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ABSTRACT

The thermal instability of Walters’ (Mode®') elastico-viscous rotating fluid permitted with
suspended particles (fine dust) porous medium msidered. By applying normal mode analysis
method, the dispersion relation governing the ¢fdésuspended particles, viscoelasticity, rotation
compressibility and medium permeability has beeaivee and solved numerically. It is observed
that the rotation, suspended particles and viscsteddy introduce oscillatory modes. For
stationary convection, the rotation has stabilizeffect and suspended particles are found to have
destabilizing effect on the system, whereas theumegermeability has stabilizing or destabilizing
effect on the system under certain conditions. &tiect of rotation, suspended particles and
medium permeability has also been shown graphically

Key Words: Walters’ (Model B") fluid; rotation; thermal instability; suspendedarficles,
compressibility; porous medium.
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NOMENCLATURE
q Velocity of fluid
q4 Velocity of susplexl particles
p Pressure
g Gravitational accelerati@ttor
g Gravitationakateration
k1 Medium permeability
kp Effective thernzainductivity of fluid
T Temperature
t Time coordimat
(x,y,2) Cartesian coordinates
cr Heat capacityloid
Cpt Heat capacitypafticles
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mN Mass of the paeiper unit volume
k= |k +k,* Wave number of disturbance
ky, ky Wave numbers in x and y directions
P1 Thermal Prandtl number
P, Dimensionless medium permeability
Greek Symbols
€ Medium porosity
p Fluid density
u Fluid viscosity
u' Fluid viscoelasticity
v Kinematic viscosity
v’ Kinematic viscoelasticity
n Particle radius
K Thermal diffusitivity
a Thermakfdfcient of expansion
B (= Z—: ) Adverse temperature gradient
n Growtheatf the disturbance
6 Perturbatin respective physical quantity
¢ z-compohehvorticity.
Q=0Q(0,0,9) Rotation vector having compasg@, 0,Q2)

INTRODUCTION

A detailed account of the thermal instability oNewtonian fluid, under varying assumptions of
hydrodynamics and hydromagnetics has been giveChmndrasekhar (1981). Chandra (1938)
observed a contradiction between the theory an@rerpent for the onset of convection in fluids
heated from below. He performed the experimentnnam layer and found that the instability
depended on the depth of the layer. A Benard-tghelar convection with the fluid descending at
a cell centre was observed when the predicted gméglwere imposed for layers deeper than 10
mm. A convection which was different in charactemi that in deeper layers occurred at much
lower gradients than predicted if the layer depthsviess than 7 mm, and called this motion,
“Columnar instability”. He added an aerosol to mt& flow pattern.

Lapwood (1948) has studied the convective flow ipagous medium using linearized stability
theory. The Rayleigh instability of a thermal boandlayer in flow through a porous medium has
been considered by Wooding (1960) whereas ScamdrSagel (1973) have considered the effect
of suspended particles on the onset of Bénard otioveand found that the critical Rayleigh
number was reduced solely because the heat cap#cihe pure gas was supplemented by the
particles. The suspended particles were thus feadestabilize the layer.

Sharma (1976) has studied the effect of rotatiothenmal instability of a viscoelastic flui&harma and
Sunil (1994) have studied the thermal instabilityo Oldroydian viscoelastic fluid with suspended
particles in hydromagnetics in a porous mediumré&faee many elastico-viscous fluids that cannot
be characterized by Maxwell's constitutive relaiam Oldroyd’s constitutive relations. One such
class of fluids is Walters’ (ModeB) elastico-viscous fluid having relevance and irerofcal
technology and industry. Walters’ (1962) reportedalt the mixture of polymethyl methacrylate and
pyridine at25°C containg 30.5g of polymer per litre with densit®&g per litre behaves very

587
Pelagia Research Library



G.C.Ranaet al Adv. Appl. Sci. Res,, 2011, 2 (3): 586-597

nearly as the Walters (ModBl ) elastico-viscous fluid. Walters’ (Mod8l ) elastico-viscous fluid
form the basis for the manufacture of many impdrgertymers and useful products.

Stommel and Fedorov (1967) and Linden (1974) hawgarked that the length scalar characteristic
of double diffusive convecting layers in the oceaay be sufficiently large that the Earth’s rotation
might be important in their formation. Moreoveretiotation of the Earth distorts the boundaries of
a hexagonal convection cell in a fluid through aops medium and the distortion plays an
important role in the extraction of energy in theothermal regions. The problem of thermal
instability of a fluids in a porous medium is of portance in geophysics, soil sciences, ground
water hydrology and astrophysics. The scientifipamance of the field has also increased because
hydrothermal circulation is the dominant heat tfangnechanism in the development of young
oceanic crust [Lister, (1973)].

When the fluids are compressible, the equation®igong the system become quite complicated.
Spiegel and Veronis (1960) simplified the set ofiagpns governing the flow of compressible
fluids under the assumption that the depth of ke fayer is much smaller than the scale height as
defined by them, and the motions of infinitesimadpditude are considered. Thermal instability of
compressible finite Larmor radius Hall plasma waslied by Sharma and Sunil (1996) in a porous
medium.

A porous medium is a solid with holes in it, anctigracterized by the manner in which the holes
are imbedded, how they are interconnected and #serightion of their location, shape and
interconnection. However, the flow of a fluid thgbua homogeneous and isotropic porous medium
is governed by Darcy’s law which states that thealisiscous term in the equations of motion of

Walters (ModelB') fluid is replaced by the resistance tel[mki(ﬂ — ﬂ'%)] q, Whereu andu' are
1

the viscosity and viscoelasticity of the incompielesWalters’ (ModelB’) fluid, k; is the medium
permeability and q is the Darcian (filter) velocdithe fluid.

The Bénard problem (the onset of convection in aizbatal layer uniformly heated for
incompressible Rivlin-Ericksen rotating fluid perated with suspended particles and variable
gravity field in porous medium have been studiedlaypa and Kumar (2010). In the present paper,
the study is extended to the compressible Waltévkidel B') rotating fluid permeated with
suspended particles in porous medium.

Mathematical Model

Here we consider an infinite, horizontal, comprelesiValters’ (ModelB') elastico-viscous fluid of
depth d, bounded by the planes z = 0 and z = dnisatropic and homogeneous medium of
porosity € and permeability ¥ which is acted upon by a uniform rotati®{0, 0,Q) and gravity
force g(0, O, -g). This layer is heated from below sucht th steady adverse temperature gradient

B (= |Z—Z|) is maintained. The character of equilibrium ofstmitial static state is determined by
supposing that the system is slightly disturbedthed following its further evolution.
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7
=9(0,0,-
=4 9=9(0,0,-9)
. L . . Q=(0,00Q) . Compressible
— Walters” (Model B')
- . . rotatfing fluid permeated
Porous Medium with suspended particles

coff qof ftgttt

Heated from below

Y
Schematic Sketch of Physical Situation

Let p,v,v',p,€, T, a andqg (0, O, 0), denote, respectively, the density, eRiatic viscosity,
kinematic viscoelasticity, pressure, medium poyosegmperature, thermal coefficient of expansion
and velocity of the fluid. The equations expressihg conservation of momentum, mass,
temperature and equation of state for Walters’ (8@ elastico-viscous fluid are

1

1[oa 1 _ 1 0 TIPS KN
. §+g(q-v)q]— pr+9(1+ p) kl(v v at)q+e(q><ﬂ)+ e @a— @), (1)
a
Z4+V.(pq) =0 )
pcr (65 +q.V) T+ mNcy, |€ =+ qq.V| T = ky V2T 3)

Hereqq(x,t) andN (X, t) denote the velocity and number density of theiglag respectively;,

cpe, kr denote respectively, the heat capacity of pure flueat capacity of the particles, ‘effective
thermal conductivity’ of pure fluid anf' = 6mnpv, wheren is particle radius, is the Stokes drag
coefficient,q; = (I,r,s) andx = (x,y,z). Assuming uniform particle size, spherical shapd a
small relative velocities between the fluid andtisées, the presence of particles adds an extefor
term proportional to the velocity difference betwegmarticles and fluid and appears in the equation
of motion (1).

If mN is the mass of particles per unit volume rthiee equations of motion and continuity for the
particles are

mN [% +é(CId-V)Qd] = K'N(q — qq), (4)

€ Z—’Z +V.(Nqy) =0, (5)
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Since the force exerted by the fluid on the patids equal and opposite to that exerted by the
particles on the fluid, there must be an extraddezm, equal in magnitude but opposite in sign, in
the equations of motion for the particles (5). Theyancy force on the particles is neglected.
Interparticle reactions are not considered, sineeagsume that the distance between the particles
are quite large compared with their diameters. &hessumptions have been used in writing the
equations of motion (5) for the particles.

The state variables pressure, density and temperata expressed in the form [Spiegel and
Veronis (1960)]

f.y.2,0 = fu+ fo(@ + [ (xy,21), (6)

wherefm denotes for constant space distributigry is the variation in the absence of motion, and
f'(x,v,zt) is the fluctuation resulting from motion. The luasiate of the system is

pP=p@)p=p2), T=T(2)a=(0,0,0) g¢=(0,0,0) andN =No (7)
where

p(z) =Pm—4 foz(pm + pO) dz, p(Z) = pm[1 —an(T—Ty) + Km(p - pm)],
e e () e (),

Herep,, and p,, denote a constant space distribution of p@mdile T, andp, denote
temperature and density of the fluid at the lonwauridary.

Perturbation Equations

Let g(u, v, w), qq(l, r, ), 6,0p anddp denote, respectively, the perturbations in flueloeity
g(0,0,0), the perturbation in particle veloaify(0,0,0), temperature T, pressure p and depsity
The change in densitjp caused by perturbatigntemperature is given by

6p = —apnyH. (8)

Following the assumptions given by Spiegal and ¥ierg1960) and the results for compressible
fluid, the flow equations are found to be the samehat of incompressible fluid except that the
static temperature gradiefitis replaced by the excess over the adiab:{ﬁ’c— g/cp), ¢, being
specific heat of the fluid at constant pressuree Tinearized perturbation equations governing the
motion of fluids are

28— Lysp—gas-L(v-v'2)q+ (g - ) +2ax0), ©)
V.q=0, (10)
35+ )a-a a
(1+be)3 = (ﬁ—:lp) (w + bs) + kV20, (12)
where b = Zl:i’;t and w, s are the vertical fluid and particles eijo
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In the Cartesian form, equations (9)-(12) with liedp of equation (8) can be expressed as
1/mad ou _

1 (__ + 1) U _

€ \K'0dt at

(224 0) 2 (o) - (v ) (B 1 )u— Iy

pm \K' 0t at) \K' ot €pm Ot
2(mad
< (;a + 1) Qu, (13)
1(m6 v
H(m2 )2
€ \K'0dt at
pm \K' 0t oy p kq ot/ \K'ot €pm Ot
z(ma )
-(==+1)Qu, (14)
€ \K'at
1/mad ow
z(m:l)a—a o )
1 (m 1 ' m mN ow
- (Fat V50 (v ) Gt Yw -5+
m d
g(32+1)as,  (15)
u v ow
du v W _o (16)
dox dy 0z
A+be)?l= (ﬁ—i) (W + bs) + KV20 (17)
ot Cp !

Operating equation (13) and (14) ﬁyand % respectively, adding and using equation (16), @te g

{20+ DA (e o2 o) (e ) ()25 -
2E2+1)00,  (18)

€ \K' ot

v du

where { = = 5y is the z-component of vorticity.

Operating equation (15) and (18) l@]z — %) and % respectively and adding to eliminadg
between equations (15) and (18), we get

, 2 2
S(Es 1) (W == (') (B + 1) VPw g (5 + o) (o + 1) af —

e \K'ot kq ot/ \K' ot ox2  0y?) \K'ot
mN 0 2(mao a¢
™o gy 222 1)k, @
Epmat( ) € K6t+ oz’ (19)

2
WhereV2=%+—+—.

Operating equation (13) and (14) by:% and % respectively and adding, we get
1(mad of 1 ' 0 m d mN a{ 2 (mad ow
LR ) E Ly D) (B2 )N 2Dy ) oo (20)

e \K'ot ot kq K' ot €Epm 0t € \K'0t

The Dispersion Relation
Following the normal mode analyses, we assumeth®perturbation quantities have x, y and t
dependence of the form

w,s,0,{] =[W(z),5(2), @(z),Z(z)]exp(ikxx + ikyy + nt), (21)
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1
where k, and k, are the wave numbers in the x and y directions; (k,* + k,*) 2 is the
resultant wave number and n is the frequency ohtrenonic disturbance, which is, in general, a
complex constant.
Using expression (21) in (19), (20) and (17) become

22 W= —ak?q0 — L (o — o) (e — g2\ — (42 2\
[dz2 k ] w gk“ad kq (U v n) (dz2 k ) w Epo(%n+1) (d22 k ) w
2QdzZ
== (22)
n 1 ' mNn 2Q dw
4= _k_1(v —vn) - €po(m+1) € dz’ (23)
(1+be)n@=<ﬁ—£)(w+b5)+K(d—z—kZ)@ (24)
Cp dz? )
Equation (22) — (24) in non dimensional form, beeom
o M 1-Fo 2 2 ga®d?ae ZQd
[E (1 + 1w) ] (D% — a®)W + DZ =0, (25)
o M 1-Fo 2Qd
|21+ i) + 5] 2 = () ow, (26)
2 2 B+t4,0
[D% — a? — Eyp,6]0 = ——(G -0 (2w, (27)
where we have put
a2 '
a=kdo=""1=2 =2 M="" y=L =L 6= (2)p D =dL=dD
v K a2 Pm pm’ Pm dz

and superscript * is suppresséd=1+b €, B =b+1,F = dv— and P, = % , Is the dimensionless

2

medium permeabilityp; = E , Is the thermal Prandtl numbet,= kaC
mCf

Eliminating® and Z between equations (25) — (27), we obtain

[f(1+s)+

:a] (D* — a?)(D* — a® — E;p,0)W — Ra? (G 1) (w)w "

G 1+1,0
—A(Dz—a —E1p10)
11 1F,, D*W =0, (28)
1+‘L'1(T
where R = g‘zid is the thermal Rayleigh number
2\ 2
and T, = (Zfid ) , IS the Taylor number.

Here we assume that the temperature at the boesdarikept fixed, the fluid layer is confined
between two boundaries and adjoining medium istedadly non conducting. The boundary
conditions appropriate to the problem are [Charekiaar, (1981); Veronis, (1965)]

W=DW=DZ=0 =0 atz=0and 1. (29)

The case of two free boundaries, though a littiifi@al is the most appropriate for stellar
atmospheres. Using the boundary conditions (29);ameshow that all the even order derivatives of
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W must vanish for z = 0 and z = 1 and hence the@rsolution of W characterizing the lowest
mode is
W =W,sinmz; Wy is a constant. (30)

Substituting equation (30) in (28), we obtain tiepdrsion relation

Ryx = ( ¢ ){ i (1 + M : ) + = Fr’ ml] 1+x)(1 +x+ E pyioy) (—Hrlnzi.al) +

G-1 1+1m2i0, B+1m2i0;
Taq ,
—2 (1+x+E1p1ioy) 1+1,y7%i0, 31
i0_1< M ) 1-Fr?ioy \B+1ym2igy /|’ (31)
€\ 1+1qm2ioq P
__ R _Ta _a* . o )
WhereRl—F,TA1 =4 x—;, 101—§1P—7T Pl .

Equation (31) is required dispersion relation actimg for the effect of compressibility, suspended
particles, medium permeability and rotation on th&rinstability of compressible Walters’ (Model
B)) elastico-viscous fluid in porous medium.

STABILITY OF THE SYSTEM AND OSCILLATORY MODES

Here we examine the possibility of oscillatory medé any, in Walters (Model B’) elastico-
viscous fluid due to the presence of suspendedclest rotation, viscoelasticity and variable
gravity field. Multiply equation (25) by Wthe complex conjugate of W, integrating over thege
of z and making use of equations (26)-(27) withtiep of boundary conditions (29), we obtain

[2(1 LM ) n 1—F0'] I — aa?gk (i) (1+rla**) x (I, + Eypy0°ls) +

€ 14740 P vp G—-1) \B+1.0

| (1 . o) T =0

where I, = fol(IDWI2 +a*|W|?) dz,
I, = J, (DO + a?|0]?) dz,

= [, 10/%dz,

I, = [;1Z|%dz.

The integral part;t 4 are all positive definite. Putting = ig; in equation (32), where; is real and
equating the imaginary parts, we obtain

O; [1(1 + — ) - —] (I + d?1,) + 2w g (L) [(L_l)) I + ME1P113] =0, (33)

€ 1471202 vp G-1 B2+71,20;2 B2+71,20;2

Equation (33) implies that; = 0 or g; # 0 which mean that modes may be non oscillatory or
oscillatory. The oscillatory modes introduced duwe gresence of rotation, compressibility,
suspended particles, viscosity and viscoelasticity.

THE STATIONARY CONVECTION
For stationary convection puttimg= 0 in equation (31) reduces it to

r=5 (ST 2] (34)

xB
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which expresses the modified Rayleigh numbgafa function of the dimensionless wave number
x and the parametefy,, G , P and Rivlin-Ericksen elastico-viscous fliehave like an ordinary
Newtonian fluid since elastico-viscous parameteafishes witho .

Let the non-dimensional numb&r accounting for compressibility effect is kept asefl, then we
get

Ro=(5) Re (35)

where R, and R, denote, respectively, the critical number in thhespnce and absence of
compressibility. Thus, the effect of compressipilis to postpone the instability on the onset of
thermal instability. The case® =1 and G < 1 correspond to infinite and negative values of
Rayleigh numbers due to compressibility which arerelevant to the present study.

To study the effects of suspended particles, mtaind medium permeability, we examine the

. dR dR dR .
behavior of—, — and — analytically.
dB’ dTga, dp

Equation (34) yields
dry _ _ 1tx (L) 1tx
G-1

dB xB?

+ Tﬁp] , (36)

P =

which is negative implying thereby that the effetsuspended particles is to destabilize the
system.

From equation (34), we get
ﬂ_lﬂc(G)P’ (37)

dTs,  xB€2 \G-1

which shows that rotation has stabilizing effect thie system. This stabilizing effect is an
agreement of the earlier work of Rana and Kumat @20

It is evident from equation (34) that
ARy _ 1+x( G ) 1+x TAl]

P~ AxB \G-1

p2 €2

(38)

From equation (37), we observe that medium perniiabas destabilizing effect when

T . - e T
XS 4 and medium permeability has a stabilizing eﬁwtmnllj—x <-Z" In the absence of

p2 €2 2

suspended particles, equation (38) is identicdl wnat of Rana and Kumar (2010).

In the absence of rotatioﬁld%1 iIs always negative implying thereby the destainitizeffect of

medium permeability.
The dispersion relation (34) is analyzed numencaBraphs have been plotted by giving some
numerical values to the parameters, to depicttidaldy characteristics.
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T 15
= =——x=0.2
o 10
==X = 0.5
5 . x=0.8
O T T T T T 1
3 6 9 12 15
B—

Fig.1. Variation of Rayleigh number R, with suspended particles B forG = 10,T,, =5,
€= 0.5, P =0.2 for fixed wave numbers x = 0.2, x = Omd x = 0.8.

60 -
50 -
40 -
D:H 30 A ==y = (.2
20 A ==X = 0.5
x=0.8
10 -
O T T T T 1
5 10 15 20 25
Ta—

Fig.2. Variation of Rayleigh number R with rotation T, forB=3, ¢ =10,€= 0.5,
P = 0.2 for fixed wave numbers x = 0.2, x = 0.5 and= 0.8.
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50 +
45 A
40
35 -
30 -

o P ——x=0.2
20 -
=f=x = 0.5
15 -
10 x=0.8

Fig.3. Variation of Rayleigh number R; with medium permeability P forB =3, ¢ = 10,
€= 0.5, T4, = 5 for fixed wave numbers x = 0.2, x=0.5 and x =&

In fig.1, Rayleigh numbeRrR, is plotted against suspended particles B far= 10, T,, =5 ,
€= 0.5 P = 0.2 for fixed wave numbers x = 0.2, x = W8 & = 0.8. For the wave numbers x = 0.2,
x = 0.5 and x = 0.8, suspended particles have taliézing effect.In fig.2, Rayleigh numbeR; is
plotted against rotatiorT,, for B =3, ¢ = 10, €= 0.5, P = 0.2 for fixed wave numbers x = 0.2, x
= 0.5 and x = 0.8. This shows that rotation haskil&zing effect for fixed wave numbers x = 0.2, x
=0.5and x =0.8.

In fig.3, Rayleigh numbeR; is plotted against medium permeability P for B,%3= 10, €= 0.5,
T,, =5 for fixed wave numbers x = 0.2, x = 0.5 and x08. This shows that medium
permeability has a destabilizing effect for P = @10.3 and has a stabilizing effect for P = 0.3 to
1.0.

CONCLUSIONS

The thermal instability of compressible Walters’ qiel B") elastico-viscous rotating fluid
permeated with suspended particles in porous medias been investigated. The dispersion
relation, including the effects of rotation, susped particles, compressibility, medium
permeability and viscoelasticity on the thermaltaibdity of a Walters’ (ModelB") fluid is
derived. From the analysis of the results, theggal conclusions are as follow:

0] For the case of stationary convection, Walters’ gelaB) elastico-viscous fluid behave
like an ordinary Newtonian fluid as elastico-vissqaarameter F vanishes with.

(i) It is clear from equation (35) that the effect ohpressibility is to postpone the onset of
thermal instability.

. dR,; dR,
(i)  The expressions fed%—, aTa
the suspended particles have destabilizing effect @tation has stabilizing and whereas the
medium permeability has a destabilizing / stabiligeffect on the system foll%x > T—A; /1+_2x < T%

P € P €
The effects of suspended particles, rotation andivune permeability on thermal instability have

also been shown graphically in figures 1 and 2.

and% are examined analytically and it has been fourad th
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(iv) The presence of rotation, suspended particles poesaibility, medium permeability and
viscoelasticity introduces oscillatory modes.
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