gjm , (=d' say)

o = (ia_pJ 2.
pop).,

Let q = (u, v, w),0p, op, 6, Y, h(hX ,hy ,hz) denotes respectively the perturbations in velo@t9,0),pressure

p, densityp, temperature T, solute concentration C and magrfeld H (0,0,H). Then the linearized
perturbation equations, relevant to the problengaren by

- /
99:—?LDdrﬂxaﬁ—aWT{y_iLEF}fq+ﬂﬁXQ%“i£—@xh%FL 23)
ot N P 4rp,,
ig=o, (2.4)
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a0 ,
L—-— \w+x018,
at ( p]W

9 =pB'w+k'0%

ot
Oh=0
?9_? = (H DD)q +n0%h

p=-p,lad-a'y),

(2.5)

(2.6)
2.7)
(2.8)

(2.9)

Wherev , o/ Cor K, k' and 9 stands for kinematic viscosity, couple-stress adgly, specific heat at constant

p
pressure, thermal diffusivity and adiabatic gratirespectively. The equation of the state is

p=pull-a (T-T,)+a'(C-C,)].

(2.10)

The above equation contains the thermal coefficirexpansiorn and an analogous solute coefficiet as the
density primarily depends upon temperature andtsatoncentration, the change in densy caused by the

perturbatiord andy is given by

3p = - pm (@6 - a'y),

Solving equation in form of scalar components asidgithe of equation (2.4), we have

2 2 2 2
gfow)_ 100 a oo+ v £ |0 AW 29 4 HH 9 (1 )
ot\ oz P, 0Z 2 fom 0z 0z 4mp,, 0z
Where{ = (av auj
ox oy

At arigid surface u =0, v =0, w = 0 on a rigigface for all x and y

therefore equation of continuity reduces to

a—W—O or [Ow=0
0z
19(0° 0° 9>  0°
:>————do g——(aé? ay)
0., 0z| 0x* x> oy’

By using equation (2.14), the equation (2.12) bezom

2 2 /
2(DZW)—g 6_2+6_2 (@0-a'y)-|v-£-02 [o* 4209 - HeH 0 —0O%h, =0.
ot ox° oy yo, 0z 4mp,, 0z

m

Operating equations (2.4) to (2.11) also yield

/
9 [y g2 |n2z =0
ot n 0z

0 2lp_| p_ 9
(a kOl jﬁ—(ﬂ Cp]w

0
(E_k/[lzjyzﬂlw
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(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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0 5 ow
—=-pn0°|h,=H — 2.19
(at n jz 3z (2.19)

3. The dispersion relations
Analyzing the disturbances into normal modes, veeig® that the perturbation quantities are of the fo
[W.6,y.¢.h,]=[W(2),0(2).T (2).2(2), K ()] explk,x +ik,y + nt) (3.)

Where k and k are wave numbers along x and y directions respegtk = ./ kx2 + kf is the resultant wave

_ , d _nd®> 0 _
number , n a complex constant putting Xe&s y =yd, z=2d, D=— ,a=kd,0 = , — =
dz v ot
2 2 2
a_2+a_2=_k2,52=d_2—k2 , (3.2)
ox= oy dz
Equation (2.15) - (2.19) becomes
2 / 2
n d—z— k? jw- g(—kz)(aG)—a’I')— v+ d—z—k2
dz P\ dz
2 2 2
4 2| weoq 2 _pH d pdD el o, (33)
dz ddz' 4mp,, ddz' | dz
/ 2 2
nZ- V_i d—z_k2 d—z_kz Z=2Q dVV/ ) (3.4)
P\ dz dz ddz
B 2
n—K(d—z—kzj}(a:(,B—g]W, (3.5)
i dz o
_n—k’ d—2—k2 r=p'w (3.6)
I dz? ' '
n-n Ol—2—k2 K=H d w (3.7)
I dz’ ddz’ '
Also z = dz= dz = d dz= i=i,—2
dz ddz d
Where D :% and (dzZj = o (d2)?,
z
d>  d? _ D? ?
S w Y @ g 9
using equation (3.8), equations, (3.3), (3.5),)(&r& (3.7), becomes
b
h-F(p?-a2)(p2-a?)-olz =—% Dw, (3.9)
-1 leZ
D*-a’-pole=- —= W, 3.10
P ] G K (3.10)
/42
D?-a? —qa]r = —%W , (3.11)
2 2 d
D2-a’ - p,o]K = _(Tj DW (3.12)
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/
Where F =

is dimensionless couple-stress parameter

Vo, d?
244
Ta= >— is the Taylor number
14
b . . - (U 2
G = —, is the dimensionless compressibility parameter@ = — is the Prandtl number, g F , is the
9 K

Vv
Schmidt number and,= — , is Prandtl number.

Now eliminating @, K, Z,I", between equations (3.9)-(3.12) ,we get

{1-F(D? -a"))(D? ~a%)*W +Q(D* -a’ - p,0)(D* ~a* ~qo)(D* -a%)

[{1- F(D?-a*)}(D?-a*)-o]D*W =0 (3)1
4 I pl 44 242
Where R = gapd is the Rayleigh number, SM is the solute Rayleigh number, Q’%Hid is
TPV

the Chandrasekhar number.

Consider the case in which both the boundarie$raeeand are maintained at constant temperatueetrihsformed
non-dimensional boundary conditions appropriatééoproblem are

W=DW=D'W=0,0=0,l=0,DK=0and DZ=0atz=0and z = 1. 13)
Hence the proper solution of W characterizing thvedst mode is

W = WgsinTz , (3.15)
where W is a constant .

Putting F = - 7€ in (3.13) and using equation (3.15) we get

R;= (GG_lj[ io; (L+Xx)(L+x+ipoy) (L +x+ipoy) (L +x+igoy) [{ 1+ F1 (1 +Xx)} (1+X) + iog]+ Sy x (1 + X
+1ip107) (1 + x +ipoy) [{ 1+ Fi(1 + x)} (1+x) +iog] + To(1 + x + ipoy) (1 + x +igp)(1 + X + ipoy) +(1 + x +

ip101) (1 + X +iRO)(L + X + ipy) [{1+ Fy(1 + X)}H1+x) + o] [1 + Fi(1 + X)] (1+x)*+ Qu(L + x) (1 + x + ipo)(1
+x +1iqoy) [{1 + Fy(1+ x)} (1+ X) +i0y]

X (L +x+joy) (L+x+igy) [{1+F (1 +x)} (1+x) + o]
(3.16)
2
R:,S_L= S4,F1=Tl2F,T1= L‘; and b, = UZ, Q= % and x = a2
7l 7l n 7l 7l Y/
4. The stationary convection
When the instability sets in stationary convectithre marginal state will be characterizeddyy=0. Puttingo; = 0

the dispersion relation (3.16) reduces to

where R =

(Gj[<1+ X)L+ F, (L X)]? + SX[L+ F, @+ )] + Q, L+ )[L+ F, (L X)] +T]
Ry= \G~1 4.1)

X1+ F, @+ x)]

Equation (4.1) expresses the modified Rayleigh remfd as a function of the dimensionless wave numbeandk a
the parameters G, FS,, @i, Ti. For fixed k, S, Q,, Ty, let G (accounting for the compressibility effgcédso be
kept fixed. Then we find that
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R, = (GG_J Re (4.2)

Where R_ and R denotes respectively the critical Rayleigh numbarsthe presence and absence of

compressibility. G > 1 is relevant here. The casel@Gnd G = 1 corresponds to negative and infivetees of the
critical Rayleigh number in the presence of comgitslity, which are not relevant in the presentdstu

The effect of compressibility is, therefore, to pmse the onset of thermosolutal convection anldesoa stabilizing
effect.

To study the effects of stable solute gradient, matig field, couple-stress parameter and rotatizs examine the

nature 0@ ﬁ ﬁandﬁ analytically, equation (4.1) yields
ds dQ, dF dT,

de:[ . j 4.3)
ds,  \G-1
dR, _ [ G j [1+ xj (4.4)
dQ, G-1 X

G 3 2
i [o0g)ar oo R 1) @s)
oF, X[1+R1+x)]?

=
w_ |oa (4.6)

dT, X[1+F(1+x)]

From equations (4.3) to (4.6) it is clear that Eaiwlute gradient, magnetic field, couple —stysstpone the onset
of the convection. Whereas rotation hastens thetafsconvection in compressible, couple-stresisl fheated from
below in the presence of a magnetic field.

It is evident from equation, (3.16) and equatiori)Y4or a stationary convection the magnetic fietdl the couple
stress postpone the onset of convection in theepoesof rotation if T< x [1 + R(1 +X) ]. Whereas the magnetic
field and couple stress hastens the onset of ctiona€ T, > x [1 + R(1 +x) ].

Now analysing the equation (4.1) graphically,

In Fig 1: R is plotted against x for 7= 100, 200, 300,/ 2, G =10, @= 10 and $= 10. It is clear that rotation
postpones the onset of convection in a couplesstheisl heated from below in the presence of magrfietld as the
Rayleigh number increases with an increase iniostgtarameter.

In Fig 2: R is plotted against x for Q= 10, 30, 50, F= 2, G =10, T= 100 and $= 10. Here we find that the
magnetic field postpones the onset of convectioth@presence of rotation for all wave numbershasRayleigh
number increases with increase in the magnetid fiafameter.

In Fig 3: R is plotted against x for;= 2, 4, 6, @ =100, G =10, T= 1 and $= 10. Here we find that couple-stress
hastens the onset of convection in the presenceotafion for small wave numbers as the Rayleigh loem
decreases with the increase in couple- stress éearand postpones the onset of convection in biseree of
rotation for high wave numbers.

In Fig 4: R is plotted against x for;S 10, 30, 50, @= 10, G =10, T=100 and F= 2. Here we observe that stable
solute gradient postpones the onset of convectioa couple stress fluid heated from below in thesence of
magnetic field and rotation as the Rayleigh nuniberases with the increase in rotation parameter.

In Fig 5, R is plotted against x for G = 10, 30, 50, ©100, $=10, T, = 100 and F= 2. Here we find that with
the increase of wave number there is increase yieRgn number thus indicating the stabilizing effedth the
increase of compressibility.
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T v T v T v T v T
1 2 3 4 5

Wave Number (X)
Fig.1: Variation of Rayleigh Number (R)), with wave number(X=1-5), for
T,(=100, 200, 300),F =2,Q,=10,5,=10 and G=10.
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Fig.2: Variation of Rayleigh Number(R,), with wave number X(=1-5),for
Q1(10,30,5O),When T1=100,F1=2,Sl=10 and G=10.
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Fig.3: Variation of Rayleigh Number (R ),with wave number X(=1-5),for
F,(=2,4,6), when T =100,Q,=10,S =10 and G=10.
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Fig.4: Variation of Rayleigh Number (R)),with wave number X(=1-5),for
S,(=10,20,30),when T =100,Q,=10.S =10 and G=10.
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Fig.5: Variation of Rayleigh Number (R)),with wave number X(=1-5),for
G(=10,20,30),when T =100,Q =S =G=10.

5. The case of over stability

Here we discuss the possibility of whether indiighinay occur as overstability. Since for overdliah) we wish to
determine the critical Rayleigh number for the derfeinstability , a state of pure oscillations sifffices to find
conditions for which equation (3.16) will admit sblutions witho; real by equating real and imaginary parts of
equation (3.16) and eliminating Retween them, we get

ACc+Bcc+dc+D=0 (5.1)

Where: 1+ x = bg;?=c and (1 + k) = A,
A= ;o + i py P2 o’ (1 + Rb)

B = b'q? (1 + Rb) 2+ b'p, P5¢? (1 + Rb)® + b'py P5 (1 + Rb) + 1 (p, + @) 2 + b'pug(1 + Rb) + B - b* pg +
Sxpipz b (- q) + b (B- P2) + Tub PSP [(py— 1) + pFib] + Q b’ (pr- )]

C=b[(Ti—1)+pFb] + P pS (L + RbP + 2 pg + B 2+ B py P5 (L + Rb) + P py o (L + Rb)*-28 poq (L

+ i) + Sx [b%(ps — q) + B py p2 (1 + R+ Ty [63(P5 + A( pu— 1) + pFy bY(P2 + )] + Qu b° [0 (1 + Rb)?
+1] (P - p2)

D' = B(1+ Rb)* + BPpy (1 + Rb)® + Six [b%(L + Rb)® (pr— )] +Ta [b%(py — 1) + Bpy F] + Qi [0° (1 + Rb)* (p1 — p)]

It is evident from the equation (5.1) that if p1 that is ifk <v, is therefore a sufficient condition for the non-
existence of overstability, the violation of whidoes not necessarily imply the occurrence of oability, the
sufficient condition k <v for the non existence of overstability is foundo® the same for compressible, couple
stress fluid as well as for incompressible, Newaaorfiuid (Chandrasekhar, 1981) in presence of imtatmagnetic
field and heated from below.

v _V
It is also evident from the equation (5.1) that , thus implying— > — that is if K <n is therefore, a sufficient
K 1N

condition for the non-existence of overstabilitye tviolation of which does not necessarily implg ticcurrence of
overstability. The sufficient condition for the newistence of overstability is found to be the sdonecompressible,
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couple stress fluid as well as for incompressibnvddnian fluid (Chandrasekhar, 1981) in presenceotstion,
magnetic field and heated from below.

CONCLUSION

In the present paper, thermosolutal convection ampressible, rotating couple-stress fluid in thespnce of
magnetic field has been considered and found thrahe case of stationary convection, it is cléat stable solute
gradient, magnetic field, couple-stress postpomreotiset of the convection, where as rotation hadtes onset of
convection in compressible, couple-stress fluidtdedrom below in the presence of a magnetic fi€flchphs have
been plotted by giving numerical values to the peters to depict the stability characteristics, aade of
overstability results is defined as above.
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