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Abstract
Osteopathy in thalassemia is a very heterogeneous
condition; severity depends on multiple factors, interacting
through nonlinear mechanisms. Classic statistics have
limitations when applied to the study of such highly
complex relationships. Currently, an alternative approach of
analysis is represented by the artificial neural networks
(ANNs), powerful mathematical tools, increasingly applied
to analyze multifactorial databases, as considered more
appropriate than classic statistics. We adopted this
specialized mathematical method to 76 thalassemia major
(TM) patients. In all of them dual energy X-ray
absorptiometry (DXA) was performed to measure bone
mineral density, and two recent developments were
included: trabecular bone score, evaluating bone
microarchitecture, and hip structural analysis, evaluating hip
geometry. The relationships between bone status and
endocrine, hematologic, and clinical parameters were
investigated. Using a particular ANN (Auto Contractive Map
algorithm), the strength of inter-variable association was
defined and a connectivity map generated, visually
representing the main connections among the entered
variables. Iron status indices (ferritin, liver iron
concentration) emerged as the most important variables,
dividing the map into two sectors, with parameters
indicating satisfactory bone condition in the upper, those
indicating poor condition in the lower, near the variable
“fractures”. The Auto Contractive Map highlighted the key
role of bone quantity, bone geometry, and
microarchitecture in defining thalassemic bone condition.
Among numerous available indices, high femoral bone

mineral density and low cross-sectional moment of inertia
emerged as the gold standard to classify thalassemic
patients for prognostic and therapeutic purposes.

Keywords: Thalassemia major; Artificial neural networks;
Osteoporosis; Bone microarchitecture

Introduction
Thalassemic syndromes are hereditary diseases characterized

by abnormal hemoglobin synthesis and ineffective
erythropoiesis [1-4]. Optimal transfusion protocols and new
chelating drugs have substantially improved the survival
expectations of the patients with thalassemia major (TM), a
transfusion-dependent form, who often died at pediatric ages
until the ‘80s. On the other hand, the progressive aging of the
TM population has disclosed new complications related to the
chronicity of the disease; among them, a common bone disease
(osteopenia/osteoporosis syndrome) with increased fracture
risk, high social costs and low quality of life. Therefore,
improvement in standards of care of bone involvement is a
leading challenge in this disease.

The fracture risk evaluation based on BMD is considered the
diagnostic gold standard despite the recognized low sensitivity,
as demonstrated by the occurrence of fractures not only in
subjects with osteoporosis but also with osteopenia [5]. This was
ascribed to further factors accounting for bone strength in
addition to BMD; among them are features included in the
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concept of bone quality [6], such as micro-architecture and
geometry.

Micro-architecture is best assessed directly via
histomorphometry of the transiliac crest bone biopsy, which
does not necessarily reflect microstructure at spine and femur,
where fragility fractures occur [7]. However, this direct method
is invasive and nowadays not suitable for routine diagnostic
procedure.

Many other indirect methods are available to assess bone
micro-architecture, based on X-Ray methods: conventional X-Ray
radiography, magnification radiography, high-resolution
computed tomography (HRCT), high-resolution magnetic
resonance imaging (HRMRI) [8-10].

Bone texture analysis methods, such as “fractals” represent a
particularly interesting tool to indirectly assess the real spatial
bone architecture [11]. However, these techniques remain
unsuited for both routine screening and clinical management of
osteoporosis, due to high costs, patient inconvenience, and
limited availability. Furthermore, to perform the cited X-Ray
methods the patients have to undergo to an additional
diagnostic dedicated text, besides DXA.

One of latest DXA development, contextual to the DXA text, is
TBS, a new gray-level textural measure directly extracted from
the 2-dimensional DXA image of the lumbar spine, which
expresses the trabecular microstructure [12,13]. Elevated TBS
closely correlates with better skeletal texture (reflecting
healthier microarchitecture), while a low value is connected with
weaker texture (damaged microarchitecture) [12-17]. Recent
studies have proved that TBS may be a useful adjunct to BMD in
order to predict fragility fractures in primary osteoporosis
[13,18], and it provides the promise of potential utility in
secondary osteoporosis [19].

The concept of bone quality also includes hip geometry, which
has been independently associated with hip fracture risk [20];
this can be explained as the loading forces are spread in cross
sections on bone. HSA is a specific program which derives the
cross sectional geometry from images acquired by the bone
mineral scanner. Scientific studies suggested that the combined
assessment of BMD and geometrical structure may represent a
helpful approach to estimate bone strength and fracture risk in
primary and secondary osteoporosis [20-26].

In a previous study we applied TBS to TM patients and
demonstrated the impairment of both bone mineralization and
microarchitecture [27]; in contrast, no published data are
available regarding geometrical aspects in thalassemia. Both
bone quantity and bone quality are influenced by several clinical
features of this multifaceted disease, where multiple factors of
endocrine-metabolic, genetic, and environmental nature
interact through nonlinear biological mechanisms.

We hypothesized that a specialized mathematical approach
such as artificial neural networks (ANNs) may be valuable to
expand understanding of these complex interactions. ANNs are
artificial systems that modify their internal structure in relation
to a function objective: they can learn by extracting the
information needed from the accessible data, and generalize to

accomplish a specific task. Thanks to their ability to acquire
knowledge in this adaptive way, the ANNs present as a powerful
tool for data analysis in non-linear biological interactions
[28,29]. The semantic connectivity map is a data mining
approach maintaining the links among variables, and enabling
the detection of hidden trends and associations. It has been
demonstrated that this method might be the future of data
analysis in many areas of medicine, as it can improve the
predictive value of classic statistics [28-32].

The aim of this study was to apply the ANNs to the
thalassemic osteopathy, in order to obtain a greater insight with
a comprehensive analysis taking in account all the parameters
measuring bone quantity and bone quality, and their
connections with the other features of the disease.

Methods & Patients
Seventy-six patients with thalassemia major followed-up at

our tertiary outpatient clinic in Milan underwent an extensive
evaluation of the bone condition using DXA, including bone
mineral density assessment, calculation of the TBS as an index of
microarchitecture, and analysis of the femoral geometry. In the
context of routine checks for these patients, an annual
endocrinological evaluation was conducted, which included a
clinical examination, assessment of bone metabolism indices,
and tests for thyroid, parathyroid, adrenal, gonadic, and
pancreatic function; the clinical, hematological and
endocrinological data contemporary to the densitometric
evaluation were extracted from the clinical charts. Furthermore,
information was collected regarding age, gender, body mass
index (BMI), history of fractures, height and sexual development,
splenectomy, liver function and disease, drugs, initiation age of
transfusions, and the mean values of pre-transfusional
hemoglobin and ferritin in the previous year. The compliance to
chelation was estimated on the basis of the mean ferritin levels
evaluated every 3 months, and the liver iron content (LIC) was
determined via MRI, when available.

In all patients, the endocrine deficiencies had been
appropriately replaced with sex steroids, levothyroxine, calcium
and calcitriol as indicated.

The approval of the ethical committee of our institution
(number 2013-841) and patient informed consent were
obtained.

Methods
A blood cell count was performed using a Coulter Counter.

Automated routine procedures were implemented for the liver
function tests and assays of intact parathyroid hormone (n.v.:
1.5-6.6 pmol/L), osteocalcin (n.v.: females 5.3-23.6, mcg/L;
males, 4.4-26.1), 25-hydroxy vitamin D (n.v.: >72 nmol/L), ferritin
(n.v.: 30-400 mcg/L), glucose (n.v. 70-110 mg%), insulin (n.v.
2.6-25 mU/L), TSH (ECLIA, n.v. 0.3-4.2 mU/L), and calcium and
phosphorus in serum (normal values, n.v.: 2.1-2.5 and 0.8-1.4
mmol/L, respectively) and urine (n.v.: 2.5-7.5 and 12.9-42 mmol/
day, respectively). The serum calcium levels were not corrected
for albumin because the latter was normal in all patients.
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Alkaline phosphatase was measured using the International
Federation of Clinical Chemistry liquid (n.v.: 40-129 U/L); the
bone isoenzyme was assessed via a semi-quantitative
electrophoretic method using a scanning densitometer (normal
values, 20-75%). The serum CTX was assayed via a Serum
CrossLaps One Step ELISA (IDS, Boldon, Tyne and Wear, UK; n.v.:
women, postmenopausal, 0.142-1.351; premenopausal,
0.112-0.73; males 0.115-0.748 ng/mL).

Iron overload was estimated by the LIC, which was derived
from T2* according to Wood et al [33,34] using the following
formula: [LIC (mg/g/dw) = [(1/ (T2*/1000)] x 0,0254+0,202].

MRI was performed at the CMR Unit Department of
Cardiology “A. De Gasperis” at Niguarda Ca’ Granda Hospital in
Milan, using a 1.5 Tesla MR scanner (Avanto Siemens, Erlangen).
The T2* images were analyzed using post-processing software
(CMR Tools, Imperial College, London).

Bone quantity and quality assessment
Dual X-ray photon absorptiometry (Hologic Bone

Densitometer, QDR Discovery A, Version 13.3:3, Waltman, MA,
USA) was used to measure the bone mineral content (BMC, g)
and BMD (BMC/area expressed in cm2) of the lumbar spine from
L1 to L4, as well as the proximal femoral epiphysis at the neck
and total femur. Bone mineral density was (BMD) expressed as
absolute value. Lumbar spine TBS was derived from spine DXA
using TBS iNsight® software (medimaps SASU, Merignac,
France). The evaluator was blinded to the clinical parameters
and outcome of the subjects.

The hip structural analysis (HSA) was automatically calculated
from the femoral scan. The following main structural parameters
were extracted: the surface area of the bone in the cross section
(cross sectional area, CSA, cm2), the cross sectional moment of
inertia (CSMI, cm4), the section modulus (Z, cm3), and the
buckling ratio (BR) at the narrow neck, the intertrochanter and
the femoral shaft. The CSA is an index of bone resistance to the
axially directed compressive loads. The CSMI is an index of
structural rigidity which reflects the flexural strength. Z is
computed from the CSMI, which weights the area in the cross
section by the square of its distance from the centroid. The CSA
and Z are inversely related to the maximum stresses that result
from axial and bending loads, respectively [23,24]. The buckling
ratio (BR) is calculated as the maximum distance between the
center of the mass and the outer cortex over the average
cortical thickness; it provides an index of stability of the cortex
under compressive loads.

Artificial network analysis
The relations between all the studied parameters were

investigated by the artificial neural network analysis (ANN). This
is an adaptive mathematical model widely applied to study
various pathological conditions, as particularly suitable for
analyzing non-linear interactions between many variables
[30,32,35-39]. Unlike standard statistical tests, ANNs is also a
valid tool to analyze small sized samples, with imbalance
between variables and records [38,39].

A mapping method [28,29] was used to graphically highlight
the most important links among variables, using the Auto
Contractive Map algorithm (auto-CM), which is a special kind of
ANN able to define the strength of association between each
variable and all others in any dataset. Auto-CM allows to find the
consistent patterns and/or systematic relationships, the hidden
trends and the associations and to generate a graph (i.e., a
connectivity map) that represents visually the main connections
among the entered variables. This network, after a learning
phase in which all the variables are dynamically interconnected,
builds-up a weight matrix in which the weights are proportional
to the strength of associations between the variables. The
weights are then transformed in physical distances. The couples
of variables for which the connection weights are higher appear
nearer in the semantic map, and vice versa. A simple
mathematical filter represented by a minimal spanning tree
(MST) is applied to the distance matrix, and a graph is
generated. This step allows the observation of the schemes of
connections among the variables and the detection of variables
acting as “hubs”, being highly connected. As detailed by
Buscema and Grossi [28,29], this matrix of connections
preserves nonlinear associations among the variables and
captures the scheme of connections among clusters. From an
experimental point of view, the ranking of its connections matrix
is equal to the ranking of the joint probability between each
variable and the others. Each continuous variable for which a
paradigmatic cut-off value was not available was transformed
into two complementary variables. For this purpose this
variables values were scaled from 0 to 1, and a complementary
variable was obtained subtracting the scaled actual values from
1. Therefore, two classes are formed for each variable: a class
highlights the values in the high range, and a class highlights
those in the lower range. In the map these two complementary
forms were named as high and low. This pre-processing scaling is
necessary to make a proportional comparison among all the
possible variables, and to understand the links of each variable
when the values tend to be high or low. This information is
important, because in the nonlinear systems the position of high
and low values of a given variable is not necessarily symmetric.

Maximally Regular Graph (MRG) was used to evaluate the
relations between variables. MRG shows the maximum intrinsic
complexity of the map by including the highest number of cyclic
regular microstructures between the variables, as described
elsewhere [29].

A mapping method [28,29] was used to graphically highlight
the most important links among the variables, using the Auto
Contractive Map algorithm, which is a special type of ANN that
identifies the consistent patterns and/or systematic
relationships, the hidden trends and the associations among
variables [29]. After the training phase, the weights developed
by the Auto Contractive Map are proportional to the strength of
the associations between the variables. The weights are
subsequently transformed in physical distances. Variable couples
for which the connection weights are higher become nearer in
the semantic map, and vice versa. A simple mathematical filter
represented by a minimal spanning tree is applied to the
distance matrix, and a graph is generated. This step enables the
observation of connection schemes among the variables and the
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identification of variables that act as “hubs”, which are highly
connected. This matrix of connections, as detailed by Buscema
and Grossi [28,29] preserves the nonlinear associations among
variables and captures the connection schemes among clusters.

Results
The study group included 76 adult Caucasian patients

homozygous or double heterozygous for severe beta-
thalassemia mutations; there were 28 males and 48 females,

with a mean age 35.9 ± 6.5 years and a range of 22-54. The
patients were on a regular transfusion regimen every 20-25 days
to maintain the pre-transfusional hemoglobin at approximately
9-9.5 g/dL, according to the international guidelines [40].
Moreover, all patients were treated with iron chelating therapy:
21 patients (27.6%) with deferoxamine (30 ± 5 mg/Kg), 4
patients (5.2%) with deferiprone (75 mg/Kg), and 40 patients
(52.6%) with deferasirox (20 ± 5 mg/Kg), 8 patients (10.5%) with
deferoxamine + deferiprone, and 2 patients (1.3%) with
deferoxamine + deferasirox.

Table 1: Bone mineral density parameters in patients with Thalassemia Major.

 

Lumbar spine Total femur Femur neck

T-score Z-score BMD* T-score Z-score BMD* T-score Z-score BMD*

Mean -2,34 -2,22 0,80 -1,82 -1,76 0,72 -1,83 -1,60 0,66

SD 0,99 1,01 0,12 0,97 0,85 0,13 0,89 0,88 0,11

*BMD = Bone Mineral Density

Table 2: Bone quality parameters in patients with thalassemia
major.

Parameter Mean
Standard
deviation

TBS 1,033 0,125

HSA-CSA

NN 2,372 0,646

IT 4,251 1,185

FS 3,100 0,824

HSA-CSMI

NN 2,001 0,882

IT 12,825 5,303

FS 2,548 0,966

HSA-Z

NN 1,089 0,468

IT 3,685 1,271

FS 1,701 0,547

HSA-BR

NN 13,210 5,341

IT 9,720 3,003

FS 3,633 1,289

TBS: Trabecular Bone Score; CSA: Cross Sectional Area; CSMI: Cross
Sectional Moment of Inertia; HSA-Z: Section Modulus; HAS-BR: Buckling Ratio.

Trabecular Bone Score expresses bone microarchitecture; CSA, CSMI, Z-
modulus, and BR are related to the hip geometry.

The hematologic variables were as follows: pre-transfusional
Hb (9.56 ± 0.63, range 8.5-11 g/dL), ferritin (median 697, range
104 - 5631 mcg/L), fibroscan (9.7 ± 3.7, range 3.90- 19.80 kPa),
T2* heart (31.18 ± 11.93, range 5.18-54.82 ms), T2* liver (8.27 ±
6.23, range 0.96-22.46 ms), and LIC (5.83 ± 5.14, range
0.94-22.68 mg Fe/g of liver dry weight). Forty-five patients
(59.2%) were anti-HCV positive and 28 patients (36.8%) were
HCV RNA positive; 42 patients (55.2%) had been
splenectomized.

Fifty patients (67%) were taking cholecalciferol supplements
for vitamin D deficiency, which produced 25OH-vitamin D
concentrations from 20 to 30 ng/ml; 6 patients (7.8%) were also
on antiresorptive treatment with bisphosphonates. The 55
hypogonadic patients (72.3%) were on adequate sex steroid
replacement.

Based on the bone mineralization at DXA, the patients were
classified as follows: 35 patients (46%) with osteoporosis, 40
patients (52.6%) with osteopenia, and 1 patient (1.3%) with
normal mineralization. The BMD, TBS and HSA values are
reported in Tables 1 and2, respectively.

Twelve patients (15.7%) had previously reported bone
fractures at both central and peripheral sites, considering only
the events produced by not efficient traumas.

The connectivity maps (Figures 1-3) show the connections
between the low and high values of all variables linked to bone
mineralization and the variables linked to the thalassemic
condition, including the iron status and endocrinological
complications.

Compared with Figure 1, Figure 2 also shows the link strength,
and Figure 3 indicates the complexity of the links between the
variables.

At an overall examination of the maps, two “hubs” that
connect many variables emerge, more precisely, LIC and ferritin,
both indicative of the iron status. In addition to appearing as the
main variables of the whole system, these hubs divide the map
into two main sectors: most parameters that indicate
satisfactory bone quantity and quality are grouped in the upper
part of the map, whereas the lower area contains the
parameters that express a poor bone condition and fractures.
Following a more detailed examination, the cluster in the upper
section includes several variables that characterize a better bone
status, namely, a high BMD and high values of the hip structural
analysis variables (high HSA-CSA, CSMI, and Z modulus and low
BR).
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Figure 1: Semantic connectivity map with all the analyzed
variables. Minimum spanning tree showing the map of the
main connections between the analyzed variables in patients
with thalassemia major. The semantic connectivity map was
obtained by Auto-Cm system.

Figure 2: Semantic connectivity map with numerical values.
The numbers on the arches of the graph represent the
strength of association between two adjacent nodes,
measured on a scale ranging from 0 (not linked) to 1 (highly
linked).

In contrast, low values of the TBS (which characterize poor
bone quality) and of the femur geometric parameters expressing
the resistance to compressive and bending forces (CSMI, CSA, Z
modulus, and high BR) are assembled in the lower section of the
map in proximity to the variable “fractures”.

Figure 3: Semantic connectivity map with numerical values
and complexity of the links between the variables. Maximally
regular graph showing the connections between clinical and
densitometry data in the thalassemic patients studied. The
graph represents the intrinsic complexity of the dataset.

In contrast to the key role of the liver iron concentration in
the whole system, the other variables expressing iron overload
(T2* of the liver and heart) appear in a peripheral position,
similarly to the variables indicating endocrinopathies, poorly
connected with the other parameters examined.

Also vitamin D levels lack noticeable links with other
parameters; moreover, they appear to be irrelevant to bone
condition, considering that both high and low levels are included
in the same section of the map.

Discussion
Our population included hemoglobinopathic and iron

overloaded patients with endocrinopathy and osteopathy. As a
result of the complex interplay of multiple variables that indicate
the bone condition, clinical, and endocrinological status, a
multifaceted system is generated in thalassemia. In this setting,
classic statistics do not enable a comprehensive explanation of
the relationships between the variables of interest because the
substantial number of measures involved appears to weaken the
power of analysis. A special mathematical approach, such as
artificial neuronal network (ANNs), may be useful to further
understand hidden nonlinear biological mechanisms.

ANNs are artificial computerized algorithms, inspired by the
neuronal connections of the human brain, which enable the
investigation of biological phenomena through a complex
nonlinear association analysis. These networks are based on the
nodes and connections of the considered variables. Each node
receives input data from other nodes or the environment, and it
sends output data to other nodes or the environment, as well
through positive/excitatory or negative/inhibitory connections,
similar to a neural network. The connections are not permanent,
but can change over time under the influence of varying input
data. This behavior is described as the “law of learning”,
meaning that ANNs may be influenced by the environment and
thereby modify the inner connections, similar to the brain. This
experimental knowledge, which recreates the fuzzy logic rules
[28,29] appears to be particularly suited for solving nonlinear
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problems and providing the optimal answers. Another reason for
the interest of ANNs is their ability to provide an accurate
analysis even with measurement errors or incorrect data, having
a so called “noise tolerance”.

Using this innovative approach in thalassemic patients, their
bone problems were examined from an original perspective, and
we believe that the present study has obtained results of
particular interest.

The ANN analysis was performed by considering both the low
and high levels of each variable; the resulting semantic map
enabled discrimination of the patients with a poor bone
condition, who were at high risk of fracture, from the patients
spared by fracture complications. The examined variables were
distributed into two main map sectors: the optimal values of the
parameters that indicate bone quantity and bone geometry
were allocated in the upper sector, whereas the parameters that
indicate a worse condition, in terms of bone microarchitecture
and bone geometry, were grouped in the lower sector, which is
the same location where the fragility fractures were placed. As
specified in the Results section, we considered all fragility
fractures reported by the patients, both peripheral and central,
excluding those following an efficient trauma (e.g., road
accidents) [40].

In an examination of the bone quantity markers provided by
DXA, a high femoral BMD appeared to be an important hub
connected with satisfactory bone status (including both
microarchitectural and geometrical bone indices). In other
terms, the bone femoral densitometry data appear to be a
variable of paramount importance in evaluating the bone
condition, which confirms the widely accepted statement that
bone mineral density (BMD) is a major determinant of bone
strength and fracture risk [41]. Actually, based on this belief, the
BMD has been largely adopted in clinical practice to define the
degree of bone loss in beta-thalassemia, as well as the primary
and secondary forms of osteoporosis [42,43].

However, the greatest and well recognized limitation of bone
quantity measurement is the considerable overlap of BMD
values in patients with and without fractures [44]; this behavior
was ascribed to the contribution of multiple structural
determinants to bone strength that are enclosed in the general
concept of “bone quality”, including bone microarchitecture and
bone geometry [45-54].

Actually, in our connectivity maps, all variables indicating both
high bone quantity and satisfactory bone quality were
interconnected and grouped in the upper portion of the map;
thus, they were farthest away from the variable “fractures”,
which was located in the extremely low section. The ANNs are
not suitable for the evaluation of the prognostic value of
parameters; however, this distribution may suggest that patients
with good bone quantity and quality are not at an increased risk
of fractures, although they are thalassemic.

In this respect, the ANNs confirm the key role of the conjunct
assessment of both bone quantity and bone quality described by
previous studies using classic statistics [55]; in addition, among
the multiple indices of bone quantity and bone quality available
for the evaluation, the ANNs highlight the focal importance of

high femoral BMD in the identification of a satisfactory bone
state.

An additional variable exerting a pivotal role in our map was
the CSMI, which is an index of femoral structural rigidity; in
effect, the variable “low CSMI” was interconnected with several
parameters indicating poor bone status, inclusive of bone
quantity, bone geometry, and bone microarchitecture.

Moreover, the variable fractures were located in the same
section of the map, i.e., the lower section, to indicate the
association between fracture events and poor bone quantity
and quality.

There were only a limited number of interconnections and
variables located in the lower portion of the semantic map;
however, it is evident that the way leading to the fractures
passes through low TBS and low HSA-Z, which indicate damaged
microarchitecture and impaired geometry, respectively.

The present results of the ANN analysis confirm our previous
findings, which were obtained by classic statistical analysis, of
poor bone microarchitecture in patients with thalassemia major
[27].

As regards the hip structural analysis, a comparison with other
studies cannot be performed, being the present the first report
of bone geometry evaluation in thalassemic patients.

Among the iron status variables included in the ANNs analysis,
low LIC and low ferritin presented as the main nodes in the map
connecting bone turnover parameters, endocrinological indices,
and the variable “no fractures”. Furthermore, a low LIC was
directly connected with low turnover indices and high TBS,
which indicates good bone microstructure. This arrangement
underlines the central role of iron status evaluation in
thalassemic patients, which is warranted by the close link
between iron overload and the development of several
complications, and confirms a well-known and well described
concept [55-57].

It is remarkable that among four parameters that indicate the
iron status (LIC, ferritin, heart and liver T2*), the LIC and ferritin
have emerged as playing the main connecting role in our
semantic map. The LIC value included in the analysis was derived
from liver T2* through the Wood formula [33]; thus, we would
have expected that the two variables shared the same
connections. This likely did not occur because the liver T2*
values are expressed in a logarithmic scale.

Endocrine disease and vitamin D status did not appear to
significantly influence the bone condition, as indicated by their
absolutely peripheral position and the contemporary presence
of both high and low levels of vitamin D in the same sector of
the map. In effect, the role of the vitamin D status in thalassemic
osteopathy is controversial, and previous studies from our and
other groups did not identify correlations between 25OH
vitamin D serum levels, bone microarchitecture index (TBS), PTH,
and calcium [27]. In contrast, it is more difficult to explain the
lack of importance of endocrine parameters in our analysis;
however, it may be hypothesized that they play a minor role
compared with the variables that indicate bone quantity and
quality in the evaluation of fracture risk.
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In conclusion, based on a comprehensive neural network
analysis that included multiple clinical, biochemical, and
instrumental parameters, bone geometry and microarchitecture
evaluation using DXA has emerged as an important tool in the
assessment of thalassemic osteopathy. A complete evaluation by
densitometry may be considered the gold standard to classify
the patients for prognostic and therapeutic purposes.

Conflict of Interest
MDC is member of the advisory board for Novartis, Celgene,

and Genzyme/Sanofi. The other authors have nothing to
declare.

The study was partially funded by grants of Ministero della
Salute (RC 2016). The authors confirm independence from the
sponsor; the content of the article has not been influenced by
the sponsor.

All the Authors have participated to the study and have
approved the final article.

Study Design and Conduct
MB, FMU, AM, EC and MDC.

DXA, TBS and HSA imaging: FMU, MC.

Endocrinological and bone turnover tests: MB.

Analysis and interpretation of data: EG.

Drafting the manuscript: MB, FMU and MDC.

Data interpretation, manuscript revision and approval of the
final version: all authors.

Ethical Approval
The study was conducted in accordance with the Declaration

of Helsinki. The approval of the ethical committee of our
institution (number 2013-841) was obtained.

Informed Consent
All patients provided written informed consent to participate.

Acknowledgement
We thank Dr Alberto Roghi and Patrizia Pedrotti, CMR Unit,

Department of Cardiology and Cardiovascular Surgery, Niguarda
Ca’ Granda Hospital, Milan, for performing CMR T2*. We thank
Cass Ingerson for editing the manuscript.

References
1. Borgna-Pignatti C (2010) The life of patients with thalassemia

major. Haematologica 95: 345-348.

2. Angelucci EI, Barosi G, Cappellini MD, Cazzola M, Galanello R, et al.
(2008) Italian Society of Hematology practice guidelines for the
management of iron overload in thalassemia major and related
disorders. Haematologica 93: 741-752.

3. Angastiniotis M, Eleftheriou A (208) Thalassaemic bone disease.
An overview. Pediatr Endocrinol Rev 6: 73-80.

4. Haidar R, Musallam KM, Taher AT (2011) Bone disease and skeletal
complications in patients with β thalassemia major. Bone 48:
425-432.

5. Hordon LD, Raisi M, Aaron JE, Paxton SK, Beneton M, et al. (2000)
Trabecular architecture in women and men of similar bone mass
with and without vertebral fracture: I. Two-dimensional histology.
Bone 27: 271-276.

6. Link TM, Majumdar S (2004) Current diagnostic techniques in the
evaluation of bone architecture. Curr Osteoporos Rep 2: 47-52.

7. Boehm HF, Vogel T, Panteleon A, Burklein D, Bitterling H, et al.
(2007) Differentiation between post-menopausal women with and
without hip fractures: enhanced evaluation of clinical DXA by
topological analysis of the mineral distribution in the scan images.
Osteoporos Int 18: 779-787.

8. Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, et al.
(1999) Imaging of trabecular bone structure in osteoporosis. Eur
Radiol 9: 1781-1788.

9. Keni Z, Makrogiannis S (2016) Bone texture characterization for
osteoporosis diagnosis using digital radiography. Conf Proc IEEE
Eng Med Biol Soc 2016: 1034-1037.

10. Zaia A (2015) Fractal lacunarity of trabecular bone and magnetic
resonance imaging: New perspectives for osteoporotic fracture
risk assessment. World J Orthop 6: 221-235.

11. Harrar K, Jennane R, Zaouchi K, Janvier T, Toumi H, et al. (2018)
Oriented fractal analysis for improved bone microarchitecture
characterization. Biomedical Signal Processing and Control 39:
474-485.

12. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, et al.
(2011) Correlations between trabecular bone score, measured
using anteroposterior dual-energy X-ray absorptiometry
acquisition, and 3-dimensional parameters of bone
microarchitecture: an experimental study on human cadaver
vertebrae. J Clin Densitom 14: 302-312.

13. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, et al. (2014)
Trabecular bone score: a noninvasive analytical method based
upon the DXA image. J Bone Miner Res 29: 518-530.

14. Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-
level variations in 2D projection images (TBS) and 3D
microarchitecture: applications in the study of human trabecular
bone microarchitecture. Bone 42: 775-787.

15. Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, et al. (2015)
TBS reflects trabecular microarchitecture in premenopausal
women and men with idiopathic osteoporosis and low-traumatic
fractures. Bone 79: 259-266.

16. Winzenrieth R, Michelet F, Hans D (2012) Three-dimensional (3D)
microarchitecture correlations with 2D projection image gray-level
variations assessed by trabecular bone score using high-resolution
computed tomographic acquisitions: effects of resolution and
noise. J Clin Densitom 16: 287-296.

17. Roux JP (2013) Wegrzyn J, Boutroy S, Bouxsein ML, Hans D,
Chapurlat R. The predictive value of trabecular bone score (TBS)
on whole lumbar vertebrae mechanics: an ex vivo study.
Osteoporos Int 24: 2455-2460.

18. Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, et al.
(2015) Fracture Risk Prediction by Non-BMD DXA Measures: the
2015 ISCD Official Positions Part 2: Trabecular Bone Score. J Clin
Densitom 18: 309-330.

British Journal of Research

ISSN 2394-3718 Vol.4 No.4:25

2017

© Under License of Creative Commons Attribution 3.0 License 7



19. Ulivieri FM, Silva BC, Sardanelli F, Hans D, Bilezikian JP, et al. (2014)
Utility of the trabecular bone score (TBS) in secondary
osteoporosis. Endocrine 47: 435-448.

20. Crabtree NJ, Kroger H, Martin A, Pol HAP, Lorenc R, et al. (2002)
Improving risk assessment: hip geometry, bone mineral
distribution and bone strength in hip fracture cases and controls.
The EPOS study, European Prospective Osteoporosis Study.
Osteoporos Int 13: 48-54.

21. Beck TJ, Ruff CB, Warden KE, Scott WW, Rao GU (1990) Predicting
femoral neck strength from bone mineral data. A structural
approach. Invest Radiol 25: 6-18.

22. Martin RB, Burr DB (1984) Non-invasive measurement of long
bone cross-sectional moment of inertia by photon
absorptiometry. J Biomech 17: 195-201.

23. Danielson ME, Beck T, Karlamangla AS, Greendale GA, Atkinson EJ,
et al. (2013) A comparison of DXA and CT based methods for
estimating the strength of the femoral neck in post-menopausal
women. Osteoporos Int 24: 1379-1388.

24. Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw K-T, et al. (2003)
Effects of gender, anthropometric variables, and aging on the
evolution of hip strength in men and women aged over 65. Bone
32: 561-570.

25. Uusi-Rasi K, Semanick LM, Zanchetta JR, Bogado CE, Eriksen EF, et
al. (2005) Effects of teriparatide [rhPTH (1-34)] treatment on
structural geometry of the proximal femur in elderly osteoporotic
women. Bone 36: 948-958.

26. Uusi-Rasi K, Beck TJ, Semanick LM, Daphtary MM, Crans GG, et al.
(2006) Structural effects of raloxifene on the proximal femur:
results from the multiple outcomes of raloxifene evaluation trial.
Osteoporos Int 17: 575-586.

27. Baldini M, Ulivieri FM, Forti S, Serafino S, Seghezzi S, et al. (2014)
Spine bone texture assessed by trabecular bone score (TBS) to
evaluate bone health in thalassemia major. Calcif Tissue Int 95:
540-546.

28. Buscema M, Grossi E (2008) The semantic connectivity map: an
adapting self-organising knowledge discovery method in data
bases. Experience in gastro-oesophageal reflux disease. Int J Data
Min Bioinform 2: 362-404.

29. Buscema M, Grossi E, Snowdon D, Antuono P (2008) Auto-
Contractive Maps: an artificial adaptive system for data mining. An
application to Alzheimer disease. Curr Alzheimer Res 5: 481-498.

30. Licastro F, Porcellini E, Chiappelli M, Forti P, Buscema M, et al.
(2010) Multivariable network associated with cognitive decline
and dementia. Neurobiol Aging 31: 257-269.

31. Grossi E, Cazzaniga S, Crotti S, Naldi L, Di Landro A, et al. (2014)
The constellation of dietary factors in adolescent acne: a semantic
connectivity map approach. J Eur Acad Dermatol Venereol 30:
96-100.

32. Gironi M, Borgiani B, Farina E, Mariani E, Cursano C, et al. (2015) A
global immune deficit in Alzheimer’s disease and mild cognitive
impairment disclosed by a novel data mining process. J Alzheimer
Dis 43: 1199-1213.

33. Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, et al. (2005)
MRI R2 and R2* mapping accurately estimates hepatic iron
concentration in transfusion-dependent thalassemia and sickle
cell disease patients. Blood 106: 1460-1465.

34. Ramamurthi K, Ahmad O, Engelke K, Taylor RH, Zhu K, et al. (2012)
An in vivo comparison of hip structure analysis (HSA) with
measurements obtained by QCT. Osteoporo Int 23: 543-551.

35. Eller-Vainicher C, Chiodini I, Santi I, Massarotti, Pietrogrande L, et
al. (2011) Recognition of morphometric vertebral fractures by
artificial neural networks: analysis from GYSMO Lombardia
database. Plosone 6: e27277.

36. Eller-Vainicher C, Zhukouskaya VV, Tolkachev YV, Koritko SS, Cairoli
E, et al. (2011) Low bone mineral density and its predictors in type
1 diabetic patients evaluated by the classic statistics and artifical
neural network analysis. Diabetes Care 34: 2186-2191.

37. Grossi E, Cazzaniga S, Crotti S, Naldi L, Di Landro A, et al. (2016)
The constellation of dietary factors in adolescent acne: a semantic
connectivity map approach. J Eur Acad Dermatol Venerol 30:
96-100.

38. Rotondano G, Cipolletta L, Grossi E, Koch M, Intraligi M, et al.
(2011) Italian registry on Upper Gastrointestinal Bleeding
(Progetto Nazionale Emorragie Digestive). Artificial neural
networks accurately predict mortality in patients with nonvariceal
upper GI bleeding. Gastrointestinal endosc 73: 218-226.

39. Narzisi A, Muratori F, Buscema M, Calderoni S, Grossi E (2015)
Oucome predictors in autism spectrum disorders preschoolers
undegoing treatment as usual: insight from an observational
Study using artificial neural networks. Neuropsychiatr Dis Treat 11:
1587-1599.

40. Cappellini MD, Cohen A, Eleftheriou A, Piga A, Porter J, et al.
(2008) Guidelines for the clinical management of thalassemia
2008, 2nd revised Edition. Thalassemia International Federation.

41. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, et al. (2005)
Predictive value of BMD for hip and other fractures. J Bone Miner
Res 20: 1185-1194.

42. WHO Study Group (1994) Assessment of fracture risk and its
application to screening for postmenopausal osteoporosis. Report
of a WHO Study Group, World Health Organ. Tech Rep Ser 843:
1-129.

43. Angastiniotis M, Pavlides N, Aristidou K, Kanakas A, Yerakaris M, et
al. (1998) Bone pain in thalassaemia: assessment of DEXA and MRI
findings. J Pediatr Endocrinol Metab 11: 779-784.

44. Cummings SR (1985) Are patients with hip fractures more
osteoporotic? Review of the evidence. Am J Med 78: 487-494.

45. NIH Consensus Development Panel on Osteoporosis Prevention,
Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis,
and therapy. JAMA 285: 785-795.

46. Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the
elasticity and strength of cancellous bone on apparent density. J
Biomech 21: 155-168.

47. Bagni B, Palazzi G, Bagni I, Caporali C, Froehlich W, et al. (1998)
pQCT (quantitative peripheral tomography) and data evaluation of
phosphocalcic metabolism in thalassaemic patients. J Pediatr
Endocrinol Metab 11: 791-794.

48. Glüer CC, Jergas M, Hans D (1997) Peripheral measurement
techniques for the assessment of osteoporosis. Semin Nucl Med
27: 229-247.

49. Boonen S, Cheng X, Nicholson PH, Verbeke G, Broos P, et al. (1997)
The accuracy of peripheral skeletal assessment at the radius in
estimating femoral bone density as measured by dual-energy X-
ray absorptiometry: a comparative study of single-photon
absorptiometry and computed tomography. J Intern Med 242:
323-328.

50. Laib A, Hildebrand T, Häuselmann HJ, Rüegsegger P (1997) Ridge
number density: a new parameter for in vivo bone structure
analysis. Bone 21: 541-546.

British Journal of Research

ISSN 2394-3718 Vol.4 No.4:25

2017

8 This article is available from: http://www.imedpub.com/british-journal-of-research/

http://www.imedpub.com/british-journal-of-research/


51. Vokes TJ, Giger ML, Chinander MR, Karrison TG, Favus MJ, et al.
(2006) Radiographic texture analysis of densitometer-generated
calcaneus images differentiates postmenopausal women with and
without fractures. Osteoporos Int 17: 1472-1482.

52. Faulkner KG, Cummings SR, Black D, Palermo L, Glüer CC, et al.
(1993) Simple measurement of femoral geometry predicts hip
fracture: the study of osteoporotic fractures. J Bone Miner Res 8:
1211-1217.

53. Nakamura T, Turner CH, Yoshikawa T, Slemenda CW, Peacock M, et
al. (1994) Do variations in hip geometry explain differences in hip
fracture risk between Japanese and white Americans? J Bone
Miner Res 9: 1071-1076.

54. Langton CM, Pisharody S, Keyak JH (2008) Comparison of 3D finite
element analysis derived stiffness and BMD to determine the

failure load of the excised proximal femur. Med Eng Phys 31:
668-672.

55. Hans D, Goertzen A, Krieg MA, Leslie WD (2011) Bone
microarchitecture assessed by TBS predicts osteoporotic fractures
independent of bone density: the Manitoba study. J Bone Miner
Res 26: 2762-2769.

56. Perisano C, Marzetti E, Spinelli MS, Callà CAM, Graci C, et al.
(2012) Physiopathology of Bone Modifications in β-Thalassemia.
Anemia.

57. Delea TE, Edelsberg J, Sofrygin O, Thomas SK, Baladi JF, et al.
(2007) Consequences and costs of noncompliance with iron
chelation therapy in patients with transfusion-dependent
thalassemia: a literature review. Transfusion 47: 1919-1929.

 

British Journal of Research

ISSN 2394-3718 Vol.4 No.4:25

2017

© Under License of Creative Commons Attribution 3.0 License 9


	Contents
	The Role of Trabecular Bone Score and Hip Geometry in Thalassemia Major: A Neural Network Analysis
	Abstract
	Keywords:
	Introduction
	Methods & Patients
	Methods
	Bone quantity and quality assessment
	Artificial network analysis

	Results
	Discussion
	Conflict of Interest
	Study Design and Conduct
	Ethical Approval
	Informed Consent
	Acknowledgement
	References


