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ABSTRACT 
 
In this chapter, we discuss the radiation effect on the unsteady MHD convection flow through a non-uniform 
horizontal channel.  The unsteadiness is due to the imposed oscillatory flux on the convection flow through the non-
uniform channel.  The perturbation analysis is carried out with the slope of the boundary as the perturbation 
parameter.  The velocity and temperature profiles were plotted and their behavior is discussed in detail.  The Stress 
and the average Nusselt number are also calculated and tabulated for these sets of parameters.  
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INTRODUCTION 
 

Unsteady convection flows play an important role in aerospace technology, turbo-machinery and chemical 
Engineering.  Such flows arise due to either unsteady motion of boundary or boundary temperature.  Unsteadiness 
may also be due to oscillatory free stream velocity or temperature.  These oscillatory free convective flows are 
important from technological point of view.  Nanda and Sharma [1, 2] have discussed the unsteady free convective 
flow past a semi-infinite plate with oscillatory wall temperature and shown the existence of similarity solution.  
Later Soundalgekar and Pop [3] have solved this problem using momentum-integral method.  Kelleher and Yang [4] 
have studied different aspects of this problem.  They obtained similar solutions of the laminar free convection 
boundary layer equations for the inner and the outer steady flow along a vertical heated plate whose temperature 
oscillates, when the mean surface temperature varies as power ‘n’ of distance from the leading edge.  The 
corresponding semi-infinite horizontal plate whose temperature oscillates about a constant mean has been studied by 
Muhuri and Maity [5] and Mital [6]. Merkin [7] and Zeytonian [8] have also analyzed free convection effects on an 
infinite horizontal cylinder, when its temperature oscillates harmonically with time. Recently two problems on free 
convection have been solved by Pop [9, 10].   Muhuri and Maity [5] have considered the free convection flow and 
heat transfer along a semi-infinite horizontal plate when plate temperature oscillates about a constant mean.  Verma 
and Singh [11] have analysed the free convection flow along a horizontal plate oscillatory in its own plane.  The 
effects of surface temperature oscillations on the skin friction and the heat transfer from a surface to the surrounding 
flow is of special interest to the heat transfer engineering.  The effect of plate temperature oscillations on free 
convection flow along the semi-infinite horizontal plate has been considered by Sharma and Mishra [12] based on 
Lighthill’s technique and the steady state solutions were obtained using Karman-Poulhasen method.   
 
Vajravelu and Nayfeh [13] have investigated the influence of the wall wavyness on friction and pressure drop of the 
generalized couette flow.  Vajravelu and Sastry [14] have analysed the free convective heat transfer in a viscous, 
incompressible fluid confined between long vertical wavy wall and a parallel flat wall in the presence of a constant 
heat source.  Later Vajravelu and Debnath [15] have extended this study to convective flow in a vertical wavy 
channel in four different geometrical configurations.   
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2.  Formulation of the problem 
We consider the unsteady motion of a viscous, incompressible electrically conducting fluid through a porous 
medium in a horizontal channel bounded by wavy walls in the presence of a constant heat source /sink.  A uniform 
magnetic field of strength ‘Ho’ is applied normal to the walls.  The Boussinesq approximation is used so that the 
density variation will be considered only in the buoyancy force. The viscous, Darcy and Ohmic  dissipations are 
neglected in comparison to the flow by conduction and convection . Also the kinematic viscosity ν, the thermal 
conducting k are treated as constants. We choose a rectangular Cartesian system O (x ,y)  with x-axis in the direction 
of motion and y-axis in the vertical direction and the walls are taken at  y = ± Lf(δx/L), where 2L is the distance 
between the walls, f is a twice differentiable function and δ is a small parameter proportional to the boundary slope. 
A linear density temperature variation is assumed with ρe and Te are the density and temperature in the equilibrium 
state. The flow is maintained by an oscillatory volume flux rate for which a characteristic velocity is defined as     
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 The equations governing the unsteady magneto hydrodynamic flow and heat transfer in Cartesian coordinate system 
O(x,y,z), in the absence of any input electric field are 
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Equation of linear momentum 
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Equation of energy 
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Equation of state 

)( eee TT −−=− βρρρ                                               (2.6) 

 

where  ‘ eρ ’   is the density of the fluid in the equilibrium state, ‘Te’ is the temperature and in the equilibrium state, 

(u,v) are the velocity components along O(x,y) directions, ‘p’ is the pressure, ‘T’ is the temperature in the flow 
region, ‘ρ’ is the density of the fluid, ‘µ’ is the constant coefficient of viscosity,  
 
In the equilibrium state 
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Where DDe pppp ,+=  being the hydrodynamic pressure and in this state the temperature gradient balances the 

heat flux generated by source Q. 
 
The boundary conditions for the velocity and temperature fields are  
 

)(,0,0 1 ηTTvu ===  on   y = -L f(δx/L) 
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)(,0,0 2 ηTTvu === on y = L f(δx/L)                                                  (2.8) 

 
Invoking Rosseland approximation (Brewester(1a)) for the radiative flux we get 
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expanding 4T ′ in Taylor series about Te and neglecting higher order terms (19a), 
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In view of the continuity equation (2.3) we define the stream function ψ as 
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Eliminating pressure p from equations (2.3) & (2.4) and using (2.11) the equations 
governing the flow in terms of ψ are 
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Introducing the non-dimensional variables in (2 .12) &  (2.13) as 
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The corresponding boundary conditions 
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3.  Solution of the problem 
Introduce the transformation such that  
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For small values of δ<<1 the flow develops slowly with axial gradient of order δ and hence we take    )1(~ O
x∂
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We adopt the perturbation scheme and write  
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The corresponding boundary conditions are 
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The local rate of heat transfer coefficient (Nusselt number Nu) on the walls has been calculated using the formula  
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and the corresponding expressions are 
 

DISCUSSION OF THE NUMERICAL RESULTS 
 

The primary aim of our analysis is to investigate the radiation effect on the behavior of the temperature induced 
buoyancy force taking in to account the effect of surface geometry and wall temperature ratio.  The flow is analysed 
for different sets of the parameters G,R,M,β,α,γ and N1  governing the flow.  It should be noted that the flow is 
basically asymmetric due to distinct surface temperatures.  For computation purpose we assume the boundaries to be 

)1()(
2−−+±=±= xexfy β   and β>0  corresponds to dilated channel and β<0  corresponds to constricted 

channel.  The transformation  
)(xf

y=η   reduce the boundaries to η=±1.  We confine our attention to dilated 

channel.  The non-uniformity in the boundary gives rise to the secondary transverse flow and hence the general 
pattern of the flow can be judged by the behavior of the Ressultant of primary and secondary velocities.  The 
computation of the individual velocity components would enable us to investigate the effect of each body force 
acting on the flow and its related influence on the primary and secondary flows.   
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           Fig [1] Variation of u with G 
R=35, M=2, α=2, β=0.5, N1=4, x=π/4, t=π/4      
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          Fig [2] Variation of u with R 
G=5x102, M=2, α=2, β=0.5, N1=4, x=π/4, t=π/4 
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                 R   35          70        140 
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                   Fig [3] Variation of u with M  
G=5x102, R=35, α=2, β=0.5, N1=4, x=π/4, t=π/4 
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                   Fig [4] Variation of u with α 
G=102, R=35,M=2, β=0.5, N1=4, x=π/4, t=π/4 
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As in the case of resultant flow the primary velocity u is positive, for all G>0. In the case of cooling of the channel 
walls we find that the velocity changes from positive to negative near the lower boundary η=-1 there by exhibiting a 
reversal flow for |G|=103, and for higher values of |G| we notice the reversal flow in the entire flow region.  This 
region enlarges with increase in |G|(<0) with maximum occurring at η=-0.4.  For G>0 the maximum of u occurs at 
η=0.6 and this point of maximum velocity drifts towards the mid region for higher G≥103 (fig. (1)).     
 
Fig. [2], shows the variation of ‘u’ with Reynolds number R.  It is found that for a smaller value of R=35 there is no 
reversal flow, but for higher R=70 the reversal occurs in the midregion and for still higher values of R, the reversal 
flow appears in the entire flow region. |u| reduces with R≤70 and enhances for higher R≥140.    
 
Fig. [3], indicates that the reversal flow occurs in the entire flow region for higher values of M≥5 and this enlarges 
with increase in M.  The variation of ‘u’ with the heat source/sink parameter is exhibited in fig.[4].  It is noticed that 
for α>0 there is no reversal flow any where in the fluid region while for α<0 we notice reversal flow in the entire 
flow region and this enlarges with increase in |α|(<0).       
 
The influence of surface geometry on the flow phenomena is exhibited in fig.[5].  The reversal flow which appears 
in entire flow region for β=0.3, disappears for higher β≤0.6 and reappears in the fluid region, for β=0.9.  Higher the 
dilation of the channel walls larger the magnitude of u. 
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