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ABSTRACT 

The effects on the upper critical and lower critical fields for a system with two almost degenerate 

order parameters is presented. 

_________________________________________________________________ 

INTRODUCTION 

We now consider effects on the upper critical and lower critical fields for a system with two almost 

degenerate order parameters. Let us first consider the upper critical field Hc2. Such an investigation 

has recently been carried out including the order parameters of two representations, by [6]. Several 

other groups have also considered the problem of a single representation whose degeneracy is lifted by 

the presence of a magnetic ordering. We have to extend our free-energy expression by including the 

gradient terms.  
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The coupling terms can easily be derived by the decomposition of a Kronecker product Γ1* ⊗ Γ5 ⊗ 

Γ4* ⊗ Γ4 + c. c (=Γ1 ⊗ Γ2 ⊗ 2Γ3 ⊗ 3Γ4 ⊗ 4Γ5), where Γ4 is the representation of the gradient D= ∇ - 

2eA/c. Only one term can be found in this example. 

 

K (Dxη)* (Dyη3 + Dzη2) + (Dyη) * (Dzη1 + Dxη3) + (Dzη) * (Dxη2 + Dyη1) + c. c  --- 1.1 

 

As an example, let us consider the critical field along one of the main axes, say the zaxis. By 

neglecting Dz and setting H± = q(Dx + ιDy)/√2 and η± =(ηi ± iη2)/ √2 (q2= c/2eH, we obtain the 

linaerized Ginzburg-Landau equations 

K1 (H+ H- + H- H+)η + k(H+
2 + H-

2) η3 = -A1(T)q2η       1.2 

K2 (H+ H- + H- H+)η3 + k(H+
2 + H-

2) η = -A5(T)q2η3,  

Which are completely decoupled from the other two equations for η+ and η-. These latter two 

equations have their solution leads to a linear temperature dependence of the critical field. 

 Hc2
(1) (T)=           1. 3 

 

 

where C(K1
′, K2

′, K3
′, K4

′,) is a constant depending on K1
′, and is obtained from the lowest elgenvalue 

of an infinite matrix. 

A more interesting problem is connected with the η – η3 equation system, where the coupling term 

also enters. These equations, moreover, lead to the problem of finding the lowest elgenvalue in an 

infinite dimensional system. However, a goal insight into the properties of the solution can be obtained 

if we treat the problem in a perturbative way, assuming that the coupling term is very small (k … K1
′, 

K2
′) [6].   

Starting with the zeroth order, we find two solutions (let us assume T5 > T1), which correspond to η 

=|0〉 and η1 =|0〉, respectively. These leads to the occupation number representation. 

  

Hc2
(0) (T)= -           1. 4 

  

Hc2
(0) (T)= -           1. 5 

 

           C AS (T) 
eC(K1

′, K2
′, K3

′, K4
′,) 

      c As (T) 
      2e K2

1 

      c A1 (T) 
      2e K1 
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Where Hc2
(0) represents the upper critical field (the lowest eyenvalue) immediately below T5. If K1 < 

K2, there is a crossing point of the Hc2
(0) and Hc2

(0) line at same T′ defined by A1(T
1)K2

1= A5(T
1)K1. 

Below T′, Hc2
(0) is the critical field. 

Going to first-order parameter, we write the two order parameters as linear combinations of the states 

0〉 and 2〉. Diagonalizing the matrix in this subspace, we obtain corrections to our former solutions 

[(η, η3) =(a0 0〉, b20〉) and (η, η3)= (a2, |2〉, bo |0〉 respectively], 

 

Hc2
(1) =      A1 A5 {(5k1A5 – K′2A1)

2 + 8kA1A5}   - 5k1A5 – K′2A1     > Hc2
(0),   

 

Hc2
(1) =      A1 A5 {(k 1A5 – 5K′2A1)

2 + 8kA1A5}   - k1A5 – 5K′2A1     > Hc2
(0),           1.6 

 

where Hc2
(1) is the upper critical field close to Tc = T5 and Hc2

(1) occurs below a certain temperature 

T1. It can easily be seen that sharp change of slope of Hc2 between the two solutions exists in all orders 

of perturbation, because there is no finite matrix element between the two states (η, η3) =(0〉, 0) and 

(η, η3) =(0 0〉 in any higher order of perturbation in the coupling term. This is different if the 

magnetic field is pointing along some arbitrary direction. Then all four components of the order 

parameter (η, η1, η2, η3,) coupled. In such a case a slope change in the critical field is mostly smooth. 

We have three typical situations 

(a) K2′ > C(K1′, K2′ , K3′, K4′). The critical field goes linear with the possibility of a change to 

Hc2
1 as in (equation 1.5). if K1 < C (fig 1a); otherwise, see (fig 1b). 

(b) K2′ < C(K1′, K2′ , K3′, K4′), K1′, the critical field Hc2 as in (equation 1. 5) without any Kink 

(fig. 1b). 

(c)  K1 < K2′ < C (K1′, K2′ , K3′, K4′), the critical field has a kink, as discussed above (fig. 1a). 

 

Finally, we mention the possibility of a phase transition with decreasing field when the fourth order 

terms in the free energy become important and favour a state with other symmetry than that induced 

by the magnetic field. This would, for example be the case if we assumed situation (a) and the 

coefficient β1, with the condition (4β2 < β3, β3 >0). At high fields a state appears with two finite 

components of the Γ3 order parameter (time- reversal-breaking), whereas for low fields a one 

component state and, depending on the temperature and field, a finite Γ, order parameter component is 

more favourable. 

 

c 
e 

1/2 
-1 

c 
e 

1/2 
-1 
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Fig. 1a & b: Possible behaviours of the upper critical field H in a superconductor with two 

almost degenerate order parameters situation (a) a crossing of the lowest Landau levels leads to 

a kink and a change of the high-field superconducting state, situation (b) no crossing occurs. 

 

We turn now to the lower critical field Hc1, which is more closely related to the zero-field behaviour 

of the system. The effect of an additional phase transition on this quantity is of special interest, since it 

allows a direct observation of an additional phase transition, as we shall show here, and will be 

compared with experimental data. [7]; [8],[5],[9]  

 

RESULTS AND DISCUSSION 

In limit of a London penetration depth very large compared with the coherence length of the order 

parameter, the main contribution to the line energy of a vortex comes from the magnetic field and the 

kinetic energy stored in the circulating supercurrent [1]. However, It is essential to take into account 

that the London penetration depth is not a scalar, but a tensor quantity in an unconventional 

superconductor. Thus the London equation has the general form 

∇ x [ ∧2 (∇ x H)] + H =0,         1. 7 

where the tensor ∧2 is defined as ∧2 =c2 p∧ - 1/8πe2 with p as the superfluid tensor defined by the 

expression for the diamagnetic current (Jdia = 2e2pA/c2). The equation for the field around a vortex is 

obtained from (equation 1. 6) by replacing the right-hard zero by φonδ (n x r) (where n is the direction 

of the external field and φo is a flux quantum). If the applied field (n) is parallel to one of the main axes 

^ 

^ 

^ 
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of ∧2, the vortex line will also be parallel to n. For an arbitrary n, however, these directions need not 

coincide, as discussed in detail by [2]. 

For this phase the tensor p has the rather simple form 

 P= k1(x x + y y + z z) |η|2 + [k1
′ x x + k2

′ (y y + z z)] |η1|
2     1. 8 

with ι j denoting the tensor element pι j. For this example the crystal axis is the main axis of the tensor, 

because there are no coupling terms between the order-parameters components. 

 

We choose n parallel to such as axix. Then the field calculated from the modified (equation 1.7) is  

H = n                Ko(√xo
2/λo

2 + xβ
2/λβ

2)       1. 9 

 

where xo(β) denote the directions perpendicular to n having the corresponding London penetration 

depths λo (β). (Ko is a modified Bessel function). 

This form becomes very simple if we choose n parallel to the x axis, because 

 λo
2 - λβ

2 =λ2 =                1. 10 

 

leads to a completely axial vortex. The line energy is obtained in general from 

ε =       ∫dxodxβ [H
2 + (∇ x H) ∧2 (∇ x H)],            1. 11 

 

where the integration is restricted to the region √(xo/ξo)
2 + (xβ/ξβ)2 〉 1. Evaluating this integral in the 

usual way (see, for example, [3], we find (n || x) 

 Hc1 =              =                 Ink              1. 12 

 

with the Ginzurg-Landau Parameter  K= λ/ξ (for this case ξ also is constant in the y – z direction). 

Now let us consider the change of Hc1 at the transition from the high temperature phase D4h(Γ4) to the 

lower temperature phase D4h(Γ1 ⊗ Γ4), using the equation for λ2 and k, we obtain a sharp change in the 

slope of Hc1, since λ decreasing due to the additional contribution of the Γ1 order parameter to the 

super fluid density. The Ginzburg-Landau parameter drops rapidly from a constant value in the high 

temperature phase down to a lower, almost constant value [9].     

 

 

 

    φo 
2πλoλp 

    c2 
8πe2k1 

            1 
|η|2 + k2

1 |η1|
2  

 1 
8π 

  4πε 
   φo 

  φo 
8πλ2 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

^ ̂  

^ 
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CONCLUSION 

Comparing the two slopes Hc1
1=(dHc1/dT), above and below the second transition at T1

″, we find 

 

         =         1 –   +    > 1                     1. 13 

 

where λ1 =dλ/dT and δ is an infinitesimal numbers. This ratio is larger than 1 in the large K limit 

where Ink >1 (k taken at T1′), if the London penetration depth is decreasing faster below the additional 

transition as T1′ than above [5].  Comparing the ratio λ′(T1′ - δ) / λ′(T1′ + δ) with the one of the 

specific heat C(T1′ - δ)/ C(T1′ + δ) we find that this condition is usually satisfied if the discontinuity of 

the specific heat ∆C is positive provided that all coefficients k in the tensor p are of the same order of 

magnitude. This qualitative behaviour is in agreement with experimental results. 
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