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Introduction
Peroxisome	proliferator-activated	receptors	(PPAR)s	constitute	a	
family	of	receptors;	members	of	the	steriod	receptor	superfamily	
[1-4].	To	date,	there	are	three	known	receptors,	namely	PPAR	(α),	
(β/δ),	and	(γ).	Since	their	discovery,	PPARs	have	been	shown	to	
be	 expressed	 in	 monocytes/macrophages,	 the	 heart,	 vascular	
smooth	 muscle	 cells,	 endothelial	 cells,	 and	 in	 atherosclerotic	
lesions.	 Since	 PPARs	 are	 nuclear	 transcription	 factors;	 they	
regulate	multiple	genes	 involved	 in	energy	production,	 glucose	
and	 lipid	 metabolism	 [4-8].	 Polymorphisms	 in	 these	 receptors	
influence	 the	 pathology	 of	 numerous	 diseases	 including	
obesity,	 diabetes,	 atherosclerosis,	 inflammation	 and	 cancer	
[1-8].	 Furthermore,	 PPARs	 can	 be	 activated	 by	 a	 vast	 number	 of	
compounds	 including	 synthetic	 drugs	 such	 as	 the	 clofibrate	 and	
anti-diabetic	 thiazoldinedione	classes,	polyunsaturated	 fatty	acids,	
and	a	number	of	eicosanoids,	including	prostaglandins,	lipoxygenase	
products,	and	oxidized	low	density	lipoprotein	[6,	9].

Yokoyama	 et	 al.	 [7]	 have	 investigated	 the	 inhibitory	 effect	 of	
clofibric	 acid	 (CA),	 a	 ligand	 for	 PPARα,	 on	 growth	 of	 ovarian	
malignancy	 in vivo and in vitro	 experiments	 using	 OVCAR-3	
and	 DISS	 cells	 derived	 from	 human	 ovarian	 cancer	 and	 aimed	
to	 elucidate	 the	molecular	 mechanism	 of	 its	 antitumor	 effect.	
CA	 treatment	 significantly	 suppressed	 the	 growth	 of	 OVCAR-3	

tumors	 xenotransplanted	 s.c.	 and	 significantly	 prolonged	 the	
survival	 of	mice	with	malignant	 ascites	derived	 from	DISS	 cells	
as	compared	with	control.	The	results	in	this	study	indicated	that	
CA	produced	potent	antitumor	effects	against	ovarian	cancer	in	
conjunction	with	 a	 reduction	 of	 angiogenesis	 and	 induction	 of	
apoptosis	[7].	

The	 detailed	 literature	 review	 conducted	 in	 the	 current	 study	
revealed	that	a	very	limited	number	of	publications	have	appeared	
that	dealt	with	the	interaction	of	CA	with	metal	ions,	especially	in	
aqueous	solutions	[10].	Moncol	et	al	showed	the	crystal	structures	
and	the	spectral	properties	(UV-Vis,	EPR)	for	both	the	bis	Cu(CA)2 
complex	 and	 the	 dimeric	 (Cu)2:CA	 complexes	 [10].	 Ghauch	 et	
al.	studied	the	effect	of	CA	on	metallic	Iron	(Fe0)	and	other	iron	
plated	surfaces	such	as	plated	Fe0	 (mFe0:	Fe0/Pd0,	Fe0/Ni0)	 [11].	
This	paper	by	Ghauch	et	al.	was	not	biologically	relevant	because	
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iron	was	 in	 its	metallic	 form	and	not	 in	 aqueous	 environment.	
Although	there	is	a	wealth	of	toxicological,	biological,	medicinal,	
and	chemical	information	about	CA	and	PPAR	[10-66]	yet,	there	is	
lack	of	chemical	studies	of	CA	with	essential	and	toxic	metal	ions	
under	ambient	conditions.	

We	have	initiated	a	series	of	studies	of	CA	with	a	series	of	metal	
ions	 such	as	 Fe3+,	 Cu2+,	 Zn2+,	 and	Cr3+.	 Clearly,	 these	metals	 are	
essential	metal	ions	that	are	found	in	the	biological	sphere	with	
various	 degrees	 of	 abundance	 [67].	 The	 choice	 of	 Cr3+	 to	 be	
presented	 in	the	current	report	was	due	to	the	fact	that	Cr3+ is 
considered	to	be	an	essential	metal	that	forms	what	is	known	as	
“the	 low-molecular-mass	chromium-binding	complex”	 (LMMCr)	
[68],	which	plays	a	role	glucose	metabolism	[69,	70].	

Fibrates	are	the	only	marketed	PPARα	agonists	that	are	effective	
in	 lowering	 elevated	 serum	 triglycerides.	 Their	 chemical	
structures	are	characterized	by	the	presence	of	the	2-phenoxy-2-
methylpropanoic	acid	moiety.	The	main	objectives	of	the	current	
report	are	1)	To	show	whether	CA	binds	with	Cr3+	or	not?;	2)	To	
identify	the	type	of	metal-complexes	formed,	if	there	is	binding,	
under	the	ambient	conditions,	and	3)	To	measure	the	potential	
response	of	the	reaction	mixture	in	milli-Volts.	Potentiometry	is	
one	of	the	most	powerful	tools	to	study	metal	 ions	 in	aqueous	
solutions	at	ambient	conditions	[71-74].	

Experimental Section
Materials
All	 solutions	 were	 prepared	 using	 99%	 purity	 Sigma	 reagent	
grade	 CA,	 C10H11ClO3,	 formula	 weight	 214.6	 g.mol-1 and 
chromium	 nitrate	 nona-hydrate,	 Cr(NO3)3●9H2O,	 formula	
weight	400.15	g.mol-1,	using	doubly	deionized	water	to	prepare	
all	 solutions.	 Scheme 1	 shows	 the	 structural	 formula	 of	 CA,	
or	 [2-(4-chlorophenoxy)-2-methyl	 propanoic	 acid	 (Chemical	
formula	C10H11ClO3).	The	pH	values	of	all	solutions	were	adjusted	
using	~	0.1	mol.L-1	sodium	hydroxide	(NaOH),	solution	that	was	
standardized	 to	 the	 fourth	 decimal	 place.	 The	 pH	 values	were	
measured	using	Orion	Membrane	pH	meter	(model	720)	with	a	
combination	Orion-glass	electrode	in	0.1	mole.L-1	 ionic	strength	
using	the	appropriate	amounts	of	1.0	M	NaNO3	solution.	

Preparation of the potentiometric titration 
solutions
In	all	metal-ligand	potentiometric	titrations,	 the	NaOH	solution	
was	 always	 the	 titrant.	 The	 NaOH	 solutions	 were	 prepared	
from	 NaOH	 laboratory	 grade	 pellets	 in	 carbonate	 free	 water.	

The	methods	used	 to	 prevent	 the	 contamination	of	 the	titrant	
with	 atmospheric	 CO2	 had	 been	 described	 elsewhere	 [70-74].	
The	NaOH	 solutions	were	 standardized	using	 primary	 standard	
potassium	hydrogen	phthalate	(KHP).	Both	NaOH	and	KHP	were	
purchased	from	Fisher	Chemical	Co.	Before	any	KHP	titration,	the	
KHP	was	dried	at	110oC	for	24	hours	and	stored	in	a	desiccator.	A	
stock	indicator	solution	of	about	0.2%	phenolphthalein	in	about	
90%	ethanol	was	prepared	from	reagent	grade	phenolphthalein.	
KHP	 was	 titrated	 to	 the	 phenolphthalein	 end	 point.	 Typically,	
thirteen-fifteen	runs	were	carried	out	 to	standardize	 the	NaOH	
solution.	Standard	statistical	treatments	of	the	data	such	as	the	
arithmetic	 mean,	 standard	 deviation,	 T-test,	 and	 Q-test	 were	
conducted	using	Excel	software.	

Potentiometric titrations
The	potentiometric	titration	 solutions	were	 contained	 in	 a	 250	
mL	beaker	equipped	with	a	magnetic	stirring	bar.	The	beaker	was	
covered	with	a	custom	made	Teflon	cover.	 In	a	typical	titration;	
the	 CA	 solution	 was	 added	 first	 followed	 by	 the	 addition	 of	
the	 Cr3+	metal	 ion	 solution.	 To	 adjust	 the	 ionic	 strength	 of	 the	
solution	to	0.1	M	the	appropriate	amount	of	1.0	M	NaNO3	was	
added.	The	 total	 volume	of	 the	final	titration	solution	was	100	
mL.	The	final	concentration	of	the	metal	ion	titrated	was	in	the	
range	of	2.0	to	2.5	mmoles.L-1.	Before	each	titration,	the	titration	
solution	mixtures	were	allowed	 to	 stir	 for	25	minutes	 to	 reach	
equilibrium.	The	NaOH	titrant	was	added	in	the	100	L	increments	
using	 an	 Eppendorf	micropipette	with	 continuous	 stirring.	 The	
time	intervals	between	the	additions	of	the	NaOH	solution	were	
set	to	5	minutes,	which	was	sufficient	to	get	each	of	the	pH	values	
stabilized	 and	 reach	 complete	 equilibrium.	 The	 start	 pH-value	
was	in	the	range	of	3-4	and	the	final	pH-value	was	in	the	range	
of	10-11.	Each	titration	took	about	5	to	6	hours	to	complete.	All	
titrations	were	conducted	at	room	temperature.	

UV-Vis spectroscopy
All	 UV-Vis	 spectroscopy	 measurements	 were	 conducted	 using	
a	 T60	 high-performance	 spectrophotometer	 in	 connection	 with	
UVWIN	 software	 version	 5.0,	 both	 purchased	 from	 Advanced	
ChemTech	(Louisville,	KY).	Samples	were	prepared	 in	D.I.	water	at	
25ºC.	The	entire	UV-vis	spectrum	was	scanned	from	200	to	1100	nm	
using	quartz	cuvettes	with	optical	path	length	of	1	cm.	A	reference	
cuvette	filled	with	D.I.	water	was	used	with	all	measurements.	The	
concentration	 of	 the	 metal	 was	 =	 4.3	 ×	 10−2	 mol.L-1.	 The	 UV-Vis	
spectra	were	collected	at	the	pH	values	of	3.00. 

IR spectroscopy
All	IR	spectroscopy	measurements	were	conducted	using	Nicolet	
iS10	 spectrophotometer	 in	 connection	 with	 OMNIC	 software	
version	 8.1,	 both	 purchased	 from	 Thermo	 Fisher	 Scientific	
(Madison,	 WI).	 Samples	 were	 prepared	 in	 D.I.	 water	 at	 25ºC.	
The	 entire	 IR	 spectrum	 was	 scanned	 from	 400	 to	 4000	 cm-1 
using	the	provided	attenuated	total	reflectance	(ATR)	accessory	
cell	 compartment	 equipped	 with	 a	 diamond	 cell	 that	 can	
accommodate	 all	 kind	 of	 samples	 (solid	 samples	 or	 aqueous	
solution	 samples).	 The	 following	 data	 parameters	 were	 used	
in	 collecting	 the	 IR	 spectra:	 number	 of	 sample	 scans	 and	 the	
number	 of	 background	 scans	was	 set	 at	 32	with	 resolution	 of	
4.000,	 and	 Laser	 frequency	 of	 15798.7	 cm-1.	 Typical	 IR	 spectra	

Structural	formula	of	Clofibric	acid	(CA),	or	
[2-(4-chlorophenoxy)-2-methylpropanoic	acid]	
(Chemical	formula	C10H11ClO3).

Scheme 1



ARCHIVOS DE MEDICINA
ISSN 1698-9465

2016
Vol. 1 No. 1: 6

Journal of Heavy Metal Toxicity and  Diseases 
ISSN 2473-6457

© Under License of Creative Commons Attribution 3.0 License 3

were	generated	in	which	the	X-axis	was	given	as Wavenumbers	in	
cm-1	and	Y-	axis	was	recorded	as	%	Transmittance.	

Results and Discussion
Potentiometric titrations of free CA and free 
metal ions 
Potentiometric	titration	experiments	of	free	CA	showed	that	the	
acidity	constants	of	the	carboxylic	acid	functional	groups	present	
to	be	pKa	=	4.32	±	0.06	at	25°C,	0.1	M	NaNO3.	To	the	best	of	the	
researcher’s	knowledge,	this	is	the	first	time	to	report	the	acidity	
constant	of	CA	in	aqueous	solutions	at	room	temperature	in	0.1	
M	ionic	strength.	(Figure 1)	is	the	potentiometric	titration	graph	

of	 free	CA.	This	graph	contains	three	overlapped	plots	 to	show	
data	consistency. (Figure 2)	is	the	speciation	diagram	of	free	CA	
generated	in	aqueous	solutions	using	Hyperquad	simulation	and	
speciation	(Hyss)	software	program	[75].	pKw	value	of	13.78	was	
taken	from	the	literature	[76].	CA	releases	one	proton	due	to	the	
fact	that	CA	has	a	sole	titratable	functional	group;	the	carboxylic	
acid	group.	This	confirms	the	fact	 that	clofibric	acid	 is	a	mono-
protic	acid.	These	data	of	this	ligand	has	not	been	reported	in	the	
NIST	 standard	 reference	database	of	 critically	 selected	 stability	
constants	of	metal	complexes	[77].	

(Figure 3a)	 is	 the	 potentiometric	 titration	 graph	 of	 free	 Cr3+.	
Four	titrations	plots	were	overlapped	to	show	data	consistency.	
(Figure 3b)	 is	 the	mathematical	 treatments	 graphs	 for	 (Figure 
3a).	This	mathematical	treatment	is	the	first	derivatives	(slopes)	
versus	the	number	of	observed	equivalents.	After	data	treatment	
and	converting	the	volume	of	titrant	into	number	of	equivalents	
of	titrant,	it	is	clear	that	a	tri-valnet	metal	ion	such	as	Cr3+ releases 
a	net	of	three	proton	equivalents	into	the	aqueous	solutions.	This	
is	 due	 to	 the	 fact	 that	 metal	 ions	 in	 aqueous	 solutions	 under	
ambient	conditions	go	 through	metal	 ion	hydrolysis.	This	 term,	
metal	 ion	hydrolysis,	 is	 defined	 in	 equations	1-3	 [78-80]	 and	 it	
is	 valid	 for	 any	metal	 ion	 such	as	 the	 chromium	 in	 its	 trivalent	
oxidation	 state.	 The	 number	 of	 equivalents	 is	 defined	 as	 the	

a)	Potentiometric	titration	graphs	of	
free	 Cr3+,	 0.1	M	NaNO3,	 25

oC.	 Four	
titration	 plots	 were	 overlapped	 to	
show	 data	 consistency.	 b)	 Slopes	
or	 the	 first	 derivatives	 versus	 the	
number	of	observed	equivalents.

Figure 3

Potentiometric	titration	graphs	of	free	Clofibric	acid	(CA)	
in	0.1	M	NaNO3,	25oC.	Three	plots	were	overlapped	to	
show	data	consistency.

Figure 1

Speciation	 diagram	 of	 free	 CA.	 The	 cross	 point	 is	 the	
protonation	constant	(pKa)	value	of	4.32	±	0.06.	

Figure 2
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number	of	milli-moles	of	added	titrant	per	number	of	milli-moles	
of	Cr3+	ion	present	in	solution.	

Cr	(H2O)6 
3+  →	 	Cr	(H2O)5(OH)2

+		+		 H+					Eq.	1	

Cr	(H2O)5	OH	
2+ →	 Cr	(H2O)4(OH)2

+		+		 H+					Eq.	2	

Cr	(H2O)4(OH)2
+  →	 	Cr	(H2O)3(OH)3		+		 H+					Eq.	3	

Titrations of Cr3+ with CA

(Figure 4a)	is	the	potentiometric	titration	graph	of	the	Cr3+:CA	in	
1:1	molar	ratio.	This	graph	contains a total of three individual 
plots.	 This	 graph	 shows	 the	 exact	 locations	 of	 the	 inflection	
points.	 The	 location	 of	 each	 inflection	 point	 gives	 the	 exact	
number	 of	 protons	 released	 into	 the	 aqueous	 solution.	 For	
example,	 the	 titration	 plots	 of	 the	 Cr3+:CA	 in	 1:1	 molar	 ratio	
indicated	the	release	of	four	protons.	By	examining	these	plots	in	
this	figure,	clearly	there	has	been	a	strong	interaction	between	
the	metal	ion	Cr3+	and	CA	due	to	the	shift	in	the	location	of	the	
inflection	points	to	4.0	equivalents;	compared	to	3.0	equivalents	
in	the	titration	of	the	free	Cr3+	ion	as	shown	in	(Figure 3). (Figure 
4b)	is	the	mathematical	treatments	graphs	for	(Figure 4a).	This	
mathematical	 treatment	 is	 the	first	derivatives	 (slopes)	versus	
the	number	of	observed	equivalents.	

For	the	Cr3+:CA	in	1:1	ratio,	the	three	replicas	overlapped	at	4.00	
equivalents.	The	 important	point	here	 is	 that	 four	equivalents	
of	 protons	 have	been	 released	 from	 the	 reaction	of	 Cr3+	with	
CA	into	the	solutions.	One	proton	was	clearly	released	from	the	
CA.	The	source	of	the	other	three	protons	must	be	accounted	
for.	 These	 three	 protons	 have	 to	 come	 for	 the	 aqua	 ligand	
attached	to	the	metal	ion.	It	is	established	in	the	literature	that	
such	 hydroxo-complexes	 with	 Cr3+	 have	 been	 seen	 previously	
[72,	 79,	 80].	 The	 proposed	 and	 the	most	 plausible	 species	 to	

The	proposed	aqueous	solution	structures	for	the	proposed	Cr3+-Clofibrate	ternary	chelates.	Scheme 2

a)	 Potentiometric	 titration	 graphs	 of	 Cr3+:CA	 in	 1:1	
molar	 ratio,	 0.1	M	NaNO3,	 25

oC.	 Three	 titration	 plots	
were	 overlapped	 to	 show	data	 consistency.	 b)	 Slopes	
or	the	first	derivatives	versus	the	number	of	observed	
equivalents.		

Figure 4
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be	 formed	 in	 solution	will	 be	 the	 ternary	 chromium	hydroxo-
clofibrate	 complex	 [Cr3+(clofibrate-)(OH-)3]

1-.	We	 are	 proposing	
the	 structure	 of	 this	 ternary	 chromium	 complex	 in	 aqueous	
solution	in	Scheme 2.	

Conclusion 
The	 literature	 evidence	 overwhelmingly	 indicated	 the	 lack	 of	
research	articles	for	CA	with	essential	and	toxic	metal	ions.	NIST	
standard	 reference	 database	 of	 critically	 selected	 protonation	
constants	 and	 stability	 constants	 of	 ligands	 and	 their	 metal	
complexes	 does	 not	 contain	 these	 data	 for	 CA	 [77].	 Based	
on	 the	 number	 of	 protons	 released	 into	 the	 solution,	 we	 are	
proposing	the	formation	of	the	ternary	hydroxo-clofibrate	metal	
complex	 with	 the	 formula	 [Cr3+ (clofibrate-)	 (OH-)3]

1-	 according	
to	 the	description	 in	Schemes 2.	We	believe	 that	 the	outcome	

of	 the	data	presented	 in	 the	current	 report	 is	novel	and	useful	
due	 to	 the	 identification	of	 the	 ternary	or	mixed	Cr3+-Hydroxo-
CA	complexes	 in	aqueous	solutions	at	 room	temperature.	Also,	
the	 reported	 pKa	 value	 in	 the	 literature	 for	 CA	was	 done	 in	 a	
50/50	 (v/v)	 acetonitrile/water	 solvent	 mixture	 [81].	 The	 pKa	
value	measured	in	the	current	study	is	in	close	proximity	to	the	
literature	value	4.622,	 reference	81,	 versus	4.32	of	 the	 current	
study.	We	have	chemically	identified	a	novel	ternary	Cr3+-CA-OH	
chelate	under	 ambient	 conditions.	More	 toxicity	 and	biological	
studies	are	needed	in	these	areas	to	test	the	effect	of	these	Cr3+ 
chelate	compared	to	the	effect	of	the	free	CA	alone	on	PPARα.	
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