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Introduction
Peroxisome	proliferator-activated	receptors	(PPAR)s	constitute	a	
family	of	receptors;	members	of	the	steriod	receptor	superfamily	
[1-4].	To	date,	there	are	three	known	receptors,	namely	PPAR	(α),	
(β/δ),	and	(γ).	Since	their	discovery,	PPARs	have	been	shown	to	
be	 expressed	 in	 monocytes/macrophages,	 the	 heart,	 vascular	
smooth	 muscle	 cells,	 endothelial	 cells,	 and	 in	 atherosclerotic	
lesions.	 Since	 PPARs	 are	 nuclear	 transcription	 factors;	 they	
regulate	multiple	genes	 involved	 in	energy	production,	 glucose	
and	 lipid	 metabolism	 [4-8].	 Polymorphisms	 in	 these	 receptors	
influence	 the	 pathology	 of	 numerous	 diseases	 including	
obesity,	 diabetes,	 atherosclerosis,	 inflammation	 and	 cancer	
[1-8].	 Furthermore,	 PPARs	 can	 be	 activated	 by	 a	 vast	 number	 of	
compounds	 including	 synthetic	 drugs	 such	 as	 the	 clofibrate	 and	
anti-diabetic	 thiazoldinedione	classes,	polyunsaturated	 fatty	acids,	
and	a	number	of	eicosanoids,	including	prostaglandins,	lipoxygenase	
products,	and	oxidized	low	density	lipoprotein	[6,	9].

Yokoyama	 et	 al.	 [7]	 have	 investigated	 the	 inhibitory	 effect	 of	
clofibric	 acid	 (CA),	 a	 ligand	 for	 PPARα,	 on	 growth	 of	 ovarian	
malignancy	 in vivo and in vitro	 experiments	 using	 OVCAR-3	
and	 DISS	 cells	 derived	 from	 human	 ovarian	 cancer	 and	 aimed	
to	 elucidate	 the	molecular	 mechanism	 of	 its	 antitumor	 effect.	
CA	 treatment	 significantly	 suppressed	 the	 growth	 of	 OVCAR-3	

tumors	 xenotransplanted	 s.c.	 and	 significantly	 prolonged	 the	
survival	 of	mice	with	malignant	 ascites	derived	 from	DISS	 cells	
as	compared	with	control.	The	results	in	this	study	indicated	that	
CA	produced	potent	antitumor	effects	against	ovarian	cancer	in	
conjunction	with	 a	 reduction	 of	 angiogenesis	 and	 induction	 of	
apoptosis	[7].	

The	 detailed	 literature	 review	 conducted	 in	 the	 current	 study	
revealed	that	a	very	limited	number	of	publications	have	appeared	
that	dealt	with	the	interaction	of	CA	with	metal	ions,	especially	in	
aqueous	solutions	[10].	Moncol	et	al	showed	the	crystal	structures	
and	the	spectral	properties	(UV-Vis,	EPR)	for	both	the	bis	Cu(CA)2 
complex	 and	 the	 dimeric	 (Cu)2:CA	 complexes	 [10].	 Ghauch	 et	
al.	studied	the	effect	of	CA	on	metallic	Iron	(Fe0)	and	other	iron	
plated	surfaces	such	as	plated	Fe0	 (mFe0:	Fe0/Pd0,	Fe0/Ni0)	 [11].	
This	paper	by	Ghauch	et	al.	was	not	biologically	relevant	because	
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iron was in its metallic form and not in aqueous environment. 
Although there is a wealth of toxicological, biological, medicinal, 
and chemical information about CA and PPAR [10-66] yet, there is 
lack of chemical studies of CA with essential and toxic metal ions 
under ambient conditions. 

We have initiated a series of studies of CA with a series of metal 
ions such as Fe3+, Cu2+, Zn2+, and Cr3+. Clearly, these metals are 
essential metal ions that are found in the biological sphere with 
various degrees of abundance [67]. The choice of Cr3+ to be 
presented in the current report was due to the fact that Cr3+ is 
considered to be an essential metal that forms what is known as 
“the low-molecular-mass chromium-binding complex” (LMMCr) 
[68], which plays a role glucose metabolism [69, 70]. 

Fibrates are the only marketed PPARα agonists that are effective 
in lowering elevated serum triglycerides. Their chemical 
structures are characterized by the presence of the 2-phenoxy-2-
methylpropanoic acid moiety. The main objectives of the current 
report are 1) To show whether CA binds with Cr3+ or not?; 2) To 
identify the type of metal-complexes formed, if there is binding, 
under the ambient conditions, and 3) To measure the potential 
response of the reaction mixture in milli-Volts. Potentiometry is 
one of the most powerful tools to study metal ions in aqueous 
solutions at ambient conditions [71-74]. 

Experimental Section
Materials
All solutions were prepared using 99% purity Sigma reagent 
grade CA, C10H11ClO3, formula weight 214.6 g.mol-1 and 
chromium nitrate nona-hydrate, Cr(NO3)3●9H2O, formula 
weight 400.15 g.mol-1, using doubly deionized water to prepare 
all solutions. Scheme 1 shows the structural formula of CA, 
or [2-(4-chlorophenoxy)-2-methyl propanoic acid (Chemical 
formula C10H11ClO3). The pH values of all solutions were adjusted 
using ~ 0.1 mol.L-1 sodium hydroxide (NaOH), solution that was 
standardized to the fourth decimal place. The pH values were 
measured using Orion Membrane pH meter (model 720) with a 
combination Orion-glass electrode in 0.1 mole.L-1 ionic strength 
using the appropriate amounts of 1.0 M NaNO3 solution. 

Preparation of the potentiometric titration 
solutions
In all metal-ligand potentiometric titrations, the NaOH solution 
was always the titrant. The NaOH solutions were prepared 
from NaOH laboratory grade pellets in carbonate free water. 

The methods used to prevent the contamination of the titrant 
with atmospheric CO2 had been described elsewhere [70-74]. 
The NaOH solutions were standardized using primary standard 
potassium hydrogen phthalate (KHP). Both NaOH and KHP were 
purchased from Fisher Chemical Co. Before any KHP titration, the 
KHP was dried at 110oC for 24 hours and stored in a desiccator. A 
stock indicator solution of about 0.2% phenolphthalein in about 
90% ethanol was prepared from reagent grade phenolphthalein. 
KHP was titrated to the phenolphthalein end point. Typically, 
thirteen-fifteen runs were carried out to standardize the NaOH 
solution. Standard statistical treatments of the data such as the 
arithmetic mean, standard deviation, T-test, and Q-test were 
conducted using Excel software. 

Potentiometric titrations
The potentiometric titration solutions were contained in a 250 
mL beaker equipped with a magnetic stirring bar. The beaker was 
covered with a custom made Teflon cover. In a typical titration; 
the CA solution was added first followed by the addition of 
the Cr3+ metal ion solution. To adjust the ionic strength of the 
solution to 0.1 M the appropriate amount of 1.0 M NaNO3 was 
added. The total volume of the final titration solution was 100 
mL. The final concentration of the metal ion titrated was in the 
range of 2.0 to 2.5 mmoles.L-1. Before each titration, the titration 
solution mixtures were allowed to stir for 25 minutes to reach 
equilibrium. The NaOH titrant was added in the 100 L increments 
using an Eppendorf micropipette with continuous stirring. The 
time intervals between the additions of the NaOH solution were 
set to 5 minutes, which was sufficient to get each of the pH values 
stabilized and reach complete equilibrium. The start pH-value 
was in the range of 3-4 and the final pH-value was in the range 
of 10-11. Each titration took about 5 to 6 hours to complete. All 
titrations were conducted at room temperature. 

UV-Vis spectroscopy
All UV-Vis spectroscopy measurements were conducted using 
a T60 high-performance spectrophotometer in connection with 
UVWIN software version 5.0, both purchased from Advanced 
ChemTech (Louisville, KY). Samples were prepared in D.I. water at 
25ºC. The entire UV-vis spectrum was scanned from 200 to 1100 nm 
using quartz cuvettes with optical path length of 1 cm. A reference 
cuvette filled with D.I. water was used with all measurements. The 
concentration of the metal was = 4.3 × 10−2 mol.L-1. The UV-Vis 
spectra were collected at the pH values of 3.00. 

IR spectroscopy
All IR spectroscopy measurements were conducted using Nicolet 
iS10 spectrophotometer in connection with OMNIC software 
version 8.1, both purchased from Thermo Fisher Scientific 
(Madison, WI). Samples were prepared in D.I. water at 25ºC. 
The entire IR spectrum was scanned from 400 to 4000 cm-1 
using the provided attenuated total reflectance (ATR) accessory 
cell compartment equipped with a diamond cell that can 
accommodate all kind of samples (solid samples or aqueous 
solution samples). The following data parameters were used 
in collecting the IR spectra: number of sample scans and the 
number of background scans was set at 32 with resolution of 
4.000, and Laser frequency of 15798.7 cm-1. Typical IR spectra 

Structural formula of Clofibric acid (CA), or 
[2-(4-chlorophenoxy)-2-methylpropanoic acid] 
(Chemical formula C10H11ClO3).

Scheme 1
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were generated in which the X-axis was given as Wavenumbers in 
cm-1 and Y- axis was recorded as % Transmittance. 

Results and Discussion
Potentiometric titrations of free CA and free 
metal ions 
Potentiometric titration experiments of free CA showed that the 
acidity constants of the carboxylic acid functional groups present 
to be pKa = 4.32 ± 0.06 at 25°C, 0.1 M NaNO3. To the best of the 
researcher’s knowledge, this is the first time to report the acidity 
constant of CA in aqueous solutions at room temperature in 0.1 
M ionic strength. (Figure 1) is the potentiometric titration graph 

of free CA. This graph contains three overlapped plots to show 
data consistency. (Figure 2) is the speciation diagram of free CA 
generated in aqueous solutions using Hyperquad simulation and 
speciation (Hyss) software program [75]. pKw value of 13.78 was 
taken from the literature [76]. CA releases one proton due to the 
fact that CA has a sole titratable functional group; the carboxylic 
acid group. This confirms the fact that clofibric acid is a mono-
protic acid. These data of this ligand has not been reported in the 
NIST standard reference database of critically selected stability 
constants of metal complexes [77]. 

(Figure 3a) is the potentiometric titration graph of free Cr3+. 
Four titrations plots were overlapped to show data consistency. 
(Figure 3b) is the mathematical treatments graphs for (Figure 
3a). This mathematical treatment is the first derivatives (slopes) 
versus the number of observed equivalents. After data treatment 
and converting the volume of titrant into number of equivalents 
of titrant, it is clear that a tri-valnet metal ion such as Cr3+ releases 
a net of three proton equivalents into the aqueous solutions. This 
is due to the fact that metal ions in aqueous solutions under 
ambient conditions go through metal ion hydrolysis. This term, 
metal ion hydrolysis, is defined in equations 1-3 [78-80] and it 
is valid for any metal ion such as the chromium in its trivalent 
oxidation state. The number of equivalents is defined as the 

a) Potentiometric titration graphs of 
free Cr3+, 0.1 M NaNO3, 25

oC. Four 
titration plots were overlapped to 
show data consistency. b) Slopes 
or the first derivatives versus the 
number of observed equivalents.

Figure 3

Potentiometric titration graphs of free Clofibric acid (CA) 
in 0.1 M NaNO3, 25oC. Three plots were overlapped to 
show data consistency.

Figure 1

Speciation diagram of free CA. The cross point is the 
protonation constant (pKa) value of 4.32 ± 0.06. 

Figure 2
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number of milli-moles of added titrant per number of milli-moles 
of Cr3+ ion present in solution. 

Cr (H2O)6 
3+ 	 →	  Cr (H2O)5(OH)2

+ 	+ 	 H+     Eq. 1 

Cr (H2O)5 OH 
2+	 →	 Cr (H2O)4(OH)2

+ 	+ 	 H+     Eq. 2 

Cr (H2O)4(OH)2
+ 	→	  Cr (H2O)3(OH)3 	+ 	 H+     Eq. 3 

Titrations of Cr3+ with CA

(Figure 4a) is the potentiometric titration graph of the Cr3+:CA in 
1:1 molar ratio. This graph contains a total of three individual 
plots. This graph shows the exact locations of the inflection 
points. The location of each inflection point gives the exact 
number of protons released into the aqueous solution. For 
example, the titration plots of the Cr3+:CA in 1:1 molar ratio 
indicated the release of four protons. By examining these plots in 
this figure, clearly there has been a strong interaction between 
the metal ion Cr3+ and CA due to the shift in the location of the 
inflection points to 4.0 equivalents; compared to 3.0 equivalents 
in the titration of the free Cr3+ ion as shown in (Figure 3). (Figure 
4b) is the mathematical treatments graphs for (Figure 4a). This 
mathematical treatment is the first derivatives (slopes) versus 
the number of observed equivalents. 

For the Cr3+:CA in 1:1 ratio, the three replicas overlapped at 4.00 
equivalents. The important point here is that four equivalents 
of protons have been released from the reaction of Cr3+ with 
CA into the solutions. One proton was clearly released from the 
CA. The source of the other three protons must be accounted 
for. These three protons have to come for the aqua ligand 
attached to the metal ion. It is established in the literature that 
such hydroxo-complexes with Cr3+ have been seen previously 
[72, 79, 80]. The proposed and the most plausible species to 

The proposed aqueous solution structures for the proposed Cr3+-Clofibrate ternary chelates. Scheme 2

a) Potentiometric titration graphs of Cr3+:CA in 1:1 
molar ratio, 0.1 M NaNO3, 25

oC. Three titration plots 
were overlapped to show data consistency. b) Slopes 
or the first derivatives versus the number of observed 
equivalents.  

Figure 4
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be formed in solution will be the ternary chromium hydroxo-
clofibrate complex [Cr3+(clofibrate-)(OH-)3]

1-. We are proposing 
the structure of this ternary chromium complex in aqueous 
solution in Scheme 2. 

Conclusion 
The literature evidence overwhelmingly indicated the lack of 
research articles for CA with essential and toxic metal ions. NIST 
standard reference database of critically selected protonation 
constants and stability constants of ligands and their metal 
complexes does not contain these data for CA [77]. Based 
on the number of protons released into the solution, we are 
proposing the formation of the ternary hydroxo-clofibrate metal 
complex with the formula [Cr3+ (clofibrate-) (OH-)3]

1- according 
to the description in Schemes 2. We believe that the outcome 

of the data presented in the current report is novel and useful 
due to the identification of the ternary or mixed Cr3+-Hydroxo-
CA complexes in aqueous solutions at room temperature. Also, 
the reported pKa value in the literature for CA was done in a 
50/50 (v/v) acetonitrile/water solvent mixture [81]. The pKa 
value measured in the current study is in close proximity to the 
literature value 4.622, reference 81, versus 4.32 of the current 
study. We have chemically identified a novel ternary Cr3+-CA-OH 
chelate under ambient conditions. More toxicity and biological 
studies are needed in these areas to test the effect of these Cr3+ 
chelate compared to the effect of the free CA alone on PPARα. 
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