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ABSTRACT 
 
The onset of double diffusive convection in a couple stress fluids saturated horizontal porous layer in presence of 
Soret effect is studied analytically using linear stability analyses. The modified Darcy equation is used to model the 
momentum equation. The linear theory is based on the usual normal mode technique. The effect of the couple stress 
parameter, the solute Rayleigh number, the Vadasz number, the diffusivity ratio, the Soret parameter on stationary 
and oscillatory convection is shown graphically.  
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INTRODUCTION 
 

The problem of double diffusive convection in porous media has attracted considerable interest during the last few 
decades because of its wide range of applications, from the solidification of binary mixtures to the migration of 
solutes in water-saturated soils. Other examples include geophysical systems, electrochemistry and the migration of 
moisture through air contained in fibrous insulation. A comprehensive review of the literature concerning double-
diffusive natural convection in a fluid –saturated porous medium may be found in the book by Nield and Bejan [10]. 
Useful review articles on double-diffusive convection in porous media include those by Mojtabi and Charrier- 
Mojtabi [7, 8]. 
 
Early studies on the phenomena of double-diffusive convection in porous media are mainly concerned with the 
problem of convective instability in a horizontal layer heated and salted from below. The problem of double-
diffusive convection in a fluid–saturated porous layer was investigated by many authors (see e. g. Taslim and 
Narusawa [17]), Trevisian and Bejan [18], Murray and Chen [9], Shivakumara and Venkatachalappa [11], Straughan 
and Hutter [14] investigated double-diffusive convection with the Soret effect in a porous layer using the Darcy- 
Brinkman model and derived a priori bounds. Bahloul et al. [1] carried out an analytical and numerical study on 
double-diffusive convection in a shallow horizontal porous layer under the influence of the Soret effect. Hill [2] 
performed linear and nonlinear stability analysis of double-diffusive convection in a fluid saturated porous layer 
with a concentration-based internal heat source using Darcy’s law. 
 
Although the problem of Rayleigh–Benard convection has been extensively investigated for Newtonian fluids, 
relatively little attention has been devoted to the thermal convection of non-Newtonian fluids. The corresponding 
problem in the case of a porous medium has also not received much attention until recently. With the growing 
importance of non-Newtonian fluids with suspended particles in modern technology and industries, the 
investigations of such fluids are desirable. The study of such fluids has applications in a number of processes that 
occur in industry, such as the extrusion of polymer fluids, solidification of liquid crystals, cooling of a metallic plate 
in a bath, exotic lubrication, and colloidal and suspension solutions. In the category of non-Newtonian fluids couple-
stress fluids have distinct features, such as polar effects. The theory of polar fluids and related theories are models 
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for fluids whose microstructure is mechanically significant. The constitute equations for couple–stress fluids were 
given by Stokes [13]. The theory proposed by Stokes is the simplest one for microfluids, which allows polar effects 
such as the presence of couple stress, body couple and non-symmetric tensors. 
 
Sunil et al. [16] investigated the effect of suspended particles on double diffusive convection in a couple–stress fluid 
saturated porous medium. They reported that for the case of stationary convection, the stable solute gradient and 
couple stress have stabilizing effects, whereas the suspended particles and medium permeability have destabilizing 
effects. Sidheshwar and Pranesh [12] studied analytically linear and nonlinear convection in a couple-stress fluid 
layer. Malashetty et al. [5] studied the Soret effect on double–diffusive convection in a couple stress liquid using 
both linear and nonlinear analyses. Recently, Malashetty et al. [6] investigated the local thermal non-equilibrium 
effect on the onset of convection in a couple-stress fluid-saturated porous layer. The problem of double-diffusive 
convection in a porous medium saturated with Newtonian fluids has been extensively studied. 
 
However, attention has not been given to the study of double-diffusive convection in a porous layer saturated with 
Non- Newtonian fluids such as couple-stress fluids with Soret effect. The objective of this paper is to study the 
effect of Soret parameter in the presence of couple stress fluid. 
 
2. Mathematical Formulation 

 
Fig. a: Physical configuration 

 
 
We consider a horizontal porous layer saturated with a couple-stress fluid confined between two parallel infinite 
stress-free boundaries, 0,=z d , heated and salted from below. The temperature and concentration difference 

between the bounding planes are ∆T  and ∆S  respectively. A Cartesian coordinate system is used, with the z-axis 
vertically upward in the gravitational field as shown in above Fig.a. We assume that the Oberback-Boussinesq 
approximation is valid and that the flow in the porous medium is governed by the modified Darcy’s law. The 
governing equations for the study of double- diffusive convection in a couple stress-fluid saturated horizontal porous 
layer are (Hill [1], Malashetty et al [6] ) 
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where ( , , )q u v w=  is the velocity; T  is the temperature; S  is the solute concentration; p  is the pressure; ρ  is 

the density;  0T , 0S  and 0ρ  are the reference temperature, concentration and density respectively; g  is the 

acceleration due to gravity; µ  is the fluid viscosity; cµ  is the couple- stress viscosity; k  is the permeability of the 

porous medium; Tβ  and Sβ  are the thermal and solute expansion coefficients respectively; ε  is the porosity; Tκ  
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and S κ   are the effective thermal diffusivity and solute diffusivity respectively. Here, 1D  quantifies the 

contribution to the mass flux due to temperature gradient. 
(1 )( )

, ,
( ) ( )

K Kc S fm
T

c cp pf f

ε ερ
γ κ

ρ ρ

− +
= =  

( ) (1 )( ) ( ) .c c cm s p fρ ε ρ ε ρ= − +  Here, K  is the thermal conductivity; pc  is the specific heat of the fluid, at constant 

pressure; c  is the specific heat of the solid; and the subscripts ,f s and m  denote fluid, solid and porous medium 

values respectively. 
 
Basic state 
The basic state of the fluid is quiescent and is given by 
 

(0,0,0)bq = , ( )bp p z= , ( )b zρ = ρ , ( )bT T z= , ( )bS S z= .                                             (6) 
 

The temperature ( )bT z , solute concentration ( )bS z , pressure ( )bP z  and density ( )b zρ  satisfy the following 

equations: 
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Perturbed state 
Let the basic state be perturbed by an infinitesimal perturbation so that 
 

bq q q′= + ,  ( ) ',bp p z p= +  ( ) ' ,b zρ = ρ + ρ ( ) ',bT T z T= + ( ) 'bS S z S= + ,                    (8) 
 

where primes indicate that the quantities are infinitesimal perturbations. 
 

Substituting eq. (8) into eqs. (1) - (5) and using basic state eqs. (7) and (8) and below transformations  
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to render the resulting equations dimensionless, and using the stream function  ψ   defined by 
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The symbol 
( , )

( , )

f g f g f g

x z x z z x

∂ ∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂ ∂
 is the Jacobian. The asterisks have been dropped for simplicity. Further, to 

restrict the number of parameters, we set ε  and γ  equal to unity. Eqs. (10) - (12) are solved for stress-free, 

isothermal, vanishing couple-stress boundary conditions, namely 
 

2

2
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ψψ ∂= = = =
∂

    at    0,1.z =                                                                                       (13) 

 
The stress-free boundary conditions are chosen for mathematical simplicity, without qualitatively important physical 
effects being lost. The use of stress-free boundary conditions is useful mathematical simplification but is not 
physically sound. The correct boundary conditions are rigid-rigid boundary conditions, but then the problem is not 
tractable analytically. 
 
3. Linear stability analysis 
In this section, we discuss the linear stability analysis. To make this study, we neglect the Jacobians in eqs. (10) - 
(12) and assume the solutions to be periodic waves of the form 
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where σ  is the growth rate, which is in general a complex quantity ( = +r iiσ σ σ ), and α  is horizontal 

wavenumber. Substituting eq. (14) in the linearized version of eqs. (10) - (12), we obtain 

2
0 0 0( ) ,n T Sn R a R a

V a

σ η δ ψ π α θ φ + = − − 
 

                                                        (15) 

2
0 0( ) ,n nσ δ θ π α ψ+ = −                                                                                      (16) 

2 2
0 0 0( ) T

n n
S

Ra
n Sr

Ra
σ τδ φ π αψ δ θ+ = − − ,                                                                         (17) 

 

where 21 C
n

η δ= + , 2 2 2 2( 1)n
n

δ π α= +  . The parameter η  is representative of the couple stress viscosity of 

the fluid. In the case of Newtonian fluid, we have 1=η .   

For  non trivial solution of 0, 0ψ θ and 0φ  we require  
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As usual, we assume that the most unstable mode corresponds to n =1 (fundamental mode) and restrict our analysis 

to this case (see e.g. Chandrasekhar [15] ). Accordingly, we set  2 2 2( 1)δ π α= +  and 21 Cη δ= +  in our further 

analysis. 
 
Stationary state 
If  σ  is real, then marginal stability occurs when 0=σ .  Then eq. (18) gives the stationary Rayleigh number 

st
TRa  at the margin of stability, in the form 
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The minimum value of the Rayleigh number st
TRa  occurs at the critical wavenumber  = cα α  where cα  satisfies 

the equation 
2 2 2 2 2 22 ( ) (1 ) (1 ) 0 .C C Cπ α π α π+ + − + =                                                    (20) 

 

It is important to note that the critical wavenumber cα depends on the couple-stress parameterC . In the case of 

single component system, 0=SRa , eq. (19) gives 
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In the presence of couple stresses, eq. (21) gives the value of the Rayleigh number 
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The critical wavenumber cα  is to be obtained from eq. (20). For a single-component couple stress fluid system 

when Soret parameter is absent i.e., 0=Sr , the eq. (22) gives 
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.                                                             (23) 

These are exactly the values given by Sidheshwar and Parnesh [2]. 
 
Further, in the absence of couple stresses, i.e., when 0=C , the eq. (23) gives 

2 2 2

. 2

( 1)s t c
T c

c
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α
+

= ,                                                                                                 (24) 

which is the classical Horton and Rogers [3] and Lapwood [4] result with critical values given by cα =1 and 
24s t

TR a π=  for Newtonian fluid through a Darcy porous layer heated from below. 

 
Oscillatory state 
It is well known that the oscillatory motions are possible only if some additional constraints like rotation, salinity 

gradient and magnetic field are present. For the oscillatory mode, substituting 0=rσ  and =i iσ ω  (ω is real) in 

eq. (18) and rearrange the terms, we obtain an expression for oscillatory Rayleigh number osc
TRa at the margin of 

stability in the form 
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and the non-dimensional frequency 2ω  in the form 
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The critical Rayleigh number for oscillatory state is computed from eq. (25) for different values of the parameter and 
the result discussed in section 4. 
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RESULTS AND DISCUSSION 
 

The onset of double-diffusive convection in a porous layer saturated with a couple-stress fluid in the presence of 
Soret effect is analyzed using a linear theory. The linear theory is based on the usual normal mode technique. 
Expressions for the stationary and oscillatory modes for different values of parameters such as couple stress 

parameter, diffusivity ratioτ , solute Rayleigh number SRa , Vadasz number Va  and Soret parameter Sr  are 

computed and the results are depicted in the figures 1-8. 
 
Fig.1 shows the neutral stability curves for different values of the couple-stress parameter C  for fixed values of 

1.0, 0.5, 150.0Va Rasτ= = = . We observe from this figure that the minimum value of the Rayleigh number for 

both stationary and oscillatory modes increases with an increase in the value of the couple-stress parameterC , 
indicating that the effect of the couple-stress parameter is to stabilize the system. 
 
The effect of diffusivity ratio τ  on the neutral stability curves for fixed values of  

1.0, 1.0, 150.0Va C Ras= = =  is shown in fig. 2. We find that the minimum value of Rayleigh number for the 

stationary mode decreases with an increase in the value of diffusivity ratio τ  . On the other hand, the oscillatory 
Rayleigh number increases with an increase in the value of diffusivity ratio τ . Thus, the diffusivity ratio has a 
contrasting effect on the stability of the system in both stationary and oscillatory modes. 
 

Fig. 3 displays the effect of the solute Rayleigh number SRa on the neutral stability curves for both stationary and 

oscillatory modes for fixed values of 1.0, 1.0, 0.5Va C τ= = = . This figure indicates that the minimum Rayleigh 

number for both stationary and oscillatory modes increases with an increase in the value of the solute Rayleigh 
number, implying that the effect of solute Rayleigh number is to stabilize the system. 
 
The effect of Vadasz number Va  on neutral stability curves for both stationary and oscillatory modes for fixed 

values of 150.0, 1.0, 0.5SRa C τ= = =  is shown in fig. 4. We observe from this figure that the minimum value 

of the Rayleigh number for both stationary and oscillatory modes increases with an increase in the value of the 
Vadasz numberVa , indicating that the effect of the Vadasz number is to stabilize the system. 
 
Fig. 5 shows the neutral stability curves for different values of Soret parameter Sr  (both positive and negative) for 

fixed values of 1.0, 1.0, 0.5150.0,SVa C Ra τ= = == . We find that as the Soret parameter Sr  increases 

positively, the Rayleigh number decreases. However, the effect of increasing negative Soret parameter is to increase 
the Rayleigh number for both stationary and oscillatory modes. This is due to the fact that for negative Soret 
parameter, the heavier component migrates towards the hotter region. Thus, counteracting the density gradient 
caused by temperature. 
 

Fig.7 depicts the variation of the critical Rayleigh number .T cRa  with couple stress parameter C  for different 

values of Soret parameter Sr  and for fixed values of 0.5, 1.0, 150.0SVa Raτ = = = . We find that an increase 

of Soret parameterSr , decreases the critical Rayleigh number for the stationary mode and increases for oscillatory 
mode. On the other hand, the critical Rayleigh number for both stationary and oscillatory modes increases with an 
increase of couple stress parameter indicating that effect of couple stress parameter is to stabilize the system. 
 
The variation of the Rayleigh number for both stationary and oscillatory modes with the solute Rayleigh number for 
different values of the couple-stress parameter C  and fixed values of 1.0, 0.5Va τ= =  is shown in fig. 7. We 

observe that the critical Rayleigh number for both stationary and oscillatory modes increases with increase of couple 
stress parameterC . The critical Rayleigh number for the stationary and oscillatory modes increases with an increase 
in the value of the solute Rayleigh number, indicating that the solute Rayleigh number stabilizes the system. Further, 
we find that the onset of convection is through the stationary mode for small and medium values of the solute 
Rayleigh number. However, when the solute Rayleigh number is increased beyond a certain critical value that 
depends on the other parameters, convection first sets in through the oscillatory mode. We also find that for large 
solute Rayleigh number, the influence of the couple-stress parameter is insignificant. 
 
Fig.8 depicts the variation of the critical Rayleigh number for stationary and oscillatory modes with solute Rayleigh 
number for different values of diffusivity ratio τ  . We find that the critical Rayleigh number decreases with an 
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increase in diffusivity ratio τ  for the stationary mode. On the other hand , the critical Rayleigh number increases 

with an increase in the value of diffusivity ratio τ  up to a certain value of SRa  and then the trend reverses, 

indicating that the diffusivity ratio has a dual effect on the oscillatory mode when the Vadasz number and couple-
stress parameter are fixed. 

 
CONCLUSION 

 
The onset of double diffusive convection in a porous medium saturated with couple stress fluid in the presence of 
Soret effect is investigated using the linear theory.  
1. The diffusivity ratio τ  destabilizes the system for stationary mode while stabilizes the system for oscillatory 
mode.  

2. The solute Rayleigh number SRa  stabilizes the system for both stationary and oscillatory modes.  

3. The effect of Vadasz number Va  is to destabilize the system in oscillatory mode only and its effect is 
insignificant in stationary mode.  
4. The positive Soret parameter Sr  destabilizes the system and negative Soret parameter Sr  stabilizes the system 
in both stationary and oscillatory convection.  
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