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ABSTRACT  
 
The thermal instability of Walters’ (Model �′) elastico-viscous rotating fluid permitted with 
suspended particles (fine dust) porous medium is considered. By applying normal mode analysis 
method, the dispersion relation governing the effect of suspended particles, viscoelasticity, rotation, 
compressibility and medium permeability has been derived and solved numerically.  It is observed 
that the rotation, suspended particles and viscoelasticity introduce oscillatory modes. For 
stationary convection, the rotation has stabilizing effect and suspended particles are found to have 
destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing 
effect on the system under certain conditions. The effect of rotation, suspended particles and 
medium permeability has also been shown graphically. 
 
Key Words: Walters’ (Model �′) fluid; rotation; thermal instability; suspended particles, 
compressibility;  porous medium. 
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NOMENCLATURE �                                  Velocity of fluid ��                                 Velocity of suspended particles 
p                         Pressure      
g                         Gravitational acceleration vector �                                   Gravitational acceleration 
k1              Medium permeability ��                                  Effective thermal conductivity of fluid �                                     Temperature 	                                     Time coordinate 
�, , ��                          Cartesian coordinates ��                                    Heat capacity of fluid ���                                   Heat capacity of particles 
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��                                 Mass of the particle per unit volume 

� � ���� � ���             Wave number of disturbance 

��, ��     Wave numbers in x and y directions 
         ��                            Thermal Prandtl number ��      Dimensionless medium permeability 
Greek Symbols                                   Medium porosity    !           Fluid density 
µ          Fluid viscosity    
µ′       Fluid viscoelasticity "        Kinematic viscosity    
 "′       Kinematic viscoelasticity 
η          Particle radius    #        Thermal diffusitivity                       $                                         Thermal coefficient of expansion 

% &� '(�
()'*       Adverse temperature gradient  +                                         Growth rate of the disturbance ,                                         Perturbation in respective physical quantity -                                         z-component of vorticity.  

Ω = Ω (0, 0, Ω)                   Rotation vector having components (0, 0, Ω) 
 
 

INTRODUCTION 
 

A detailed account of the thermal instability of a Newtonian fluid, under varying assumptions of 
hydrodynamics and hydromagnetics has been given by Chandrasekhar (1981). Chandra (1938) 
observed a contradiction between the theory and experiment for the onset of convection in fluids 
heated from below. He performed the experiment in an air layer and found that the instability 
depended on the depth of the layer. A Benard-type cellular convection with the fluid descending at 
a cell centre was observed when the predicted gradients were imposed for layers deeper than 10 
mm. A convection which was different in character from that in deeper layers occurred at much 
lower gradients than predicted if the layer depth was less than 7 mm, and called this motion, 
“Columnar instability”. He added an aerosol to mark the flow pattern.  
 
Lapwood (1948) has studied the convective flow in a porous medium using linearized stability 
theory. The Rayleigh instability of a thermal boundary layer in flow through a porous medium has 
been considered by Wooding (1960) whereas Scanlon and Segel (1973) have considered the effect 
of suspended particles on the onset of Bénard convection and found that the critical Rayleigh 
number was reduced solely because the heat capacity of the pure gas was supplemented by the 
particles. The suspended particles were thus found to destabilize the layer. 
  
Sharma (1976) has studied the effect of rotation on thermal instability of a viscoelastic fluid. Sharma and 
Sunil (1994) have studied the thermal instability of an Oldroydian viscoelastic fluid with suspended 
particles in hydromagnetics in a porous medium. There are many elastico-viscous fluids that cannot 
be characterized by Maxwell’s constitutive relations or Oldroyd’s constitutive relations. One such 
class of fluids is Walters’ (Model �′) elastico-viscous fluid having relevance and in chemical 
technology and industry. Walters’ (1962) reported that the mixture of polymethyl methacrylate and 
pyridine at 2501 containg 30.5g of polymer per litre with density 0.98g per litre behaves very 
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nearly as the Walters (Model �′ ) elastico-viscous fluid. Walters’ (Model �′ ) elastico-viscous fluid 
form the basis for the manufacture of many important polymers and useful products. 
 
Stommel and Fedorov (1967) and Linden (1974) have remarked that the length scalar characteristic 
of double diffusive convecting layers in the ocean may be sufficiently large that the Earth’s rotation 
might be important in their formation. Moreover, the rotation of the Earth distorts the boundaries of 
a hexagonal convection cell in a fluid through a porous medium and the distortion plays an 
important role in the extraction of energy in the geothermal regions. The problem of thermal 
instability of a fluids in a porous medium is of importance in geophysics, soil sciences, ground 
water hydrology and astrophysics. The scientific importance of the field has also increased because 
hydrothermal circulation is the dominant heat transfer mechanism in the development of young 
oceanic crust [Lister, (1973)].  
 
When the fluids are compressible, the equations governing the system become quite complicated. 
Spiegel and Veronis (1960) simplified the set of equations governing the flow of compressible 
fluids under the assumption that the depth of the fluid layer is much smaller than the scale height as 
defined by them, and the motions of infinitesimal amplitude are considered. Thermal instability of 
compressible finite Larmor radius Hall plasma was studied by Sharma and Sunil (1996) in a porous 
medium.  
 
A porous medium is a solid with holes in it, and is characterized by the manner in which the holes 
are imbedded, how they are interconnected and the description of their location, shape and 
interconnection. However, the flow of a fluid through a homogeneous and isotropic porous medium 
is governed by Darcy’s law which states that the usual viscous term in the equations of motion of 

Walters (Model �′) fluid is replaced by the resistance term  23 �
45 &µ 3 µ′ 6

6�*7 8, where µ and µ′ are 

the viscosity and viscoelasticity of the incompressible Walters’ (Model �9) fluid, �� is the medium 
permeability and q is the Darcian (filter) velocity of the fluid. 
 
The Bénard problem (the onset of convection in a horizontal layer uniformly heated for 
incompressible Rivlin-Ericksen rotating fluid permeated with suspended particles and variable 
gravity field in porous medium have been studied by Rana and Kumar (2010). In the present paper, 
the study is extended to the compressible Walters’ (Model �′) rotating fluid permeated with 
suspended particles in porous medium. 
 
Mathematical Model 
Here we consider an infinite, horizontal, compressible Walters’ (Model �′) elastico-viscous fluid of 
depth d, bounded by the planes z = 0 and z = d in an isotropic and homogeneous medium of 
porosity   and permeability k1, which is acted upon by a uniform rotation Ω(0, 0, Ω) and gravity 
force g(0, 0, -g). This layer is heated from below such that a steady adverse temperature gradient 

% &� '(�
()'* is maintained. The character of equilibrium of this initial static state is determined by 

supposing that the system is slightly disturbed and then following its further evolution. 
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g = g(0,0,-g)

Ω Ω= (0,0, )

Heated from below

Schematic Sketch of Physical Situation
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Let : , " , "9, �,  , T, α and q (0, 0, 0), denote, respectively, the density,  kinematic viscosity, 
kinematic viscoelasticity, pressure, medium porosity, temperature, thermal coefficient of expansion   
and velocity of the fluid. The equations expressing the conservation of momentum, mass, 
temperature and equation of state for Walters’ (Model �′) elastico-viscous fluid are 
 
 �
; 26�

6� � �
 
�. =��7 � 3 �

> =� � ? &1 � A>
> * 3 �

45 &" 3 "9 6
6�* � � �

 
� B Ω� � DEF
> 
�� 3 ��, (1)      

  6>
6� � =. 
:�� � 0          (2) 

 

:�� &H 6
6� � �. =* � � ����� 2 6

6� � ��. =7 � � �� =�T.            (3)  

 
Here ��
�J, 	� and �
�J, 	� denote the velocity and number density of the particles respectively, ��,  ���, �� denote respectively, the heat capacity of pure fluid, heat capacity of the particles, ‘effective 
thermal conductivity’ of pure fluid and K ′ � 6MN:", where η is particle radius, is the Stokes drag 
coefficient, �� � 
O, P, Q� and �J � 
�, , ��. Assuming uniform particle size, spherical shape and 
small relative velocities between the fluid and particles, the presence of particles adds an extra force 
term proportional to the velocity difference between particles and fluid and appears in the equation 
of motion (1). 
 
If mN is the mass of particles per unit volume, then the equations of motion and continuity for the 
particles are 
 

�� 26RS6� � �
 
8(. =�8(7 � K ′�
8 3 8(�,                          (4) 

  6F
6� � =. 
�8(� � 0,                            (5) 
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Since the force exerted by the fluid on the particles is equal and opposite to that exerted by the 
particles on the fluid, there must be an extra force term, equal in magnitude but opposite in sign, in 
the equations of motion for the particles (5). The buoyancy force on the particles is neglected. 
Interparticle reactions are not considered, since we assume that the distance between the particles 
are quite large compared with their diameters. These assumptions have been used in writing the 
equations of motion (5) for the particles. 
 
The state variables pressure, density and temperature are expressed in the form [Spiegel and 
Veronis (1960)] 
 T
�, , �, 	� � TU � TV
�� � T ′
�, , �, 	�,                       (6) 
 
where fm denotes for constant space distribution f , f0 is the variation in the absence of motion, and T ′
�, , �, 	� is the fluctuation resulting from motion. The basic state of the system is 
 
p = p(z), ρ = ρ(z), T = T(z), q = (0, 0, 0)     qd = (0, 0, 0)    and N = N0    (7) 
 
where �
�� � �U 3 ? W 
:U � :V�)V X�,           :
�� � :UY1 3 $U
� 3 �V� � KU
� 3 �U�Z, 
� � 3%� � �V,     $U � 3 &�

>
6>
6�*U,       KU � &�

>
6>
6�*U. 

 
Here �U and  :U denote a constant space distribution of p and : while   �V and :V denote 
temperature and density of the fluid at the lower boundary. 
 
Perturbation Equations 
Let q(u, v, w), qd(l, r, s), θ, δ� and ,: denote, respectively, the perturbations in fluid velocity 
q(0,0,0), the perturbation in particle velocity qd(0,0,0), temperature T,  pressure p and density :. 
The change in density ,: caused by perturbation θ temperature is given by  
 ,: � 3$:Uθ.           (8) 
 
Following the assumptions given by Spiegal and Veronis (1960) and the results for compressible 
fluid, the flow equations are found to be the same as that of incompressible fluid except that the 
static temperature gradient β is replaced by the excess over the adiabatic  [% 3 � ��⁄ ], �� being 
specific heat of the fluid at constant pressure. The linearized perturbation equations governing the 
motion of fluids are  
     �

 
6�
6� � 3 �

>^ _,� 3 �$` 3 �
45 &" 3 "′ 6

6�* � � D′F
 
8( 3 8� � �

 
� B Ω�,   (9) 

 =. � � 0 ,                         (10) 
 

&U
D′

6
6� � 1* �� � �,                     (11) 

 


1 � a  � 6b
6� � c% 3 d

efg 
h � aQ� �  #=�`,                 (12)      

  

where  a � UFifj>^ik  and w, s are the vertical fluid and particles velocity. 
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In the Cartesian form, equations (9)-(12) with the help of equation (8) can be expressed as  �
 &U

D′
6
6� � 1* 6l

6� �
3 �

>^ &U
D′

6
6� � 1* 6

6� 
δ�� 3 �
45 &" 3 "′ 6

6�* &U
D′

6
6� � 1* m 3 UF

 >^
6l
6� �

                                                                                                                    � &U
D′

6
6� � 1*Ωn,            (13) 

 �
 &U

D′
6
6� � 1* 6o

6� �
3 �

>^ &U
D′

6
6� � 1* 6

6� 
δ�� 3 �
45 &" 3 "′ 6

6�* &U
D′

6
6� � 1* n 3 UF

 >^
6o
6� �

                                                                                                                     � &U
D′

6
6� � 1*Ωm,             (14) 

 �
 &U

D′
6
6� � 1* 6p

6� �
3 �

>^ &U
D′

6
6� � 1* 6

6) 
δ�� 3 �
45 &" 3 "′ 6

6�* &U
D′

6
6� � 1* h 3 UF

 >^
6p
6� �

                                                                                                                          � &U
D′

6
6� � 1* $`,         (15)  

 6l
6� � 6o

6� � 6p
6) � 0,                        (16) 

 


1 � a  � 6b
6� � c% 3 d

efg 
h � aQ� �  #=�`,                     (17) 

 

Operating equation (13) and (14) by 
6

6� and  
6

6� respectively, adding and using equation (16), we get 
�
 &U

D′
6
6� � 1* 6

6� &6p
6) * � �

>^ &U
D′

6
6� � 1* δ� 3 �

45 &" 3 "′ 6
6�* &U

D′
6
6� � 1* &6p

6) * 3 UF
 >^

6
6� &6p

6) * 3
                                                                                                                            � &U

D′
6
6� � 1*Ω-,       (18) 

 

where  - � 6o
6� 3 6l

6�   is  the z-component of vorticity.  

Operating equation (15) and (18) by  &=� 3 6q
6)q*  and  

6
6)  respectively and adding to eliminate  δ�  

between equations (15) and (18), we get �
 &U

D′
6
6� � 1* 6

6� 
=�w� � 3 �
45 &" 3 "′ 6

6�* &U
D′

6
6� � 1* =�w � g & 6q

6�q � 6q
6�q* &U

D′
6
6� � 1* $` 3

                                                                                          UF
 >^

6
6� 
=�w� 3 �

 &U
D′

6
6� � 1*Ω 6t

6) ,         (19) 

 

where  =�� 6q
6�q � 6q

6�q � 6q
6)q . 

Operating equation (13) and (14) by 3 6
6�  and  

6
6�  respectively and adding, we get 

�
 &U

D′
6
6� � 1* 6t

6� � 3 �
45 &" 3 "′ 6

6�* &U
D′

6
6� � 1* - 3 UF

 >^
6t
6� � �

 &U
D′

6
6� � 1*Ω 6p

6)  .                   (20) 

 
The Dispersion Relation 
Following the normal mode analyses, we assume that the perturbation quantities have x, y and t 
dependence of the form           
 Yh, Q, `, -Z � Yu
��, v
��, w
��, x
��Zy��[z��� � z�� � +	],                  (21) 
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where �� and �� are the wave numbers in the x and y directions, � � [��� � ���]� �{
 is the 

resultant wave number and n is the frequency of the harmonic disturbance, which is, in general, a 
complex constant. 
Using expression (21) in (19), (20) and (17) become |
 2 (q

()q 3 ��7 u � 3���$w 3 �
45 
" 3 "′+� & (q

()q 3 ��* u 3 UF|
 >}&~̂′|��* & (q

()q 3 ��* u 3
                                                                                                                                            �Ω (�

(),       (22) 

  |
 x � 3 �

45 
" 3 "′+� 3 UF|
 >}&~̂′|��* x � �Ω

 
(�
() ,                    (23) 

 


1 � a  �+w � c% 3 d
efg 
u � av� �  # & (q

()q 3 ��* w.                        (24)     

      
Equation (22) – (24) in non dimensional form, become 

2�
 &1 � �

���5�* � ����
�� 7 
�� 3 ���u � d�q(q��

� � �Ω(�
 � �x � 0,               (25) 

 

2�
 &1 � �

���5�* � ����
�� 7 x � &�Ω(

 � * �u,                 (26) 

 

Y�� 3 �� 3 �����Zw � 3 d(q
�ef 
� 3 1� &���5�

���5�* u,                 (27) 

 
where we have put 

� � �X, � � |(q
� ,  � � U

D′ ,  �� � ��
(q ,  � � UF

>^  , " � �
>^, "′ � �′

>^, � � &efd * %, �� � X (
() � X�  

and superscript * is suppressed �� � 1 � a  , B = b+1, � � �′
(q  and  �� � 45(q , is the dimensionless 

medium permeability, �� � �
� , is the thermal Prandtl number,  # � 4�>^ek, is the thermal diffusivity. 

 
Eliminating Θ and Z between equations (25) – (27), we obtain 
 

2�
 &1 � �

���5�* � ����
�� 7 
�� 3 ���
�� 3 �� 3 ������u 3 ��� &���

� * &���5�
���5�* u �

                                                                                               ��� q [�q��q� 5�5�]
¡ &�� ¢5£¤5¡*�5¥¦¡§�

¨ ��u � 0,           (28) 

 

where   � � d�©(ª
��  , is the thermal Rayleigh number 

and  �« � &�¬(q
� *� , is the Taylor number. 

Here we assume that the temperature at the boundaries is kept fixed, the fluid layer is confined 
between two boundaries and adjoining medium is electrically non conducting. The boundary 
conditions appropriate to the problem are [Chandrasekhar, (1981); Veronis, (1965)] 
 
W = D2W = DZ =  w � 0  at z = 0 and 1.                  (29) 
 
 The case of two free boundaries, though a little artificial is the most appropriate for stellar 
atmospheres. Using the boundary conditions (29), we can show that all the even order derivatives of 
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W must vanish for z = 0 and z = 1 and hence the proper solution of W characterizing the lowest 
mode is  u � uV sin M� ;   W0   is a constant.                                                                               (30) 
 
Substituting equation (30) in (28), we obtain the dispersion relation 

��� � & �
���* °2±�5 &1 � �

���5²q±�5* � ���²q±�5� 7 
1 � ��
1 � � � ����z��� &���5²q±�5���5²q±�5* �
                                                                                           ��5 q 
���� 5�5±�5�

³¡5 c�� ¢5£¤5´q³¡5g�5¥¦´q³¡5§
&���5²q±�5���5²q±�5*µ ,   (31) 

 

where  �� � ¶
²ª , �«5 � ��²ª ,  � � �q

²q ,  z�� � �
²q , � � M��� . 

Equation (31) is required dispersion relation accounting for the effect of compressibility, suspended 
particles, medium permeability and rotation on thermal instability of compressible Walters’ (Model �′) elastico-viscous fluid in porous medium. 
 
STABILITY OF THE SYSTEM AND OSCILLATORY MODES 
Here we examine the possibility of oscillatory modes, if any, in Walters (Model B’) elastico-
viscous fluid due to the presence of suspended particles, rotation, viscoelasticity and variable 
gravity field. Multiply equation (25) by W* the complex conjugate of W, integrating over the range 
of z and making use of equations (26)-(27) with the help of boundary conditions (29), we obtain 
 

2�
 &1 � �

���5�* � ����
�� 7 ·� 3 ��qd�

�© & �
���* &���5��

���5��* B 
·� � ������·̧ � �
X� 2��

 &1 �                                                                                                               �
���5�* �   �����

�� 7 ·¹ � 0    

(32) 

where  ·� � W 
|�u|� � ��|u|���V X�, 

              ·� � W 
|�w|� � ��|w|���V X�, 

                       ·¸ � W |w|�X��V , 

                      ·¹ � W |x|�X��V . 
The integral part I1-I4 are all positive definite. Putting � � z�± in equation (32), where  �± is real and 
equating the imaginary parts, we obtain 
 

�± 2�
 &1 � �

���5q�³q* 3 �
��7 
·� � X�·¹� � ��qd�

�© & �
���* 2& �5
����

�q��5q�³q* ·� � ���5q�³q
�q��5q�³q ����·̧ 7 � 0,     (33)                        

 
Equation (33) implies that �± � 0  or �± » 0 which mean that modes may be non oscillatory or 
oscillatory. The oscillatory modes introduced due to presence of rotation, compressibility, 
suspended particles, viscosity and viscoelasticity. 
 
THE STATIONARY CONVECTION 
For stationary convection putting � � 0  in equation (31) reduces it to 

�� � ���
�� & �

���* 2���
� � ��5 q �7                    (34) 
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which expresses the modified Rayleigh number R1 as a function of the dimensionless wave number 
x and the parameters �«5, G , P and Rivlin-Ericksen elastico-viscous fluid behave like an ordinary 
Newtonian fluid since elastico-viscous parameter F vanishes with  � . 
 
Let the non-dimensional number G accounting for compressibility effect is kept as fixed, then we 
get 

�e¼¼¼ � & �
���* �e,                          (35) 

 
where �e¼¼¼ and  �e denote, respectively, the critical number in the presence and absence of 
compressibility. Thus, the effect of compressibility is to postpone the instability on the onset of 
thermal instability. The cases � � 1 and � ½ 1 correspond to infinite and negative values of 
Rayleigh numbers due to compressibility which are not relevant to the present study.  
 
To study the effects of suspended particles, rotation and medium permeability, we examine the 

behavior of  
(¶5(� ,  

(¶5(��5  and  
(¶5(�   analytically. 

 
Equation (34) yields (¶5(� � 3 ���

��q & �
���* 2���

� � ��5 q �7 ,                     (36) 

 
which is negative implying thereby that the effect of suspended  particles is to destabilize the 
system.  
 
From equation (34), we get (¶5(��5 � ���

�� q & �
���* � ,                    (37) 

 
which shows that rotation has stabilizing effect on the system. This stabilizing effect is an 
agreement of the earlier work of Rana and Kumar (2010). 
 
It is evident from equation (34) that  (¶5(� � 3 ���

¾�� & �
���* 2���

�q 3 ��5 q 7 ,                   (38) 

 
From equation (37), we observe that medium permeability has destabilizing effect when  ���
�q ¿ ��5 q   and medium permeability has a stabilizing effect when 

���
�q ½ ��5 q . In the absence of 

suspended particles, equation (38) is identical with that of Rana and Kumar (2010). 
 

In the absence of rotation, 
(¶5(�  is always negative implying thereby the destabilizing effect of 

medium permeability. 
The dispersion relation (34) is analyzed numerically. Graphs have been plotted by giving some 
numerical values to the parameters, to depict the stability characteristics. 
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Fig.1. Variation of Rayleigh number ÀÁ with suspended particles B for  Â � ÁÃ, ÄÅÁ � Æ ,  � Ã. Æ , P = 0.2 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. 
 

 
 

Fig.2. Variation of Rayleigh number ÀÁ with rotation  ÄÅÁ  for B = 3,  Â � ÁÃ ,  � Ã. Æ, 
P = 0.2 for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. 
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Fig.3. Variation of Rayleigh number ÀÁ with medium permeability P for B = 3,  Â � ÁÃ ,  � Ã. Æ,  ÄÅÁ � Æ for fixed wave numbers x = 0.2,  x = 0.5 and x = 0.8. 
 
In fig.1, Rayleigh number �� is plotted against suspended particles B for   � � 10, �«5 � 5 ,  � 0.5 P = 0.2 for fixed wave numbers x = 0.2,  x = 0.5 and x = 0.8. For the wave numbers x = 0.2, 
x = 0.5 and x = 0.8, suspended particles have a destabilizing effect. In fig.2, Rayleigh number ��  is 
plotted against rotation  �«5  for B = 3,  � � 10,  � 0.5 , P = 0.2 for fixed wave numbers x = 0.2, x 
= 0.5 and x = 0.8. This shows that rotation has a stabilizing effect for fixed wave numbers x = 0.2, x 
= 0.5 and x = 0.8. 
 
In fig.3, Rayleigh number �� is plotted against medium permeability P for B = 3, � � 10,  � 0.5, �«5 � 5  for fixed wave numbers x = 0.2,  x = 0.5 and x = 0.8. This shows that medium 
permeability has a destabilizing effect for P = 0.1 to 0.3 and has a stabilizing effect for P = 0.3 to 
1.0. 

CONCLUSIONS 
 

The thermal instability of compressible Walters’ (Model �′) elastico-viscous rotating fluid 
permeated with suspended particles in porous medium has been investigated. The dispersion 
relation, including the effects of rotation, suspended particles, compressibility, medium 
permeability and viscoelasticity on the thermal instability of a Walters’ (Model �′)  fluid is  
derived. From the analysis of the results, the principal conclusions are as follow: 
 
(i) For the case of stationary convection, Walters’ (Model �′)  elastico-viscous fluid behave 
like an ordinary Newtonian fluid as elastico-viscous parameter F vanishes with  � . 
(ii)  It is clear from equation (35) that the effect of compressibility is to postpone the onset of 
thermal instability.  

(iii)  The expressions for
(¶5(� ,  

(¶5(��5 and 
(¶5(�  are examined analytically and it has been found that 

the suspended particles have destabilizing effect and rotation has stabilizing and whereas the 

medium permeability has a destabilizing / stabilizing effect on the system for  
���
�q ¿ ��5 q  /

���
�q ½ ��5 q . 

The effects of suspended particles, rotation and medium permeability on thermal instability have 
also been shown graphically in figures 1 and 2. 

0

5

10

15

20

25

30

35

40

45

50

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

R
1→

P→

x = 0.2

x = 0.5

x = 0.8



G. C. Rana et al                                                      Adv. Appl. Sci. Res., 2011, 2 (3): 586-597 
________________________________________________________________________________ 

597 
Pelagia Research Library 

(iv)  The presence of rotation, suspended particles, compressibility, medium permeability and 
viscoelasticity introduces oscillatory modes. 
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