

www.ajadd.co.uk

Original Article

Synthesis, Characterization and Study Antibacterial Activity of Some New Fused Pyrazol Pyrimidin Derivatives

Ezzat H. Zimam*

Department of Chemistry, College of Science, University of Kufa, Iraq

Date of Receipt- 05/05/2014 Date of Revision- 28/05/2014	ABSTRACT		
Date of Acceptance- 02/06/2014	New series of 2-heterocycle-substituted benzimidazole having a		
	pyrazolo $[3, 4-d]$ pyrimidine nucleus have been synthesized by		
	reacting 2-(chloromethyl) benzimidazole with hydrazine hydrate to		
	form compound (1). The vital compound in this synthesis 1-		
	((benzoimidazol-2-yl)methyl)-3-methyl-pyrazol-5-one was obtained		
	by reacting compound (1) with ethyl acetoacetate, and was used in		
	the Biginelli multi-component cyclo condensation reaction with eight		
Address for	derivatives of benzaldehyde in presence of urea to form pyrimidine		
Correspondence	derivatives (3-10).		
Department of	The products were characterized by C.H.N analyses, I.R spectra and		
Chemistry, College of	¹ HNMR spectrum.		
Science, University of	Antibacterial activity of some prepared compounds against two types		
Kufa, P.O. Box21, An-	of bacteria: Staphylococcus aureus (Gram positive) and		
Najaf 54001, Iraq.	Pseudomonas aeruginosa (Gram negative). Some the compounds		
	showed high inhibition activity against bacteria.		
E-mail: Ezat_ahlam			
<u>@yahoo.com</u>	Keywords : ¹ <i>H</i> -benzimidazole; Pyrimidine; Pyrazol;		
	Cyclocondensation.		

INTRODUCTION

The benzimidazole nucleus is an important heterocyclic ring. Some benzimidazole derivatives with different Pharma-cological effects, including antifungal¹, anathematic², anti-HIV³, antihistaminic⁴, antinuclear⁵, cardio tonic⁶, antihypertensive⁷ and narcoleptic⁸, So Compounds bearing benzimidazole moiety are reported to

possess a number of interesting biological activities^{9,10}.

The benzimidazole structure is part of the nucleotide portion of vitamin B_{12} and the nucleus of some drugs, such as proton pump inhibitors and anathematic agents¹¹ Proton pump inhibitors (Pips) are substituted benzimidazole derivatives that selectively and irreversibly inhibit the gastric hydrogen–potassium adenosine triphosphatase (H+K+-ATPase) pump mechanism, the antimicrobial activity of this class of compounds was investigated against *Helicobacter pylori*¹² and against oral streptococci¹³.

Pyrazolo pyrimidines and related fused heterocycles have been identified as bioactive molecules. They are known to function as CNS (Central Nervous System) depressants¹⁴, narcoleptic agents¹⁵, and as tuberculostatic¹⁶, Pyrazolo [3, 4-*d*] pyrimidines were identified as a general class of adenosine receptors¹⁷.

Several synthetic strategies have been reported for the preparation of pyrimidine derivatives^{18,19}. Most of these are based on modification of the classical onepot Biginelli reaction²⁰, and in some cases on more complex multi-step processes ²¹. New pyrimidine derivatives containing a benzimidazole nucleus were synthesized multi-component using Biginelli cyclocondensation reaction and characterized by CHN analyses, IR spectra and ¹HNMR technique as well as study anti bacterial activity.

EXPERIMENTAL

All chemicals used were supplied from Merck, BDH and Fluke chemicals company .Melting points were recorded using Electro thermal melting point apparatus, UK. The F.T.I.R spectra were recorded using Fourier transform infrared SHIMADZU FT.IR-8400S infrared spectrophotometer by KBr disc. The elemental analysis were recorded using E.A.G.E.R.-100, Carlo Erba, Italy. Thin layer chromatography (TLC) was performed on aluminum plates and coated with layer of silica gel, compounds were detected by iodine vapor. ¹H-NMR were recorded on Fourier transformation Bruker spectrometer, operating at (400 MHz) with $(DMSO-d_6)$,

2-(Hydrazinylmethyl)-1H-benzoimidazole (1)

A mixture of 2-(chloromethyl) benzimidazole (0.01mol) and hydrazine hydrate (0.01mol) in (25ml) DMF was refluxed for (8) hours. The reaction mixture was poured in to ice cold water; the crude product was filtered, dried and recrystallized from 95% ethanol. Yield 82%, mp. 114°C.

Anal. Calc. for $C_8H_{10}N_4$ C% 59.24 H% 6.21 N% 34.54 Found C% 58.87 H% 5.95 N% 34.22.

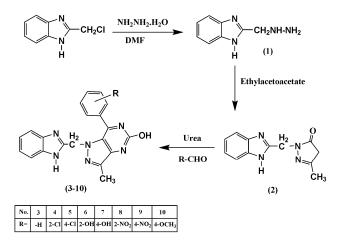
I.R spectra (C=N) benzimidazole ring (1540) cm^{-1} , (C-N) (1110) cm^{-1} , (N-H) (3250) cm^{-1} , (C=C) aromatic (1488) cm^{-1} and (713) cm^{-1} (C-H bending aromatic).

¹HNMR spectrum. (N-H) benzimi-dazole ring δ (12.2) ppm, (N-H) hydrazine δ (6.3) ppm, (NH₂) hydrazine δ (4.5) ppm, (C-H) δ (3.9) ppm and (C-H) aromatic δ (7.2-7.6) ppm.

1-((Benzoimidazol-2-yl) methyl)-3-methylpyrazol-5-one (2)

A mixture of (0.01mol) of compound (1) and ethyl acetoacetate (0.01mol) in abs. ethanol (20ml) was heated under reflux for (7) hours. After concentration and cooling, the solid product that forms was filtered off and recrystallized from ethanol, Yield 80%, m.p. 123°C.

Anal. Calc. for *C*₁₂*H*₁₂*N*₄ **C%** 63.15 H% 5.30 N% 24.55. **Found** C% 62.78 H% 5.12 N% 24.34.


I.R spectra (C=N) benzimidazole ring (1550) cm⁻¹, (C=N) pyrazol ring (1575) cm⁻¹ (C=O) (1650) cm⁻¹, (C-N) (1180) cm⁻¹, (N-H) (3270) cm⁻¹, (C=C) aromatic (1450) cm⁻¹ and (710) cm⁻¹ (C-H bending aromatic).

¹HNMR spectrum. (N-H) benzimi-dazole ring δ (12.0) ppm, (CH₂) pyrazol ring (2.3)

ppm, (CH) pyrazol ring (3.1) ppm (CH₂) δ (4.5) ppm, (CH₃) δ (1.9) ppm and (C-H) aromatic δ (7.3-7.7) ppm.

General procedure for synthesis of compounds (3–10)

A mixture of benzaldehyde or it is derivatives (0.01 mol), compound (2) (0.01 mol), urea (0.01 mol) and phosphorus pent oxide (200 mg) in 95 % ethanol (30 ml) was heated under refluxed condition for 5 hours. After cooling to room temperature, the crystalline product was filtered and recrystallized from a suitable solvent.

1-((1H-benzoimidazol-2-yl) methyl)-3methyl-7-phenyl-pyrazolo [4, 3-d] pyrimidin-5-ol (3)

Yield 73%, m.p. 165°C.

Anal. Calc. for $C_{20}H_{16}N_6O$ C% 67.40 H% 4.53 N% 23.58 Found C% 67.11 H% 4.23 N% 23.22

I.R spectra (C=N) benzimidazole ring (1545)cm⁻¹, (C=N) pyrazol ring (1585)cm⁻¹, (C-N) (1170) cm⁻¹, (N-H) (3260) cm⁻¹, (C=C) aromatic (1455) cm⁻¹ and (715) cm⁻¹ (C-H bending aromatic), (O-H) (3300-3450) cm⁻¹ and disappear carbonyl group.

¹HNMR spectrum. (N-H) benzimidazole ring $\delta(12.5)$ ppm, (CH₂) $\delta(5)$ ppm, (CH₃) $\delta(1.7)$ ppm, (O-H) $\delta(11.3)$ ppm, and (C-H)aromatic $\delta(7.2-7.8)$ ppm

1-((1H-benzoimidazol-2-yl)methyl)-7-(2chlorophenyl)-3-methyl-pyrazolo[4,3d]pyrimidin-5-ol (4) Vield 75% m p. 178°C

Yield 75%, m.p. 178°C.

Anal. Calc. for $C_{20}H_{15}N_6OCl$ C% 61.46H%3.87N% 21.50FoundC% 60.89H% 3.65N% 21.32

I.R spectra (C=N) benzimidazole ring (1550)cm⁻¹, (C=N) pyrazol ring (1595)cm⁻¹, (C-N) (1180) cm⁻¹, (N-H) (3220) cm⁻¹, (C=C) aromatic (1450) cm⁻¹ and (715) cm⁻¹ (C-H bending aromatic), (O-H) (3280-3470) cm⁻¹ and disappear carbonyl group .

¹**HNMR spectrum**. (N-H) benzimidazole ring $\delta(12.2)$ ppm , (CH₂) $\delta(4.9)$ ppm , (CH₃) $\delta(1.8)$ ppm ,(O-H) $\delta(11.4)$ ppm , and (C-H)aromatic $\delta(7.2-7.9)$ ppm and (C-H)aromatic

1-((1H-benzoimidazol-2-yl)methyl)-7-(4chlorophenyl)-3-methyl-pyrazolo[4,3d]pyrimidin-5-ol (5) Yield 77%, m.p. 176°C.

Anal. Calc. for $C_{20}H_{15}N_6OCl$ C% 61.46H% 3.87N% 21.50FoundC% 60.82H% 3.58N% 21.27

I.R spectra (C=N) benzimidazole ring (1558)cm⁻¹, (C=N) pyrazol ring (1585)cm⁻¹, (C-N) (1170) cm⁻¹, (N-H) (3200) cm⁻¹, (C=C) aromatic (1458) cm⁻¹and (712) cm⁻¹ (C-H bending aromatic), (O-H) (3270-3460) cm⁻¹ and disappear carbonyl group .

¹HNMR spectrum. (N-H) benzimidazole ring $\delta(12.3)$ ppm , (CH₂) $\delta(4.9)$ ppm, (CH₃) $\delta(1.7)$ ppm ,(O-H) $\delta(11.3)$ ppm , $\delta(7.3-7.8)$ ppm 1-((1H-benzoimidazol-2-yl)methyl)-7-(2hydroxyphenyl)-3-methyl-pyrazolo[4,3d]pyrimidin-5-ol (6)

Yield 72%, m.p. 181°C.

Anal. Calc. for $C_{20}H_{16}N_6O_2$ C% 64.51 H% 4.33 N% 22.57 Found C% 64.34 H% 4.23 N% 22.41

I.R spectra (C=N) benzimidazole ring (1552)cm⁻¹, (C=N) pyrazol ring (1575)cm⁻¹, (C-N) (1177) cm⁻¹, (N-H) (3210) cm⁻¹, (C=C) aromatic (1460) cm⁻¹and (710) cm⁻¹ (C-H bending aromatic), (O-H) (3280-3520) cm⁻¹ and disappear carbonyl group .

¹HNMR spectrum. (N-H) benzimidazole ring $\delta(12.1)$ ppm , (CH₂) $\delta(4.8)$ ppm , (CH₃) $\delta(1.8)$ ppm ,(O-H) $\delta(11.3)$ ppm , ,(O-H) phenolic $\delta(7.1)$ ppm and (C-H)aromatic $\delta(7.3$ -8.1)ppm

1-((1H-benzoimidazol-2-yl)methyl)-7-(4hydroxyphenyl)-3-methyl-pyrazolo[4,3d]pyrimidin-5-ol (7)

Yield 72%, m.p. 185°C.

Anal. Calc. for C₂₀H₁₆N₆O₂ C% 64.51 H% 4.33 N% 22.57 Found C% 64.11 H% 4.16 N% 22.28

I.R spectra (C=N) benzimidazole ring (1555)cm⁻¹, (C=N) pyrazol ring (1585)cm⁻¹, (C-N) (1170) cm⁻¹, (N-H) (3230) cm⁻¹, (C=C) aromatic (1450) cm⁻¹ and (715) cm⁻¹ (C-H bending aromatic), (O-H) (3250-3500) cm⁻¹ and disappear carbonyl group.

¹HNMR spectrum. (N-H) benzimidazole ring $\delta(12.2)$ ppm , (CH₂) $\delta(4.9)$ ppm, (CH₃) $\delta(1.7)$ ppm ,(O-H) $\delta(11.2)$ ppm, (O-H) phenolic $\delta(9.3)$ ppm and (C-H)aromatic $\delta(6.8-7.6)$ ppm

1-((1H-benzoimidazol-2-yl)methyl)-3methyl-7-(2-nitrophenyl)d]pyrimidin-5-ol (8) Yield 72%, m.p. 187°C.

Anal. Calc. for C₂₀H₁₅N₇O₃ C% 59.85 H% 3.77 N% 24.43 Found C% 59.64 H% 3.55 N% 23.95

I.R spectra (C=N) benzimidazole ring (1545)cm⁻¹, (C=N) pyrazol ring (1575)cm⁻¹, (C-N) (1173) cm⁻¹, (N-H) (3210) cm⁻¹, (C=C) aromatic (1458) cm⁻¹ and (718) cm⁻¹ (C-H bending aromatic), (O-H) (3280-3490) cm⁻¹ and disappear carbonyl group .

¹HNMR spectrum. (N-H) benzimidazole ring $\delta(12.1)$ ppm, (CH₂) $\delta(5.0)$ ppm, (CH₃) $\delta(1.7)$ ppm, (O-H) $\delta(11.4)$ ppm, and (C-H)aromatic $\delta(7.2$ -8.0)ppm

1-((1H-benzoimidazol-2-yl)methyl)-3methyl-7-(4-nitrophenyl)pyriazolo[4,3d]pyrimidin-5-ol (9) Yield 75%, m.p. 183°C.

 Anal. Calc. for $C_{20}H_{15}N_7O_3$ C% 59.85

 H% 3.77
 N% 24.43

 Found
 C% 59.47
 H% 3.22
 N% 23.88

I.R spectra (C=N) benzimidazole ring (1555)cm⁻¹, (C=N) pyrazol ring (1585)cm⁻¹, (C-N) (1175) cm⁻¹, (N-H) (3230) cm⁻¹, (C=C) aromatic (1470) cm⁻¹ and (715) cm⁻¹ (C-H bending aromatic), (O-H) (3250-3500) cm⁻¹ and disappear carbonyl group .

¹HNMR spectrum. (N-H) benzimidazole ring $\delta(12.2)$ ppm, (CH₂) $\delta(4.9)$ ppm, (CH₃) $\delta(1.8)$ ppm, (O-H) $\delta(11.3)$ ppm, and (C-H)aromatic $\delta(7.2$ -8.3)ppm

1-((1H-benzoimidazol-2-yl)methyl)-7-(4methoxyphenyl)-3-methyl-pyrazolo[4,3d]pyrimidin-5-ol (10) Yield 73%, m.p. 177°C. Anal. Calc. for $C_{21}H_{18}N_6O_2$ C% 65.27 H% 4.70 N% 21.75 Found C% 64.83 H% 4.68 N% 21.45 **I.R spectra** (C=N) benzimidazole ring (1545)cm⁻¹, (C=N) pyrazol ring (1575)cm⁻¹, (C-N) (1170) cm⁻¹, (C-O) (1185) cm⁻¹ (N-H) (3215) cm⁻¹, (C=C) aromatic (1480) cm⁻¹ and (718) cm⁻¹ (C-H bending aromatic), (O-H) (3260-3510) cm⁻¹ and disappear carbonyl group.

¹HNMR spectrum. (N-H) benzimidazole ring $\delta(12.1)$ ppm , (CH₂) $\delta(4.8)$ ppm, (CH₃) $\delta(1.7)$ ppm, (O-CH₃) $\delta(3.8)$ ppm, (O-H) $\delta(11.4)$ ppm, and (C-H)aromatic $\delta(7.0-7.6)$ ppm

Antibacterial activity test

Eight compounds [3-10] were used for their antibacterial activity against the Staphylococcus aureous (Gram-positive) and Pseudomonase aeroginosa (Gram-negative) by Well diffusion method²². Each bacteria isolate was inoculated on to the Muller-Hinton Agar [sterilize in autoclave] by dipping a cotton swab in to the suspension and streaking over the surface of the agar plates. Then, in the solidified medium, four holes were made (6 mm). These holes were filled with (0.5 ml) of the prepared compounds (10 mg of the compound dissolved in 1ml of DMSO solvent). These plates were incubated at 37°C and measured of zone inhibition after 24 hours.

RESULTS

Standardization of Extract

Several pyrimidine derivatives containing a benzimidazole nucleus were synthesized at reflux temperature. compound(1)2-(hydrazinylmethyl)-1Hbenzoimidazole was synthesized first by reaction 2-(chloromethyl)benzimidazole with hydrazine hydrate, The structure of which was assigned from the I.R spectrum which showed strong absorption for benzimidazole ring (1540)cm⁻¹, (C-N) (1110) cm⁻¹, (N-H) (3250) cm⁻¹, (C=C) aromatic (1488) cm⁻¹ and

(713) cm⁻¹ (C-H bending aromatic), Elementary analysis showed good agreement of the calculated and found percentages and ¹HNMR singles showed (N-H) benzimidazole ring $\delta(12.2)$ ppm , (N-H)hydrazine $\delta(2.1)$ ppm, (C-H) $\delta(3.9)$ ppm and (C-H)aromatic $\delta(7.2-7.6)$ ppm.

The vital compound in this synthesis 1-((benzoimidazol-2-yl)methyl)-3-methylpyrazol-5-one compound(2) was obtained by reacting compound(1) with ethyl acetoacetate, This compound were characterized by C.H.N analysis (the percentage of found agreement with calculated) I.R spectrum show (C=N) benzimidazole ring (1550)cm⁻¹, (C=N) pyrazol ring (1575)cm⁻¹ (C=O) (1650) cm⁻¹, (C-N) (1180) cm⁻¹, (N-H) (3270) cm⁻¹, (C=C) aromatic (1450) cm⁻¹and (710) cm⁻¹ (C-H bending aromatic) and ¹HNMR singles gives (N-H) benzimidazole ring δ (12.0)ppm, (C-H) pyrazol ring (2.3)ppm, (CH₂) δ (4.5)ppm, (CH₃) δ (1.9)ppm and (C-H)aromatic δ (7.3-7.7)ppm.

Pyrimidine derivatives (3), (4), (5), (6), (7), (8), (9) and (10) are prepared by addition compound(2) to benzaldehyde or it is derivatives in presence of urea according to the Biginelli multi-component cyclocondensation reaction, also These derivatives are identifying by I.R spectra, C.H.N. analysis and ¹HNMR (all results showed in experimental part).

The prepared compounds (3-10) were examined for antibacterial activity against *Staphylococcus aureou* (Gram-positive) and *Pseudomonase aeroginosa* (Gram-negative) by Well diffusion method in Mueller-Hinton agar medium. After 24 hours were measured for zone of inhibition around each disc. The test results presented in Table (1) showed that compound (7) was exhibited slightly active against these bacterial while compounds (3) and (4) were exhibited inactive against S. aureous and P. aeroginosa. Compounds [6, 8, 9 and 10] were exhibited highly active against S. aureous while were exhibited moderately active against P. aeroginosa. The compound (5) was exhibited moderately active against S. aureous while it was exhibited inactive against P. aeroginosa.

REFERENCES

- 1. D. Berg, K.H. Buchel, M. Plempel, A. Zywietz, *Mykosen*, 29, 221-229 (1986).
- A.G. Saimot, A.C. Cremieux, J.M. Hay, A. Meulemans, M. D. Giovanangeli, B. Delaitre, F. P. Coulaud, *Lancet*, 17, 652-656 (1983).
- A. Chimirri, S. Grasso, A.M. Monf orte, P. Monf orte, M. Zappala, Il Farmaco, 46, 925-933 (1991).
- J. Benavides, H. Schoemaker, C. Dana, Y. Claustre, M. Delahaye, M. Prouteau, P. Manoury, J. v Allen, B. Scatton, S.Z. Langer, S. Arbilla, Arzneim. -Forsch., 45, 551- 558 (1995).
- K. Ishihara, T. Ichikawa, Y. Komuro, S. Ohara, K. Hotta, Arzneim.-Forsch.,/*Drug Res.*, 44, 827-830 (1994).
- G. Piazzesi, L. Morano, J.C. R⁻uegg, Arzneim. -Forsch., /Drug Res., 37, 1141-1143 (1987).
- K. Kubo, Y. Kohara, E. Imamiya, Y. Sugiura, Y. Inada, Y. Furukawa, K. Nishikawa, T. Naka, *J. Med. Chem.*, 36, 2182 – 2195 (1993).
- P.A.J. Janssen, F.T.N. Allewijn, Arzneim. -Forsch., /Drug Res., 18, 279-282 (1968).

- L.Gata, F. Perna, N. Figura, C. Ricci, J. Holton, L. D'Anna, M. Miglioli,D.Vaira, *J. Antimicrob. Chemother.* 51 (2003) 439.
- P. T. M. Nguyen, J. D. Baldeck, J. Olsson, R. E. Marquis, Oral Microbiol. Immunol. 20 (2005) 93.
- 11. R. Iemura, M. Hori, H. Ohtaka, Chem. *Pharm. Bull.*, 37, 962 966 (1989).
- 12. M. Boiani, M. Gonzalez, *Med. Chem.* 5 (2005) 409.
- 13. E. Iwao, K. Yamamoto, Y. Yokoyama, F. Hirayama, K. Haga, *J. Infect. Chemother.* 10 (2004) 90.
- 14. Julino, M.; Stevens, M. F. G. J. Chem. Soc., Perkin Trans. 1 (1998), 1677.
- 15. Filler, R. Chem. Technol. (1974), 4, 752.
- Ghorab, M. M.; Ismail, Z. H.; Abdel-Gawad, S. M.; Abdel Aziem, A. Heteroatom Chemistry (2004), 15, 57.
- Davies, L. P.; Brown, D. J.; Chow, S. C.; Johnston, G. A. R. *Neurosci. Lett.* (1983), 41, 189.
- 18. Kidwai, M.; Mishra, A.D. Bull. Korean Chem. Soc. 2003, 24, 1038.
- 19. Lin, H.; Ding, J.; Chen, X.; Zhang, Z. *Molecules* (2000), 5, 1240.
- 20. Amit R. Trivedi, Arif B. Siddiqui and Viresh H. Shah. ARKIVOC (2008) (ii), 210-217.
- Foroughifar, N.; Mobinikhaledi; Fathinejad. *Phosphorus, Sulfur, Silicon* (2003), 178, 495.
- 22. Kelly J.L., J. Med. Chem.; 38, p. 4131-4134(1995).

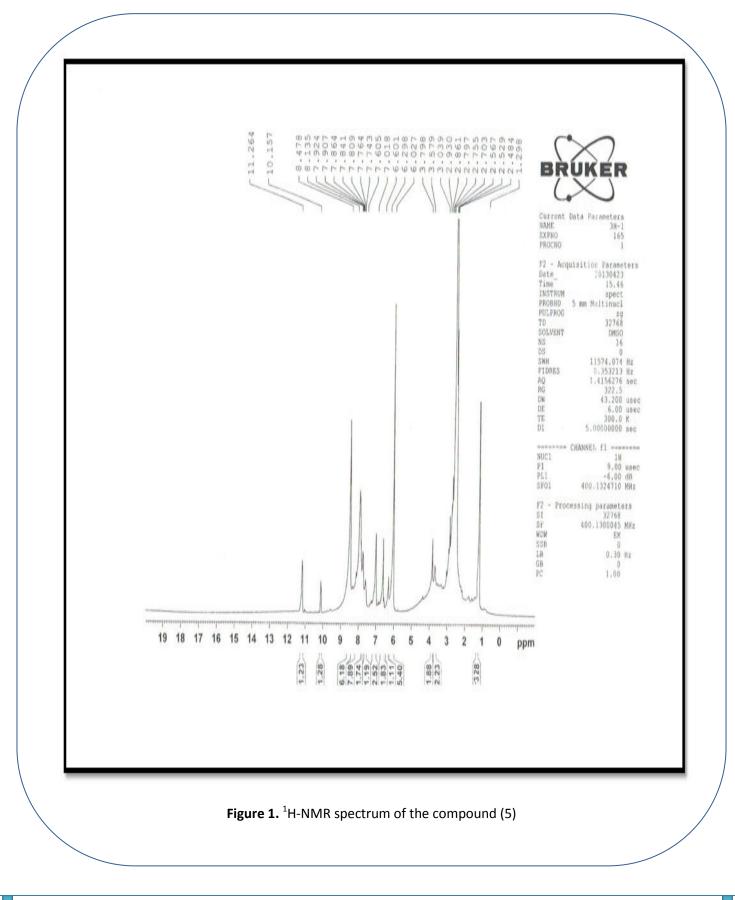
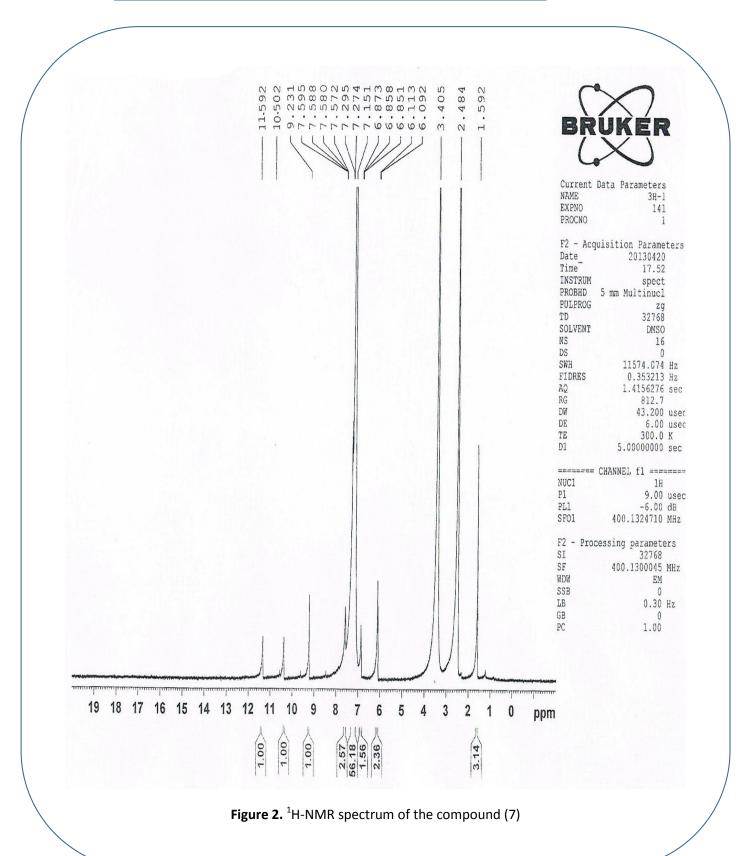

Comp. No.	Staphylococcus aureous (Gram-positive)	Pseudomonase aeroginosa (Gram-negative)
3	-	-
4	-	-
5	++	-
6	+++	++
7	+	-
8	+++	++
9	+++	++
10	+++	++

Table 1. Antibacterial activity of some synthesized compounds


Key of symbols

Highly active $= +++$ (inhibition zo	ne > 15 mm)
Moderately active = $++$ (inhibition zor	ne 11-15 mm)
Slightly active $= +$ (inhibition zor	ne 5-10 mm)
Inactive = - (inhibition zo	ne < 5 mm)

AJADD[2][3][2014]397-406

AJADD[2][3][2014]397-406



Figure 4. Antibacterial activity of some prepared compounds against E. Coli