
The Quest of Smart Nanomaterials for Multiple Drug Delivery
Ken Cham-Fai Leung*

Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
*Corresponding author: Ken Cham-Fai Leung, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
SAR, P. R. China, Tel: (+852) 3411 2319; E-mail: cfleung@hkbu.edu.hk

Received Date: April 27, 2017; Accepted Date: May 10, 2017; Published Date: May 17, 2017

Copyright: © 2017 Leung KCF, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Leung KCF. The Quest of Smart Nanomaterials for Multiple Drug Delivery. Arch Chem Res. 2017, 1:2.

Highlight
Recently, the research of smart nanomaterials embedded

with molecular and nano-machines has gained much attention
on accounting for their prolific applications in the fields of
nanotechnology, in particular for controlled drug delivery and
bio-mimetics. For biomolecules and various biological systems,
the functions of the sensor, processor and effector are
associated with the hierarchical structures based on covalent or
noncovalent bonds. Combining these functions in synthetic
nanomaterials could lead to a mimic of the natural feedback
systems. The realization of the proposed research idea would
hopefully shed light on mimicking functional enzyme systems
[1-4].

For example, “smart” switchable interlocking molecules could
be attached to the pore orifices of mesoporous silica
nanoparticles. Subsequently, the macrocyclic component
threaded on the interlocked molecule’s backbone by
noncovalent interactions could serve as the gate that controls
access of guest molecules into and out of the nanopores of the
mesoporous silica nanoparticles, to act as nanovalves [5,6]. One
of the attractive features of nanovalve systems is the ability to
induce controlled release (a diffusion-controlled system) of
guest molecules from the nanopores using various external
stimuli such as pH change [7] addition of salts, [8] redox process,
[9] and light [10]. Moreover, these ON/OFF switchable molecular
nanovalves process superior properties of reversibility and
reusability of the materials as well as the regional and temporal
control of substrate release. To facilitate practical biomedical
applications in vivo, the use of non-invasive low-intensity
ultrasound [11] has been routinely employed for pregnancy
diagnosis, as a stimulus to trigger drug release from the drug-
encapsulated smart materials. On the other hand, the ability to
carry hydrophobic and hydrophilic drugs to specific cancer site
(targeting) is beneficial to cancer treatment with smart materials
[12]. In particular, smart materials that are responsive to
significant pH change between cancerous cells (pH~5) and
normal cells (pH~7), are candidates for targeted therapy.
Recently, relatively non-cytotoxic iron oxide magnetic
nanocomposites with tunable particle and pore sizes and their
hollow and core/shell derivatives were introduced to
successfully demonstrate a better magnetic separation method
for recycling the nanomaterials from the reaction mixture using

a magnet [13-20]. Different magnetic hybrid nanostructures
have been successfully fabricated in spheres, wires, etc, which
would be capable to covalently attach or physically encapsulate
supramolecules, organic molecules, and drugs [21-26]. For
covalent attachment of molecules, the process can be
performed by chemical coupling reactions between molecules
with functional groups and nanoparticles with reactive surface
at their periphery or at the mesopores. For physical
encapsulation of molecules to the nanoparticles, porous
nanoparticles with tunable pore size can be employed.
Furthermore, several types of organic-inorganic hybrid magnetic
nanoparticles based on superparamagnetic iron oxide (any size
in the range of 10–250 nm) with tunable pore size (2, 5, 10 nm,
etc.) could be successfully synthesized in high yields. These
nanoparticles possess specific shapes hybrid coating (e.g.,
organic polymers), which require sophisticated, fine-tuned
synthetic procedures. The as-synthesized iron oxide (Fe3O4)-
based composite/hybrid nanoparticles can be
superparamagnetic, which are crucial as contrast agents for
magnetic resonance imaging (MRI).

Current attempts on loading two different drugs or both drug
and gene together into porous nanoparticle systems have been
demonstrated on successful drug and therapeutic gene
codelivery [27-29]. Chen and Shi et al. surveyed a group of
porous nanosystems (silica, iron oxide, gold, silver, quantum dot,
carbon nanotube, graphene oxide, layered double hydroxide,
etc.) for drug-gene codelivery at the same time [27]. Johnson et
al. reported a poly(norbornene) nanoparticle system for triple
drug (cisplatin, doxorubicin, and camptothecin) release with a
controlled ratio [29].

In principle, smart multiple drug delivery to a particular
targeted lesion site may produce miniaturized “cocktail therapy”
and possibly overcome drug resistance. Different combinations
of drugs can have synergistic pharmaceutical effects. The
development of next-generation future multiple drug-loaded
smart nanoparticle systems would have vast scope by multiple
drug combinations for targeted diseases and cancers. The
potential success in (1) combining different drug components
(two or more) to be loaded into the nano-vehicle system with
appropriate binding affinity or covalently attachment site; (2)
tethering biotargeting vectors onto the surface of nanoparticles;
(3) low cytotoxicity; (4) operating and monitoring of the multiple
drug-loaded smart nanoparticle systems for stepwise and
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controlled release of two or more different drugs by enzymatic
cleavage, pH control, or ultrasound stimuli, etc; and (5)
monitoring by imaging techniques such as MRI, fluorescent
imaging, ultrasound imaging, etc, renders the feasibility of this
work.
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