#### Available online at <u>www.pelagiaresearchlibrary.com</u>



Pelagia Research Library

Advances in Applied Science Research, 2010, 1 (3): 229-239



# Synthesis and acoustical studies of some chalcones of furaldehyde in different solvents at 308.15K

# Anchal Kulshrestha and Shipra Baluja

Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot(Gujarat), India

# ABSTRACT

Some new chalcones of 2-Furaldehyde have been synthesized and their characterization was done by IR, <sup>1</sup>H NMR, and mass spectral data. Ultrasonic velocities of various solutions of different concentrations of these synthesized compounds in dimethyl formamide and chloroform have been measured at 308.15 K by using single crystal interferometer at a frequency of 2 MHz. The density and viscosity have also been measured by pycnometer and Ubbelhode viscometer. Using these experimental data, various acoustical parameters are calculated, which are interpreted in terms of solute-solute and solute-solvent interactions in different solutions.

Keywords: 2-Furaldehyde, chalcone, Ultrasonic velocities, chloroform, dimethylformamide.

# **INTRODUCTION**

Literature survey shows synthesis of chalcones by a number of workers [1-6]. Many Chalcones are known to exhibit various biological properties such as antimalarial, antifungal, antibacterial activity [7-9]. In our previous publications, we have studied acoustical studied of some Schiff bases [10, 11]. In continuation, in the present paper, acoustical properties of some chalcones have been studied in DMF and chloroform 308.15 K to understand the molecular interactions in these solutions.

#### Synthesis:

# MATERIALS AND METHODS

A mixture of 2-Furaldehyde derivative (0.01 M) and substituted acetophenone (0.01 M) was stirred for 24 hours in presence of NaOH as catalysis. The product was isolated and crystallized from ethanol. All the synthesized compounds were recrystalized from ethanol. The purity of compounds was checked by thin layer chromatography. The characterizations of all the synthesized compounds were done by IR, <sup>1</sup>H NMR and Mass spectral data.



#### **Reaction scheme**

Figure 1 shows the structure of these synthesized compounds along with their IUPAC names. The physical properties of these synthesized compounds are given in Table 1.

#### Acoustical properties:

The solvents DMF and chloroform used in the present work were of AR grade and were purified according to the standard procedure described in the literature [12]. The computation of ultrasonic and thermodynamic properties require the measurements of ultrasonic velocity (U), viscosity ( $\eta$ ) and density ( $\rho$ ).

The densities of pure solvents and their solutions were measured by using a single capillary Pyknometer, made of borosil glass havinpg a bulb capacity of 10 ml. The ultrasonic velocity of pure solvents and their solutions were measured by using Single Crystal Variable Path Ultrasonic Interferometer operating at 2 MHz. The accuracy of density and velocity are  $\pm 0.0001$  g/cm<sup>3</sup> and  $\pm 0.1\%$  cm/sec respectively. Viscosity of pure solvents and solutions were measured by an Ubbelohde viscometer with an accuracy of 0.05%. All the measurements were carried out at 308.15 K. The uncertainty of temperature is  $\pm 0.1$  K and that of concentration is 0.0001 moles /dm<sup>3</sup>.

The experimental data of ultrasonic velocity, density and viscosity are given in Table 2.

# **RESULTS AND DISCUSSION**

From the experimental data of density, viscosity and ultrasound velocity of pure solvent and solutions, various acoustical parameters were calculated using following standard equations. **Isentropic compressibility** ( $\kappa_s$ ):  $\kappa_s = 1/(U^2 \rho)$ 

Intermolecular free path length ( $L_f$ ):  $L_f = K_J \kappa_S^{1/2}$ where  $K_J$  is Jacobson constant (= 6.0816 x 10<sup>4</sup>).

**Rao's molar sound function (R**<sub>m</sub>):  $R_m = (M/\rho) U^{1/3}$  where M is the molecular weight of solution.

**Van der Waal's Constant (b)**:  $b = (M/\rho) (1-RT/MU^2 (\sqrt{(1+MU^2/3RT)-1}))$ where R is gas constant and T is absolute temperature.

Molar Compressibility (W):  $W = (M/\rho) \kappa_s^{-1/7}$ 

**Solvation number** (S<sub>n</sub>):  $S_n = M_2/M_1 [1 - \kappa_S / \kappa_{S,1}] [(100 - X) / X]$ 

where X is the number of grams of solute in 100 gm of the solution.  $M_1$  and  $M_2$  are the molecular weights and  $\kappa_{S1}$  and  $\kappa_S$  are isentropic compressibility of solvent and solute respectively.

**Apparent Molar Volume** ( $\Phi_V$ ):  $\Phi_V = [M/\rho] - [(1000\{\rho - \rho_0\})/(\rho C)]$ 

where  $\rho$  and  $\rho_0$  are the densities of solutions and solvent respectively and C is the concentration of the solution in molarity.

#### Apparent Molar Compressibility( $\Phi_k$ ):

 $\Phi_{k} = [(\rho_{o}\kappa_{S} - \rho\kappa_{S1}) (1000/C\rho_{o})] + [\kappa_{S1} M_{2}/\rho_{o}]$ where M<sub>2</sub> is the molecular weight of the compounds.

Some of these acoustical parameters are given in Table 3. In both DMF and chloroform solutions, density ( $\rho$ ), ultrasonic velocity (U) and viscosity ( $\eta$ ) values increase with concentration for all the compounds. Figure 2 shows the variation of Ultrasonic velocity (U) of Chalcones in DMF and chloroform at 308.15 K. It is clear from Figure 2 that the increase is less pronounced in chloroform than DMF. The increase in velocity is reverse of intermolecular free path length ( $L_f$ ). In a solution, when molecules of solute and solvent come close to each other, the intermolecular free path length  $L_f$  decreases. This causes an increase in ultrasonic velocity. The decrease of  $L_f$  values with concentration in both the solvents is shown in Figure 3. Further, in Figure 4, the isentropic compressibility ( $\kappa_S$ ) also observed to decrease with concentration in both solvents. The decrease in compressibility is due to aggregation of solvent molecules around solute molecules. Thus, the increase in ultrasonic velocity and decrease in  $\kappa_S$ ,  $L_f$  and r (in Table 3) with increase in concentration values suggest predominance of solute-solvent interactions in all these systems.

Table 3 shows that molar sound function  $(R_m)$ , molar compressibility (W), and Vander Waals constant (b) are observed to increase linearly with concentration in all the systems in both the solvents. The linear variation of these acoustical properties indicates the absence of complex formation in these systems. The correlation coefficients along with their correlation equations of these parameters are given in Table 4.

Further, isentropic compressibility, apparent molar compressibility and apparent molar volume of solutions is fitted to Bachem's, Gucker's and Masson's relations:

Bachem's relation :  $\kappa_{s} = \kappa_{s1} + AC + BC^{3/2}$ Gucker's relation :  $\phi_{k} = \phi^{\circ}_{k} + S_{k}C^{1/2}$ 

Masson's equation:  $\phi_v = \phi^{\circ}_v + S_v C^{1/2}$ 

Using these equations, values of intercept and slopes were evaluated from their respective plots. Table 5 shows the values of these constants in both the solvents. For DMF, values of A,  $\phi^{\circ}_{k}$  and  $\phi^{\circ}_{v}$  are negative for first four compounds, whereas for AKFC-05, these values are positive. The negative A,  $\phi^{\circ}_{k}$  and  $\phi^{\circ}_{v}$  again proves predominance of solute-solvent interactions whereas positive values suggest the existence of solute-solute interactions in the system. This is further supported by low values of B in AKFC-05. For other four systems in DMF, B values are high. Similarly, higher S<sub>k</sub> and S<sub>v</sub> values also suggest predominance of solute-solvent interactions of first four compounds in DMF. In chloroform, all the constants suggest solute-solvent interactions for all the compounds. Thus, in chloroform both solute-solute and solute-solvent interactions exist whereas in DMF, mostly solute-solvent interactions predominate.

| CODES   | IUPAC NAME                                                                           | STRUCTURE                                                                                         |
|---------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| AKFC-01 | (2 <i>E</i> )-1-(4-methoxyphenyl)-3-[5-(3-nitrophenyl)furan-2-<br>yl]prop-2-en-1-one | H <sup>2</sup> -O<br>H <sup>3</sup> -O<br>O                                                       |
| AKFC-02 | (2 <i>E</i> )-1-(4-chlorophenyl)-3-[5-(3-nitrophenyl)furan-2-<br>yl]prop-2-en-1-one  |                                                                                                   |
| AKFC-03 | (2 <i>E</i> )-1-(4-bromophenyl)-3-[5-(3-nitrophenyl)furan-2-<br>yl]prop-2-en-1-one   | o'<br>o<br>o<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b |
| AKFC-04 | (2 <i>E</i> )-3-[5-(3-nitrophenyl)furan-2-yl]-1-phenylprop-2-en-<br>1-one            |                                                                                                   |
| AKFC-05 | (2 <i>E</i> )-1-(2-hydroxyphenyl)-3-[5-(3-nitrophenyl)furan-2-<br>yl]prop-2-en-1-one | °<br>N <sup>±</sup> −<br>O<br>O<br>O<br>O<br>O<br>H                                               |

Figure 1: Structures of synthesized Chalcones along with their IUPAC names

| Sr. No. | Code    | R                                   | M.F                  | M. Wt (g/mol) | R <sub>f</sub> | M.P °C | Yield % |
|---------|---------|-------------------------------------|----------------------|---------------|----------------|--------|---------|
| 1       | AKFC-01 | $-4C_6H_4$ -OCH <sub>3</sub>        | $C_{20}H_{15}NO_5$   | 349           | 0.55           | 130    | 75      |
| 2       | AKFC-02 | $-4C_6H_4$ -Cl                      | $C_{19}H_{12}CINO_4$ | 353           | 0.81           | 170    | 69      |
| 3       | AKFC-03 | -4C <sub>6</sub> H <sub>4</sub> -Br | $C_{19}H_{12}BrNO_4$ | 398           | 0.88           | 175    | 72      |
| 4       | AKFC-04 | $-C_6H_5$                           | $C_{19}H_{13}NO_4$   | 319           | 0.54           | 110    | 77      |
| 5       | AKFC-05 | $2C_6H_4$ -OH                       | $C_{19}H_{13}NO_5$   | 335           | 0.48           | 142    | 68      |

Table 1: Physical properties of synthesized chalcones

| Table-2: Experimental data of density, velocity and viscosity of Chalcones in solutions of different |
|------------------------------------------------------------------------------------------------------|
| concentrations in DMF and chloroform at 308.15 K                                                     |

| Conc. (M) | Density             | Velocity                | Viscosity x           | Density             | Velocity                | Viscosity x           |  |
|-----------|---------------------|-------------------------|-----------------------|---------------------|-------------------------|-----------------------|--|
|           | g. cm <sup>-3</sup> | x 10 <sup>-5</sup> cm/s | 10 <sup>3</sup> poise | g. cm <sup>-3</sup> | x 10 <sup>-5</sup> cm/s | 10 <sup>3</sup> poise |  |
| AKFC-01   |                     | DMF                     |                       |                     | Chloroform              |                       |  |
| 0.00      | 0.9632              | 1.4448                  | 7.9668                | 1.4402              | 0.9941                  | 6.3929                |  |
| 0.01      | 0.9637              | 1.4500                  | 7.9532                | 1.4404              | 0.9536                  | 6.4693                |  |
| 0.02      | 0.9653              | 1.4504                  | 8.0754                | 1.4406              | 0.9554                  | 6.5232                |  |
| 0.04      | 0.9675              | 1.4533                  | 8.1979                | 1.4410              | 0.9568                  | 6.6310                |  |
| 0.06      | 0.9682              | 1.4534                  | 8.3055                | 1.4413              | 0.9584                  | 6.6401                |  |
| 0.08      | 0.9703              | 1.4540                  | 8.4865                | 1.4416              | 0.9608                  | 6.7019                |  |
| 0.10      | 0.9722              | 1.4555                  | 8.7635                | 1.4420              | 0.9655                  | 6.7490                |  |
| AKFC-02   |                     | DMF                     |                       |                     | Chloroform              |                       |  |
| 0.01      | 0.9643              | 1.4446                  | 7.9962                | 1.4405              | 0.9518                  | 6.4962                |  |
| 0.02      | 0.9649              | 1.4450                  | 8.0341                | 1.4407              | 0.9532                  | 6.5087                |  |
| 0.04      | 0.9655              | 1.4454                  | 8.1050                | 1.4412              | 0.9556                  | 6.5901                |  |
| 0.06      | 0.9677              | 1.4457                  | 8.2733                | 1.4416              | 0.9592                  | 6.6260                |  |
| 0.08      | 0.9715              | 1.4463                  | 8.3899                | 1.4419              | 0.9616                  | 6.7413                |  |
| 0.10      | 0.9743              | 1.4464                  | 8.4883                | 1.4422              | 0.9642                  | 6.7877                |  |
| AKFC-03   |                     | DMF                     |                       | Chloroform          |                         |                       |  |
| 0.01      | 0.9642              | 1.4402                  | 7.9903                | 1.4408              | 0.9502                  | 6.4637                |  |
| 0.02      | 0.9648              | 1.4405                  | 8.0231                | 1.4413              | 0.9512                  | 6.5493                |  |
| 0.04      | 0.9654              | 1.4407                  | 8.1117                | 1.4418              | 0.9539                  | 6.6120                |  |
| 0.06      | 0.9674              | 1.4413                  | 8.2631                | 1.4423              | 0.9578                  | 6.6674                |  |
| 0.08      | 0.9714              | 1.4418                  | 8.3814                | 1.4428              | 0.9594                  | 6.7110                |  |
| 0.10      | 0.9744              | 1.4430                  | 8.4943                | 1.4431              | 0.9622                  | 6.8451                |  |
| AKFC-04   | DMF                 |                         |                       |                     | Chloroform              |                       |  |
| 0.01      | 0.9655              | 1.4421                  | 8.0188                | 1.4423              | 0.9510                  | 6.4743                |  |
| 0.02      | 0.9663              | 1.4448                  | 8.0914                | 1.4426              | 0.9531                  | 6.5059                |  |
| 0.04      | 0.9675              | 1.4464                  | 8.1903                | 1.4431              | 0.9554                  | 6.5610                |  |
| 0.06      | 0.9694              | 1.4490                  | 8.3362                | 1.4435              | 0.9578                  | 6.5780                |  |
| 0.08      | 0.9704              | 1.4498                  | 8.4747                | 1.4439              | 0.9604                  | 6.6859                |  |
| 0.10      | 0.9728              | 1.4518                  | 8.7050                | 1.4441              | 0.9644                  | 6.9144                |  |
| AKFC-05   |                     | DMF                     |                       | Chloroform          |                         |                       |  |
| 0.01      | 0.9230              | 1.4404                  | 7.6491                | 1.4412              | 0.9504                  | 6.4804                |  |
| 0.02      | 0.9237              | 1.4402                  | 7.6965                | 1.4414              | 0.9529                  | 6.5536                |  |
| 0.04      | 0.9240              | 1.4417                  | 7.7252                | 1.4419              | 0.9546                  | 6.6163                |  |
| 0.06      | 0.9241              | 1.4434                  | 7.8061                | 1.4423              | 0.9571                  | 6.6787                |  |
| 0.08      | 0.9263              | 1.4437                  | 7.8855                | 1.4427              | 0.9595                  | 6.7182                |  |
| 0.10      | 0.9287              | 1.4446                  | 7.9886                | 1.4429              | 0.9623                  | 6.7496                |  |

#### Anchal Kulshrestha et al

| un             |              |        | DN                  | ИF                     |                     | Chloroform |                     |                        |                     |  |
|----------------|--------------|--------|---------------------|------------------------|---------------------|------------|---------------------|------------------------|---------------------|--|
| pol            | Conc.        |        | b                   | $R_{m}.10^{-3}$        | W.10 <sup>-3</sup>  |            | b                   | $R_{m}.10^{-3}$        | W.10 <sup>-3</sup>  |  |
| p              | ( <b>M</b> ) | R      | (cm <sup>3</sup> .  | (cm <sup>-8/3</sup>    | (cm <sup>-1</sup> . | r          | (cm <sup>3</sup> .  | (cm <sup>-8/3</sup>    | (cm <sup>-1</sup> . |  |
| ŭ              |              |        | mol <sup>-1</sup> ) | .sec <sup>-1/3</sup> ) | dyn <sup>-1</sup> ) |            | mol <sup>-1</sup> ) | .sec <sup>-1/3</sup> ) | Dyn <sup>-1</sup> ) |  |
|                | 0.00         | 0.1845 | 75.8806             | 3.9817                 | 2.2492              | 0.6140     | 82.9706             | 3.8437                 | 2.3410              |  |
|                | 0.01         | 0.1787 | 76.8804             | 4.0390                 | 2.2814              | 0.6448     | 83.3471             | 3.8080                 | 2.3239              |  |
| -0             | 0.02         | 0.1782 | 77.7869             | 4.0870                 | 2.3090              | 0.6434     | 83.7218             | 3.8275                 | 2.3357              |  |
| FC             | 0.04         | 0.1749 | 79.6672             | 4.1886                 | 2.3669              | 0.6424     | 84.4699             | 3.8636                 | 2.3576              |  |
| ٨K             | 0.06         | 0.1749 | 81.6655             | 4.2937                 | 2.4266              | 0.6412     | 85.2237             | 3.9003                 | 2.3799              |  |
| ł              | 0.08         | 0.1741 | 83.5254             | 4.3922                 | 2.4830              | 0.6394     | 85.9793             | 3.9381                 | 2.4028              |  |
|                | 0.10         | 0.1724 | 85.3882             | 4.4916                 | 2.5398              | 0.6358     | 86.7287             | 3.9789                 | 2.4272              |  |
|                | 0.01         | 0.1848 | 76.8618             | 4.0330                 | 2.2786              | 0.6461     | 83.3543             | 3.8059                 | 2.3229              |  |
| 02             | 0.02         | 0.1843 | 77.8797             | 4.0869                 | 2.3092              | 0.6451     | 84.7384             | 3.8253                 | 2.3346              |  |
| Ċ              | 0.04         | 0.1838 | 79.9600             | 4.1964                 | 2.3713              | 0.6433     | 84.5105             | 3.8639                 | 2.3580              |  |
| KF             | 0.06         | 0.1835 | 81.8890             | 4.2979                 | 2.4294              | 0.6406     | 85.2841             | 3.9041                 | 2.3822              |  |
| Ν              | 0.08         | 0.1829 | 83.6478             | 4.3908                 | 2.4832              | 0.6388     | 86.0580             | 3.9428                 | 2.4056              |  |
|                | 0.10         | 0.1828 | 85.4751             | 4.4868                 | 2.5386              | 0.6368     | 86.8412             | 3.9822                 | 2.4294              |  |
|                | 0.01         | 0.1897 | 77.1293             | 4.0430                 | 2.2848              | 0.6473     | 83.4688             | 3.8090                 | 2.3251              |  |
| 03             | 0.02         | 0.1894 | 78.5026             | 4.1152                 | 2.3257              | 0.6465     | 83.9727             | 3.8334                 | 2.3399              |  |
| Ċ              | 0.04         | 0.1892 | 81.2638             | 4.2602                 | 2.4076              | 0.6445     | 85.0120             | 3.8844                 | 2.3709              |  |
| KF             | 0.06         | 0.1885 | 83.8510             | 4.3964                 | 2.4853              | 0.6417     | 86.0474             | 3.9370                 | 2.4027              |  |
| A]             | 0.08         | 0.1879 | 86.2155             | 4.5209                 | 2.5572              | 0.6404     | 87.0877             | 3.9870                 | 2.4330              |  |
|                | 0.10         | 0.1866 | 88.6433             | 4.6495                 | 2.6310              | 0.6384     | 88.1332             | 4.0386                 | 2.4643              |  |
|                | 0.01         | 0.1876 | 76.5433             | 4.0140                 | 2.2684              | 0.6467     | 83.1535             | 3.7957                 | 2.3172              |  |
| 04             | 0.02         | 0.1845 | 77.3212             | 4.0573                 | 2.2930              | 0.6452     | 83.4439             | 3.8117                 | 2.3268              |  |
| Č              | 0.04         | 0.1827 | 78.9030             | 4.1419                 | 2.3411              | 0.6434     | 84.0292             | 3.8416                 | 2.3449              |  |
| KF             | 0.06         | 0.1797 | 80.4150             | 4.2238                 | 2.3878              | 0.6416     | 84.6179             | 3.8717                 | 2.3631              |  |
| $\mathbf{A}$ ] | 0.08         | 0.1788 | 81.9968             | 4.3077                 | 2.4355              | 0.6397     | 85.2066             | 3.9021                 | 2.3814              |  |
|                | 0.10         | 0.1766 | 83.4396             | 4.3854                 | 2.4802              | 0.6367     | 85.8051             | 3.9350                 | 2.4010              |  |
|                | 0.01         | 0.1895 | 80.2128             | 4.2048                 | 2.3612              | 0.6471     | 83.2617             | 3.7998                 | 2.3195              |  |
| 05             | 0.02         | 0.1897 | 81.1758             | 4.2551                 | 2.3897              | 0.6453     | 83.5929             | 3.8183                 | 2.3305              |  |
| Ū.             | 0.04         | 0.1881 | 83.2085             | 4.3631                 | 2.4504              | 0.6440     | 84.2598             | 3.8510                 | 2.3505              |  |
| KF             | 0.06         | 0.1861 | 85.2539             | 4.4721                 | 2.5115              | 0.6422     | 84.9301             | 3.8850                 | 2.3710              |  |
| [A]            | 0.08         | 0.1858 | 87.0818             | 4.5683                 | 2.5663              | 0.6404     | 85.6020             | 3.9190                 | 2.3916              |  |
|                | 0.10         | 0.1847 | 88.8723             | 4.6633                 | 2.6206              | 0.6383     | 86.2820             | 3.9540                 | 2.4126              |  |

# Table 3: Variation of some acoustical parameters with concentration of Chalcones in DMF and Chloroform at 308.15 K.

Table 4: The correlation coefficient (γ) and correlation equations between some acoustical parameters and concentration (C) of Chalcones in DMF and Chloroform at 308.15 K

| Devenuetor                            | Compounda |        | DMF                            | Chloroform |                                |  |
|---------------------------------------|-----------|--------|--------------------------------|------------|--------------------------------|--|
| Parameter                             | Compounds | γ      | Correlation equation           | γ          | Correlation equation           |  |
|                                       | AKFC-01   | 0.9998 | R <sub>m</sub> -5.0844C=3.9854 | 0.9996     | R <sub>m</sub> -1.8822C=3.7888 |  |
| D 10 <sup>-3</sup>                    | AKFC-02   | 0.9991 | R <sub>m</sub> -5.0751C=3.9858 | 1.0000     | R <sub>m</sub> -1.961C=3.7860  |  |
| $K_{\rm m} \cdot 10$                  | AKFC-03   | 0.9993 | R <sub>m</sub> -6.7423C=3.9825 | 0.9999     | R <sub>m</sub> -2.5569C=3.7828 |  |
| (cm .sec )                            | AKFC-04   | 0.9998 | R <sub>m</sub> -4.1463C=3.9740 | 0.9998     | R <sub>m</sub> -1.5358C=3.7803 |  |
|                                       | AKFC-05   | 0.9994 | R <sub>m</sub> -5.187C=4.1549  | 0.9999     | R <sub>m</sub> -1.7027C=3.7832 |  |
|                                       | AKFC-01   | 0.9999 | W-2.8828C=2.2522               | 0.9997     | W-1.1388C=2.3123               |  |
| W.10 <sup>-3</sup>                    | AKFC-02   | 0.9992 | W-2.8882C=2.2525               | 1.0000     | W-1.1843C=2.3109               |  |
| (cm <sup>-1</sup> dyn <sup>-1</sup> ) | AKFC-03   | 0.9993 | W-3.8453C=2.2499               | 1.0000     | W-1.5499C=2.3092               |  |
|                                       | AKFC-04   | 0.9998 | W-2.3575C=2.2459               | 0.9998     | W-0.9246C=2.3079               |  |

#### Anchal Kulshrestha et al

# Adv. Appl. Sci. Res., 2010, 1 (3):229-239

|                   | AKFC-05 | 0.9994 | W-2.9029C=2.3333    | 0.9999 | W-1.0293C=2.3094   |
|-------------------|---------|--------|---------------------|--------|--------------------|
|                   | AKFC-01 | 0.9990 | b-127.9303C=75.9911 | 1.0000 | b-37.5939C=82.9693 |
| h                 | AKFC-02 | 0.9990 | b-95.6866C=76.0084  | 1.0000 | b-38.7234C=82.9637 |
| $(am^3 mol^{-1})$ | AKFC-03 | 0.9999 | b-95.0371C=75.9086  | 1.0000 | b-51.8644C=82.9406 |
| (cm inor )        | AKFC-04 | 0.9998 | b-76.9218C=75.7955  | 1.0000 | b-29.4448C=82.8547 |
|                   | AKFC-05 | 0.9993 | b-96.9416C=79.2921  | 1.0000 | b-33.5441C=82.9216 |

Table 5: Bachem's, Gucker's and Masson's constants of Chalcones in DMF and Chloroform at 308.15 K.

| Compounds  | A x 10 <sup>11</sup>                    | B x 10 <sup>11</sup>                 | φ° <sub>K</sub> x 10 <sup>8</sup>    | $S_K \ge 10^8$                       | <b>φ</b> ° <sub>v</sub>            | S <sub>v</sub>                     |  |
|------------|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------------|--|
|            | dyn <sup>-1</sup> cm <sup>-3</sup> .mol | dyn <sup>-1</sup> cm <sup>-1/2</sup> | dyn <sup>-1</sup> .mol <sup>-1</sup> | dyn <sup>-1</sup> cm <sup>-3/2</sup> | cm <sup>3</sup> .mol <sup>-1</sup> | cm <sup>3</sup> .mol <sup>-1</sup> |  |
|            | 1                                       | .mol <sup>-3/2</sup>                 | -                                    | .mol <sup>-3/2</sup>                 |                                    |                                    |  |
|            |                                         |                                      | DMF                                  |                                      |                                    |                                    |  |
| AKFC-01    | -14.00                                  | 33.33                                | -26.00                               | 70.00                                | -2220.00                           | 5777.77                            |  |
| AKFC-02    | -11.40                                  | 28.00                                | -28.00                               | 60.00                                | -2060.00                           | 5200.00                            |  |
| AKFC-03    | -9.20                                   | 21.80                                | -17.50                               | 45.45                                | -2020.00                           | 5333.33                            |  |
| AKFC-04    | -11.40                                  | 26.60                                | -23.00                               | 60.00                                | -2180.00                           | 5600.00                            |  |
| AKFC-05    | 1.70                                    | 6.42                                 | 4.10                                 | 8.30                                 | 126.00                             | 300.00                             |  |
| Chloroform |                                         |                                      |                                      |                                      |                                    |                                    |  |
| AKFC-01    | 30.00                                   | 80.00                                | 33.00                                | 90.36                                | 68.50                              | 16.66                              |  |
| AKFC-02    | 32.00                                   | 90.90                                | 40.00                                | 100.00                               | 59.50                              | 54.54                              |  |
| AKFC-03    | 31.00                                   | 88.88                                | 35.00                                | 100.00                               | 23.50                              | 142.85                             |  |
| AKFC-04    | 32.00                                   | 88.88                                | 33.00                                | 88.88                                | 6.00                               | 120.00                             |  |
| AKFC-05    | 33.00                                   | 90.90                                | 33.00                                | 90.90                                | 31.50                              | 116.66                             |  |



Figure 2: Variation of Ultrasonic velocity (U) of Chalcones in [A] DMF and [B] Chloroform at 308.15 K.



Pelagia Research Library



Figure 4: Variation of Isentropic compressibility ( $\kappa_s$ ) of Chalcones in [A] DMF and [B] Chloroform at 308.15 K.



#### Acknowledgement

The authors are thankful to Head of Chemistry Department for providing facilities.

#### REFERENCES

[1] F. Severi, S. Benvenuti, L. Costantino, G. Vampa, M. Melegari, and L. Antolini, *Eur. J. Med. Chem.*, **1998**, 33(11), 859.

[2] S. Eddarir, N. Cotelle, Y. Bakkour, and C. Rolando, Tetrahedron, 2003, 44(28), 5359.

[3] S. Saravanamurugam, M. Palanichamy, B. Arabindoo, and B. Murugesan, B., *Catalysis Commun.*, **2005**, 6(6), 399.

[4] T. Patonay, G. Toth, and W. Adam, *Tetrahedron Letters*, 1993, 34(32), 5055.

[5] D. S. Breslow, and C. R. Houser, J. Am. Chem. Soc., 1940, 62, 2385.

[6] P. L. Nayak, and N. K. Rout, J. Ind. Chem. Soc., 1975, 52(9), 809.

[7] L. Rongshi, L.K. George and E.C. Fred, J. Med. Chem., 1995, 38(26), 5031.

[8] N.D. Jose, E.C. Jaime and L. Gricela, Eur. J. Med. Chem., 2001, 36(6), 555.

[9] L. Mei, W. Prapon and L. G. Mei, J. Med. Chem., 2001, 44(25), 4443.

[10] S. Baluja and S. Oza, *Fluid Phase Equilib.*, **2003**, 208, 83.

[11] S. Baluja, Chinese J. Chem., 2006, 24(10), 1327.

[12] J. A. Riddick, W. B. Bunger and T. Sakano, Organic Solvents-Physical Properties and methods of purification, Fourth Edition., Techniques of Chemistry, II, A Wiley-Interscience Publication, John Wiley.