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ABSTRACT

The successive over-relaxation (SOR) method has been widely used as an iterative method to solve large sparse
linear system. When solving a partial differential equation over a rectangular domain with Dirichlet boundary
conditions, the multi-layer grid refinement method can be used to generate the linear system, with higher efficiency
than uniform grid theme. In this paper, we will study the SOR method in the multi-layer grid refinement scheme. A
heuristic estimation for the optimal parameter of the SOR method is given and numerical experimentsare carried out
to verify the estimation in this scheme.
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INTRODUCTION

The multi-layer grid refinement metho#l| [is used to solve a partial differential equatadrihe form
A, YU, +C(X, YUy, + DX, y)u, + E(X Y, +F X,y =G(x,y) (1.1

whereA, C, D, E, F are functions ok andy, with the Dirichlet boundary conditions on a rexjalar region. A
numerical solution of the partial differential etjoa is based on the finite difference method, Whievolves a
five-point scheme. It discretizes the PDE into odalifference equations so that a linear systamtze generated
and solved. Normally, the uniform grid scheme iplegal because of its ease in use, but due to tige lumber of
grids, the coefficient matriA could be extremely large most of the time. Subsatiy may the computation time be
substantial. However, in many cases only a smallemain in the region is of great interest. Itds necessary to
put very small grids on the entire region. The malger grid refinement reduces the size of thefficient matrix A
by using much fewer grids in the whole region tiia@ normal uniform grid scheme. We place fine gifdshe
interested domain and coarse grids in other donaiti®e region, with a special considerati&h¢f obtaining the
partial derivatives of the inner boundary pointSigure 1.1 illustrates a possible grid patternhef multi-layer grid
refinement method. As a result, the size of thdfiment matrix of the linear system and the congtignal time are
substantially reduced without sacrificing the aecyrof the solutions.
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Figure1.1. Grid pattern for the two-layer scheme

2.The SOR method
Numerical iterative method8]6, 7, 8, 9] have been used to solve for solutions to a lapgse linear system

Au=b (2.1)

whereA is a given matrix and is a given vector. There are some basic iteratigghods e.g. the Jacobi methgjd[
the Gauss-Seidel(GS) meth8H[ and many others. In this paper we focus on tke of the successive
over-relaxation (SOR) metho8,[10] to solve the linear system.

We letA be written as

A=D-C -C,.
(2.2)
The matrixD is a diagonal matrix with the same diagonal elesasty; C, andCy are strictly lower and strictly

upper triangular matrices 8§ respectivelyWith an introduction of parameteracting on the Gauss-Seidel method,
the iterative method becomes a robust stand-al@ibad. It is called the SOR method.

The iteration of the SOR method is given by

u™ =(D-aC ) [(L-w)D +aC,Ju™ +(D-aC,) "ab, (2.3)
where the parametew is the over-relaxation factor and the iterationnma® is defined as

G=(D-aC ) [(L-&)D+aG, ]
(2.4)

We note that if the value ab is equal to 1, then the SOR method and the GSaudette identical. However, with an
optimal choice ofv, the rate of convergence of the SOR method caindreased significantly. The rate of
convergence of an iterative method is defined by

R(G) = —log(p(G)). (2.5)

The analytical value of the optimal value @f can be found for certain linear systems, Sietfie Model Problem 1
described in section 3 is one example. If the lirsgatem is generated by the central finite difieeescheme, then
the optimalw is proven to be

2

Cort = e (20
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where p(B) is the spectral radius of the Jacobi iterationrimaB = | —D™ A With such choice of the parameter,
the rate of convergence of the SOR method candpeased by several orders of magnitude. Howevegeneral, the
optimal value ofw is not easy to obtain. We note that a generalguhoie 0] for finding the optimal value ob
may be applied but not efficient in the multi-lageheme. Therefore in this paper we introduce asteuestimation
formula for such scheme.

3.Numerical Experiments
In this research, we perform numerous experimesitggithe multi-layer grid refinement method on thikowing
two model problems.

3.1.1. Model Problem 1 (MP1).

u, +u, =0
vy (3.1)
over the regiof)= [0, 1] x [0, 1]. The boundary conditions are given by
u(0,y) = cosy , u(Ly)=€" cosy u(x,0)=€e>* , u(x,1)=e™ cosl
(3.2)
The exact solution igI =€ cosy .
3.1.2. Model Problem 2 (MP2).
Uy +Uy, +D(X y)u, +E(X, y)u, +u=G(x,y) (3.3)
whereD(X, y) = sinxsiny, E(X,Yy)=cosx cog/ and G(X, y) =—sinx cosy
over the region) = [0, 1] x [0, 1]. The boundary conditions are given by
u(0,y)=0,u(l,y)=sinlcog u(x 0)=sinx,u(x,1)= sinx cosl (3.4)

The exact solution ig =sinx cosy .

O _g
u" -u A
In this paper, we use the stopping criteri ||U|| "2 <& whereu” is the approximate solutions at ifféteration of

2
the iterative method anfl is a preset small tolerance.

As described earlier, the SOR method involves agr-oslaxation parameten. The rate of convergence of an
iterative method is determined by the spectralusdif the iterative matrix. The smaller the spdatdius is, the
faster the method converges. For the SOR mettwoidhtit of convergence is very sensitive to theaehofw. If the
uniform grids are placed over a rectangular redioa,spectral radius of the iterative matrix of 8@®R method is

o aao(B)+Jafp2;B)—4(p<B)—1) it o<wsa,

w-1 ;i wy sw<2.

(3.5)

The spectral radius has an absolute minimum valtleeaoptimal value o,

opt + SEE Figure 3.1.
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Figure3.1. Spectral radiusvs. ®

The above figure shows the spectral radius veessufer MP1 with uniform grid sizé = 1/20 over the entire domain.
The optimal value o can be analytically computed by (2.6) in whigtB) = cos (th). The spectral radius curve
is very steep around the optimal valuewft means that if the value of is a little bit off the optimal value, the rate
of convergence decreases significantly. For examyienw = 1.7, the spectral radius of the SOR methodd2&r
and the rate of convergence is 0.0829. The nunfhitaration required in this situation to obtainarturacy of 18

is 72. Whenw = 1.730, the spectral radius is 0.73, and the shtmnvergence is 0.137. The number of iteration
required to an accuracy of 1 44. We can see that the number of iterationaed oy 40%.
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Figure 3.2. Iteration number vs. (1 (H = /20, h = 1/40)

For multi-layer grid refinement method the analgtioptimal value o for the SOR method is not known, a linear
search is used to find the optimal value. Numegsgleriments are conducted, see figures beloWusirate similar
graphs as in Fig. 3.1 that indicates the importarfigetting the optimal value af. We set the value ofy from O to

2 with a step size 0.05 to obtain the numbersavhiton required. In the two-layer grid refinemeaheme of MP1
and MP2, the interested region is placed at [0.d]>0[0.4, 0.6] with fine grids. Figures 3.2 and 3.3 g@et the
iteration numbers vaw for MP1 with different sizes dfi andh, whereH is the mesh size of the coarse grid hnsl
the mesh size of the fine grid. The maximum nunadféteration has been set to be 2000. Therefortharfigures,
the flat segments at 2000 level indicate that thealer of iterations are larger than 2000. It cledibplays the
importance of the value ab.
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Figure 3.3. Iteration number vs. & (H = 1/40, h = 1/80)

For simplicity, we consider two different grid sizeSince the discretization has been changedotimeufa for
spectral radius d8 can no longer be the same as in one uniform gatHlandh be the grid sizes for the coarse grid
domain and the fine grid domain respectively, atdlbe the ratio of the gird sizéth. As we mentioned in the
beginning of this paper, the second layer is plaicethe center of the first layer in our resear8hheuristic
estimation ofp(B) for two different grid sizes is given by

p(B) = R%/ﬁcos(nH) +(1- R—\l/ﬁ)cos (mh) (3.6)

It is logical to estimate that the spectral radais linear combination of the spectral radii by tivo different
discretization. In this paper, we attempt to estinthe optimal value ab for the SOR method used in multi-layer
refinement grid scheme. We propose that the forfu) is still valid in this scheme.

Below are the tables that illustrate the valueg(8) by actual computation via MATLABy(B) M, and by the
estimation from (3.6)»(B)_F. The optimal values ofo are also displayed in three different cases: actalaes,
Opt.w via linear search, values using (2.6) with theialgt(B)_M, »_M and values using (2.6) with the estimation
of p(B)_F , w_F. We note that the linear search is conducted wiitep size 0.005 over the interval (0, 2).

Table 3.1. Spectral radius and the optimal omega for MP1

H h | pB_M | w M | Opto | @ F | p(B_F

1/20 | 0.9724| 1.6218 1.655 1.6346  0.9747
1/40 | 0.9914| 1.7687 1.795 1.7662  0.9912
1/80 | 0.9978| 1.8747 1.890 1.8586  0.9971
1/160 | 0.9994| 1.9353 1.945 1.9144 0.9990
1/40 | 0.9927| 1.7843 1.800 1.7984 0.9937
1/20 | 1/80 | 0.9976 1.871| 1.885 1.87%7 0.9978

1/160 | 0.9994| 1.9323 1.940 1.9279  0.9993
1/80 | 0.9981| 1.8839 1.890 1.8930 0.9984
1/160 | 0.9994| 1.930§ 1.940 1.9380 0.9994

1/10

1/40

[sll=ll=lIEIEIEElIEE

Table 3.2. Spectral radius and the optimal omega for M P2

v n [s@m]wM|opo| wF |eF]
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1/20 | 0.9735| 1.6279 1.655
1/40 | 0.9917| 1.7720 1.795
1/80 | 0.9978| 1.8768 1.890
1/160 | 0.9995| 1.9364 1.945
1/40 | 0.9930| 1.7882 1.805
1/20 | 1/80 | 0.9977| 1.8732 1.890
1/160 | 0.9994| 1.9335 1.945
1/80 | 0.9982| 1.8860 1.895
1/160 | 0.9994| 1.932Q 1.940

1.6346  0.9747
17662 0.9912
1.8586  0.9971
1.9144  0.9990
1.7984  0.9937
1.87%7 0.9978
19279  0.9993
1.8980 0.9984
1.9380 0.9994

1/10

1/40

[sli=l=lIlE ===

The tables show very good estimates obtained faows combinations of mesh sizelsandh. These tables also
gave a positive evidence for assuming that (2.8)ilisan excellent formula to obtain the optimalwe ofo.

For the efficiency in terms of number of iteratiorejuired, numerical experiments are also perforgidg
estimated value from our proposed formula. Tabl8saBd 3.4 below show the iterative numbers whenpeging
MP1 and MP2 in SOR method, using the actual optioméga “Optw”from linear search and«' F” by the
heuristicp(B)_F for the over-relaxation parameter, respectivelye Dnes withw F yield to very comparable
efficiency to those of the actual optimal omegas.

Table 3.3. Iterations numbersin SOR method with different omegasfor MP1

- Iteration numbers Iteration numbers
H h Matrix Sze | Opt.w of opt w F of w F
1/10 | 1/20 97 1.652( 16 1.6346 18
1/10 | 1/40 153 1.792 28 1.7662 36
1/20 | 1/40 417 1.800( 42 1.7984 42
1/40 | 1/80 1729 1.890! 77 1.8930 79
1/40 | 1/160 5457 1.9400 140 1.9330 146

Table 3.4. Iterations numbersin SOR method with different omegasfor M P2

- Iteration numbers Iteration numbers
H h Matrix Sze | Opt.w of opt w _F of o F
1/10 | 1/20 97 1.652( 19 1.6346 21
1/10 | 1/40 153 1.792 31 1.7662 40
1/20 | 1/40 417 1.800! 35 1.7984 35
1/40 | 1/80 1729 1.890! 86 1.8930 86
1/40 | 1/160 5457 1.9400 172 1.9380 186

We need to point out tha(B) will be different from the above estimations whba interested subdomain is located
in the positions other than the center of the negidowever, it is very reasonable and logical tbthe interested
region on the center stage. Thus we focus our relsem the case where the second layer is placdeicenter.

CONCLUSION

In a multi-layer grid refinement environment, thatimal value of the parameter for the robust stioma SOR
method is not known. It has been shown earlienémpaper that the optimal value is critical to mdeeSOR method
efficient. This paper introduced an estimation folmso that it could produce excellent estimatianthis

environment. Numerical studies had been carriedmobdnfirm the results.
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