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ABSTRACT
The effects on the upper critical and lower critical fields for a system with two almost degenerate

order parametersis presented.

INTRODUCTION
We now consider effects on the upper critical anaelr critical fields for a system with two almost
degenerate order parameters. Let us first consideupper critical field Hc Such an investigation
has recently been carried out including the ordeameters of two representations, by [6]. Several
other groups have also considered the problemsofgde representation whose degeneracy is lifted by
the presence of a magnetic ordering. We have tendxbur free-energy expression by including the
gradient terms.
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The coupling terms can easily be derived by theoagosition of a Kronecker produtt* [0 I's [
FrF0OlMs+c.c(F L O0MN 0230 3y O 46s), whererl 4 is the representation of the gradient D=

2eAlc. Only one term can be found in this example.
KEDX”)* (DyNs + Din2) + (ByN) * (Do + Dena) + (Dan) * (DN + Dyny) + C-ﬂ 11

As an example, let us consider the critical fieldng one of the main axes, say the zaxis. By
neglecting @ and setting H = q(D; + 1Dy)/V2 andnt =(ni £ iny)/ v2 (of= c/2eH, we obtain the
linaerized Ginzburg-Landau equations
Ki(Has H. + H H)N + k(H.2+ HA ns= -A(T)on 1.2
Ko (Hs H. + H H)Ns + k(H:2+ H2) n = -Ag(T)gPNa,
Which are completely decoupled from the other twqmuations forn. and n.. These latter two
equations have their solution leads to a lineapemature dependence of the critical field.

He,\Y (T)= 1.3

C AS (T)
eC(K1'1 K2'1 K3,a K4'1)

where C(K, Kz, K3, K4,) is a constant depending on Kand is obtained from the lowest elgenvalue
of an infinite matrix.

A more interesting problem is connected with the nz equation system, where the coupling term
also enters. These equations, moreover, lead tprifldem of finding the lowest elgenvalue in an
infinite dimensional system. However, a goal insigho the properties of the solution can be oladin

if we treat the problem in a perturbative way, asisig that the coupling term is very small (k .. ,K
K2) [6].

Starting with the zeroth order, we find two solaso(let us assumes™® T;), which correspond tq

=|0) andn; =|0), respectively. These leads to the occupation nungpeesentation.

H C2(0) (T)=- g AE (T) 1.4
e

Hc,© (T)=- g :1|€(T) 1.5
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Where Hg® represents the upper critical field (the lowestresalue) immediately belowsTIf K, <

K,, there is a crossing point of the £ftand He@ line at same Tdefined by A(TYH)K,'= As(THK 1.
Below T, Ho,? is the critical field.

Going to first-order parameter, we write the twdeasrparameters as linear combinations of the states

[0y and[2). Diagonalizing the matrix in this subspace, weaobtorrections to our former solutions

[(n, n3) =(a0 0), b,[0)) and @, N3)= (&, |2, by |0y respectively],

He,M = %A_L As{(5k1As — K'5A1)? + 8KAALY, - 5kiAs — K'zpj 1 > Hg,,

1/2

1
Ho ) =-C- A A @q/% — 5KAL)? + 8KAAS) - kiAg — 5K'2Aﬂ > He?, 1.6

where He'V is the upper critical field close ta. & Ts and He'” occurs below a certain temperature
T, It can easily be seen that sharp change of slbple, between the two solutions exists in all orders
of perturbation, because there is no finite magtement between the two statgs 1fs) =(C10), 0) and
(n, n3) =(0 D0y in any higher order of perturbation in the cougliterm. This is different if the
magnetic field is pointing along some arbitraryediron. Then all four components of the order
parameterr, ni, N2, N3,) coupled. In such a case a slope change in iti@atfield is mostly smooth.
We have three typical situations
(@) K2 > C(K{, K, K3, K4). The critical field goes linear with the possdilyilof a change to
Hc,! as in (equation 1.5). if K< C (fig 1a); otherwise, see (fig 1b).
(b) Ko < C(Ky, Ko, K3, Ky), Ky, the critical field Hg as in (equation 1. 5) without any Kink
(fig. 1b).
(c) Ki<Ky <C(K{, Ky, K3, Ky), the critical field has a kink, as discussed a&b@ig. 1a).

Finally, we mention the possibility of a phase siéion with decreasing field when the fourth order
terms in the free energy become important and fiagostate with other symmetry than that induced
by the magnetic field. This would, for example Ie tcase if we assumed situation (a) and the
coefficient ;, with the condition (B, < 3, B3 >0). At high fields a state appears with two finite
components of thd ; order parameter (time- reversal-breaking), whereaslow fields a one
component state and, depending on the temperatdréedd, a finitel’, order parameter component is

more favourable.
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Fig. 1a & b: Possible behaviours of the upper critical field H in a superconductor with two
almost degenerate order parameterssituation (a) a crossing of the lowest Landau levelsleadsto

akink and a change of the high-field superconducting state, situation (b) no crossing occurs.

We turn now to the lower critical field Hcwhich is more closely related to the zero-fieghaviour

of the system. The effect of an additional phaamedition on this quantity is of special interesics it
allows a direct observation of an additional phasasition, as we shall show here, and will be
compared with experimental data. [7]; [8],[5].[9]

RESULTS AND DISCUSSION
In limit of a London penetration depth very largampared with the coherence length of the order
parameter, the main contribution to the line enarfgg vortex comes from the magnetic field and the
kinetic energy stored in the circulating superaotrjd]. However, It is essential to take into aaabu
that the London penetration depth is not a scdlat, a tensor quantity in an unconventional
superconductor. Thus the London equation has thergkeform
O x [P (O x H)] + H =0, 1.7

where the tensol? is defined as? =¢® p” = Y8me? with p as the Superfluid tensor defined by the
expression for the diamagnetic current.@ 2€pA/c?). The equation far the field around a vortex is
obtained from (equation 1. 6) by replacing the tigard zero byp,nd (n x r) (where n is the direction

of the external field ang, is a flux quantum). If the applied field (n) is pHel to one of the main axes
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of [, the vortex line will also be parallel to n. Far arbitrary n, however, these directions need not
coincide, as discussed in detail by [2].
For this phase the tensor p has the rather sirophe f

P=k@X+9y+2 DM+ [k RX + ke (9§ +272)] faf 1.8
with 1} lenoting the tensor element.gor this example the crystal axis is the mairs aithe tensor,

because there are no coupling terms between tlee-pedtameters components.

We choose n parallel to such as axix. Then thd talculated from the modified (equation 1.7) is

H=n G  BVYXTAS + XA 1.9
2T\,

where x@ denote the directions perpendicular to n havirg ¢brresponding London penetration

depthsh, @). (Ko is @ modified Bessel function).

This form becomes very simple if we choose n pelrédl the x axis, because
A2 - )\Bz A2 = ¢ 1

1.10
greky Inl*+ ke Nl
leads to a completely axial vortex. The line enasgybtained in general from
e =_1 [dx,dxg [H? + (O x H) 7 (O x H)], 1. 11

8n

where the integration is restricted to the regi¢x,/,)* + (xB/EB)2> 1. Evaluating this integral in the

usual way (see, for example, [3], we find (n || X) A
Hco= 4me = @ Ink 1.12
@ 8T\*

with the Ginzurg-Landau Parameter K& (for this cas€ also is constant in the y—direction).

Now let us consider the change of;Ht the transition from the high temperature pHagé 4) to the
lower temperature phaseil1 O "4), using the equation fo¥* and k, we obtain a sharp change in the
slope of Hg, sinceA decreasing due to the additional contributionhef [t; order parameter to the
super fluid density. The Ginzburg-Landau paramdteps rapidly from a constant value in the high

temperature phase down to a lower, almost constdné [9].
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CONCLUSION
Comparing the two slopddc,'=(dHc,/dT), above and below the second transitiod at, we find

He, (Ti4-8)  _ AY(T.*-9) 1)1
Ao, (T8 - aMTt+o) |1 k| 'k 71 1.13

whereA! =d\/dT andd is an infinitesimal numbers. This ratio is largean 1 in the large K limit
where Ink>1 (k taken at T), if the London penetration depth is decreasisgeiabelow the additional
transition as T than above [5]. Comparing the radg(T," - &) / A'(Ty' + &) with the one of the
specific heat C(T - )/ C(T,' + &) we find that this condition is usually satisfiédhe di/\scontinuity of
the specific heaAC is positive provided that all coefficients k mettensor p are of the same order of

magnitude. This qualitative behaviour is in agreeiwégth experimental results.

REFERENCES
[1] Abrikosov, A. A, Gor’kov, L. P, and Dzya;oshinkl963) — Unconventional Superconductivity.
Rev. Mod. Phys. Vol 63. No 2. Methods of Quantuehdfitheory in statistical mechanics (Dovet, New
York).
[2] Balatzkii, A, V, Burlachkov, L. L and Gor’kov, P (1986) Rev. Mod. Phys. Vol. 63. No. 2. Eksp.
Teor Fiz. 90, 1478
[3] De Gennes, P. G1966) Rev. Mod. Phys. Vol. 63. No. 2. Superconductivity of metals anltbgs
(reissued 1989 by Addison —Wesley, Reading, M. A)
[4] Gor’kov, L. P, 987) Rev. Mod. Phys. Vol. 63. No. 2S0v. Sci. Rev APhys. 9, 1
[5] Hess, D, W., Tokuyasu, T. A and Sauls, J. 2980) Rev. Mod. Phys. Vol. 63, No. 2.J. Phys.
Condens. Matter J. 8135
[6] Joynt, R(990) Rev. Mod. Phys. Vol. 63, No. 2.
[7] Kumar, P, and Wolfle, 1087) Rev. Mod. Phys. Vol. 63. No. 2 Phys. Rev. Lett. 59,1954
[8] Langner, A. D, Sahn, D and George, T.1B88), Rev. Mod. Phys. Vol. 63. No. 2Phys. Rev. B38,
9187.
[9] Sigrist, M; Rice, T. M and Ueda, KL989), Rev. Mod. Phys. Vol. 63, No. 2.Phys. Rev. Lett, 63,
1727

111
Pelagia Research Library



