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ABSTRACT

In this we study the problem of one-dimensionatniwelastic disturbances in a half —space withouergg
dissipation due to suddenly applied constant teatpee on the boundary which is rigidly fixed. Usithg Laplace
transform technique, exact expressions, in closedhffor the displacement, temperature and strédslsf are
obtained. The results are illustrated through graph
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INTRODUCTION

In the conventional approach to thermo-mechanfedities the constitutive equations are formulaggshithe basis
of the equation of balance of energy and an entmpguction inequality. The theory of thermoeldsievithout
energy dissipation was formulated by Green A.Eldaghdi P.M [4]. They have suggested an alterngtieeedure
that is significantly different from the conventarone. In this procedure, the constitutive equetiare formulated
upon the basis of a reduced equation of balanemefgy which is a blend of the equation of balasfcenergy and
an equation of balance of entropy. A novel featfréhis procedure is that an entropy productiomqusdity is not
employed in the process of obtaining the constieugquations. The inequality is utilized to improagditional
restrictions, if any, on the constitutive variabtesy after the constitutive equations have beeivee.

In this we study the problem of one-dimensionalriieelastic disturbances in a half —space withowgrgyn
dissipation due to suddenly applied constant teatpez on the boundary which is rigidly fixed. Usitig Laplace
transform technique, exact expressions, in closeth f for the displacement, temperature and strigddsfare
obtained. The results are illustrated through gsaph

FORMULATION OF THE PROBLEM:
Consider one-dimensional thermoelastic disturbamprepagating along the x-direction in the half-spac= 0.
The displacement vector associated with theserbisteces are supposed to have only one non-zeroaranp U

in the x-direction, and this displacement comporsent temperaturé are supposed to depend only on x and t. It
is assumed that the body force and heat sourcexbaesnt.

As given by Chandrasekharaiah, D.S [1, 2], the #guaf motion and the equation of heat transpod ather
equations of thermoelastic theory without energgighation, in dimensionless form are
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Here ¢ and g respectively represent the dimensionless speegarefy elastic dilatational and Shear waves, and c
represents the dimensionless speed of purely theveaes.L] is the thermoelastic coupling parameter.

Here for one dimensional problem, first, second fandth equations of (A) reduces to,

2 2

2 0 u 98 Jdu

Cp 2 |T 2 @
0X 0x ot
2 2 3

208 06 ou

or —» = 2+D (2)

and, 9 ®

Here 0 =T, is the normal stress in the x-direction.

We suppose that initially the half-space is at iasits undeformed state and has its temperatuchange and
temperature — rate equal to zero. Then the follgwiomogeneous initial conditions hold.

u(x,0)=ﬂ(x,0)=6’(x,0)=ﬁ(x,0)= 0 ,x= O (4
ot ot

If the disturbances are caused by the boundars|¢@u x=0), then the effects are pronounced onthéwvicinity of
the boundary, as such, we suppose that the folgpvagularity conditions hold.

u(x,t)ze(x,t):a(xt):Oasx_,oofor t= 0 (5
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3) SOLUTION OF THE PROBLEM:
Applying Laplace Transform to equations (1) (2) &84 and using initial conditions (4), we get

2 _
2 d 2 2 do
c -3 u= ¢c.— (6)
2
pdx pdx
B 2
2 d 2 |- 2 du
Cf —% =S g = 0s — (7)
dx dx
du .
and, 7 = —~°¢ (8)
dx

Here, U,6ando are the Laplace transforms afsands respectively and s is the Laplace transform parame

Eliminating 6 from equations (6) and (7), we get the followimgiation satisfied byo ,
4
2 2d 2f 2 ( ) 2 d 4|_
cpc-l-d—4—s or +\1+ 0 o —5* s u=0 (9)
X

Once we determinel by solving this fourth order ordinary linear diféatial equation, theng can be determined
by integrating equation (6) @ can be determined from equation (8). So equa®sérves as the central equation
of the problem.

Using the first of the regularity condition (5) etigeneral solution of equation (9) is given by,

—mlx —m2X

T=Ae + A e (10)

Where m and m are roots with positive real parts of the biquédraquation
2 2 4 2 2 ( ) 2 2 4
cchm - s o +\1+ O cp m+ s =0 (11)

and A and A are functions of s that may be determined bysghecified boundary conditions (i.e., on x=0). For
U to be non —trivial, A and A both cannot be zero.

Solving the biquadratic equation (11), we find that

me =— k=12 (12)
1
1 k+1
Where, 'k ~ \/;|:{c$- * (l+ Ij) Ci} * (_1) A:| ’ (13)
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With
1
2 21 2 2 22
A= c-l-—(1+D)cIO + 40 CpCT (14)
2 2
A=vy vy (15)

In view of equation (12), equation (10) can be teritas,

(&) )

o = Aje + A, e (16)
Substituting @ from (16) in equation (6) and integrating the H¥sg equation with respect to x, we obtain
2 2 S 2 2 | X
_ s |1 % [Vljs ‘p 2 (szs
H = T —— Ale - - A2e (17)
Cp Vl V2

Using equations (16) and (17) in (8), we obtain,

X X
- —|s - — s
S [Vlj [Vz]

€p

9
n

Once A and A are determined by using the specified boundargitions, equations (16), (17) and (18) can be
inverted to obtain solutions fot, #ando interms of x and t.

4) PROBLEM OF CONSTANAT STEP IN TEMPERATURE ON THE RIGID BOUNDARY:
Here we consider the case where the boundary x&6ldsrigidly fixed for all time t =0 and the disturbances are

caused by the sudden application of a constant istdpmperature on this boundary at tih®0. Then the
boundary conditions are

u(O,t) =0, t= 0 (19)

e(o,t) = yH (t) ,t20 (20)

Here x is constant anch(t) is Unit Step function defined by

H(t) = 0, t=<o0
1 t>0 Taking the Laplace transform of the boundary cood# (19) and (20), we get,

U(O,s)=0 , 5(0,5):1 (21)
S

Using above conditions, from equations (16) and,(&/é get the following two linear equations in @&nd A.
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(22)
v2 c2 v2 02 02 X
17 %p 27 7p p
AL+ Ay = —
Vl V2 S
Solving the above equations, we get,ahd A as,
k+1 2
) (—1) cpvlvz)( )
A = > 5 ( ) , k=12 (23)
S Cp + V1V2 V1 - V2
Substituting these values in equations, (16), &hd) (18), we get
2 -1 X 1 X s
- cp'1veX 1 [Vlj 1 [Vz]
u= 5 ( ) — e - e (24)
Cp + V1V2 Vl - V2 S S
V2 C2 _[X]S C2 Vz‘ _[XJS
_ ViV X 1 - 1 \V -V (1 V.
7=y 1Y2 P2\ P T \2 (25)
(Cp + V1V2) (Vl— V2) Vl S V2 i S
X
VaVo X 1 v S 1 _[VJS
Taking inverse Laplace transform of above equafiomsget up, c as
2
CpV1V2X X X X X
U= t-— |[H{ t=— [-] t=—— |H| t-— (27)
~ X 2 2 X 2 2 X
6= 5 V2l ~ % Hf t-— |+ y G~ Y% t=— (28)
Cp +V_LV2 (Vl_ V2) Vl V2
V1V2X X X
o= 5 “vqyH| t-— |+ VvoH [ t-— (29)
(Cp + V1V2) (Vl - V2) Vl V2

DISCUSSION OF THE RESULTS
From the solutions given above by equations (Z8) &and (29) we observe that, 8 ando are identically zero for
x>1Y . This means that at a given instant of tirhe> 0, the points of the half space that lie beyondfttster

U . . . . L
wave front (x =t V1) do not experience any disturbance. This phenoméscoa characteristic feature of all

hyperbolic thermoelasticity theories. Therefore rtheelasticity without energy dissipation is a hypsic
thermoelasticity theory.
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We can compute the discontinuities experiencedup§ and o at the wave frontg = (VLJ ,k=1,2 from
k

equations (27), (28) and (29). These discontiniies
=0 0
[u] K (30)

2 2
V3—k Vk - Cp X

k+1
[l =) (2 ww) (- v) oY
2
NS Vi V3-k X
[U]k - ( 1) (Ci . V1V2) (Vl— V2) (32)

Here [] K denotes the discontinuity of the function acréeswave front

X

k= 1,2

Vi '
Equation (30) shows that the displacement is cantis at both the wave fronts. A discontinuity ispdacement
implies that one portion of matter penetrates amother, and this phenomenon is not physicallyisgal indeed it

violates the continuum hypothesis. Therefore, tlogtasticity theory without energy dissipation daes make such
a prediction.

Equation (31) shows that the temperature is digwoots at both the wave fronts. Expression (32\shthat the
stress is also discontinuous at both the wavedront

NUMERICAL EVALUATION OF THE RESULTS:

To evaluate the results numerically, we consider amaterial for which
2 2 l . . . .
Cp =1, ¢ = » 0= 0.0168phaliwal, R.S and Sherief, H.[8] also considered the same material for
0.05
. . . . . l . .
which the non- dimensional relaxation time7g = 0.05 | By using expressions (13) and (14), we get th

dimensionless speeds @-wave and e-wave ag; = 4.474113 andv, = 0.9995F respectively. Thereforéd-
wave is faster than e-wave. We analyze the beha¥idisplacement, temperature and stress at dimelesis time

t= 0.25. At this instant of time, the faster wavent (8- wave front) is positioned aX =X = tY =11183nd the

slower wave front (e — wave front) at = X, = tv, = 0.2499,

We have computed the values ofi at time t= 0.25 forx = 0 by using equations (27), (28) and (29). These are
dipicted in Figure shows that the displacementostiouous at all positions including the locatiarfsthe wave
fronts. We also find that the displacement increateadily between the boundary and the positishijayond the
slower wave front, decreases thereafter up to dbation of the faster wave front and becomes ideltyi zero
beyond this location.
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Figure 1 : Variation of (u/X) against X at t=0.25
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Figure 2 : Variations of (6/r)against X at t=0.25

Figure (2) shows that the temperature is discontisuat both the wave fronts. Figure (3) shows thatstress is
also discontinuous at both the wave fronts as prediby theoretical results we also observe th#t b ando

assume constant values in each of the intervBisX<V,, L, <x<y and y< xw. At all points beyond the
location of the faster wave front bothando vanish identically.
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Figure 3 : Variations of (67/x)against X at t=0.25
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