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Abstract
The difference between mental health and mental ability measurement hinges on 
a single concept—zero. Dysfunctional mental health is manifested by symptoms 
defined as self-reported feelings of unpleasantness due to pathological causes. 
Symptoms can be meaningfully reported as present or absent whereas mental 
abilities are generally considered to be ever present in some positive amount. 
Absence of symptoms creates a population zero class with unknown membership 
and proportion. Inadvertent mixture of zero- and non-zero classes, as often occurs 
in community samples, biases symptom estimates of means, variances, and 
covariance for the non-zero class, resulting in what is herein referred to as the 
zero-problem.

Two-part modeling is proposed as a means of circumventing the zero-problem. 
In Part I, zero-class sample members are identified and deleted. Part II provides 
users a symptoms research paradigm based on a multiplicative measurement 
model. Data are logarithmically transformed, and the log-normal distribution 
assumed. The hypothesis that symptom statements are unidimensional is tested 
by confirmatory factor analysis (CFA). If accepted, statements are combined into 
a weighted pathology score. Pathology scores can be correlated, corrected for 
attenuation, and used as input to multivariate statistical applications. Computer 
routines are provided as a user service.
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Introduction
Symptoms as self-reported feelings of abnormality play a 
critical role in psychopathological diagnosis and assessment. 
Symptoms considered as overt manifestations of an underlying 
pathological state [1] differ from traits in that symptoms can 
be meaningfully reported as present or absent, whereas traits 
are generally considered to be ever present in some positive 
amount [2]. This distinction is central to an understanding of the 
inherent difference between human health and human ability 
measurement.

The Zero-problem and its ramifications
Zero as a real representation of nothing has historically fascinated 
mankind [3]. Measurement-wise, zero can be used to represent 

the total absence of a construct amount, as in absolute zero 
temperature, or to represent a categorical distinction of kind 
such as presence or absence of a disease. The problem is that 
zero cannot simultaneously be ascribed both a categorical and 
a dimensional representation within a generative experiment. 
Readers are encouraged to refer to [2] for a discussion of 
experiment as a generative process. If zero is used to designate 
a class, the distinction between zero and non-zero is qualitative. 
On the other hand, if zero is intended to distinguish absence 
of a construct amount from its presence, the distinction is 
quantitative. Of course, the digit 0 as a scale origin can always be 
arbitrarily assigned to an observable event, such as the freezing 
point of water.

Community sampling defined as the selection of experimental 
subjects from a community setting [4] is particularly susceptible 
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that separate, but possibly related explanatory structures, 
underlie each data partition. Zeros appear in two-part literature 
examples as explicitly observable data points. In contrast, a zero 
scale benchmark seldom exists in symptoms measurement. 
Consequently, explicitly observed zero data points seldom appear 
in scale data. This leaves researchers in a quandary as how to 
identify asymptomatic individuals in community samples. Total 
sample screening is a possibility but may not be feasible due to 
resource limitations or lack of valid screening instrumentation.

Part one
The most expeditious identification of asymptomatic individuals is 
to make use of the collection of symptom descriptive statements 
that generate sample community data. In the absence of a zero 
benchmark, symptom free sample members can reasonably be 
expected to choose the scale benchmark indicative of the least 
symptom amount, generally designated by the integer 1. By this 
logic, all sampled individuals with a p x 1 response profile of 1s 
can reasonably be considered asymptomatic, where p is the 
number of items comprising the scale. To compensate for the 
possibility that the criterion may be too stringent, the definition 
is expanded to include all sampled individuals with a response 
profile containing at least p – 1 unitary responses, where p is the 
number of symptom statements. All such individuals are defined 
as asymptomatic and consequently deleted from further analytic 
consideration.

Part two: Symptom measurement model
Symptoms as feelings of unpleasantness can be decomposed into 
true (TS) and error (ES) latent components. The error component 
is considered to represent random measurement error that 
is independent of the true symptom component. True and 
error symptom components are combined multiplicatively and 
expressed as

S SY T E≡ ⋅ ,

where Y is an observed continuous symptom response variable, 
and ≡  is interpreted as “defined as”. The implication is that Y is 
a derived variable caused by the co-joint effects of TS and ES. The 
symptom measurement model differs from the classical test score 
model in that true and error symptom components are combined 
multiplicatively rather than additively as in the neo-classic model 
[2, Tenet 1]. Tenet 1 refers to the first of 14 numbered tenets 
contained in Citation 2.

To be useful, symptoms must be symptomatic of an underlying 
pathology defined as the anatomic or dysfunctional manifestations 
of a disease or disorder denoted by a latent random variable P. 
The pathology measure P is considered to be decomposable into a 

true component PT fµ λ= + and an error component PE ε=
, with a neo-classical latent measurement model [2, Tenet 3] 

P fµ λ ε= + + .  The pathology true component and the 
symptom true component are linked by the exponential function 

PT M f
ST λ+=∈ =∈ ,

to the zero problem. The reason is that community samples are 
likely to contain an admixture of asymptomatic and symptomatic 
individuals. Class membership as well as class proportions are 
usually unknown and must be estimated from sample data. 
Symptom presence is generally scaled on intensity, severity, 
frequency, or duration, with five or more integer benchmarks 
arranged from left to right in ascending order. Seldom is a scale 
benchmark provided to account for symptom absence. In the 
absence of an explicit zero benchmark, asymptomatic individuals 
are more likely to choose the leftmost benchmark indicating the 
least amount resulting in positively skewed response distributions.

The zero-problem has ramifications for the computation of 
sample mean, variance, and covariance. The inclusion of 
asymptomatic individuals in a sample will bias the estimates for 
symptomatic individuals regardless of whether respondents are 
allowed to self-report symptom absence. Reported symptom 
absence on paired scales contributes to their covariance, leading 
to the dubious assertion that joint symptom absence can be 
construed as association. The susceptibility to bias argues against 
use of conventional covariance structure analysis [5] in symptoms 
research on participants drawn from a community sample.

Purpose and organization
The intent of this article is to put forth a modeling procedure 
that circumvents the zero-problem in symptoms research. To this 
end, a proposed procedure must: (a) screen out asymptomatic 
individuals from a community sample; (b) quantize a continuous 
symptom measure to integer scale benchmarks; (c) correct 
symptom covariance for scale coarseness; (d) estimate latent 
pathology true and error model parameters; (e) allow for skewed 
response distributions, and (f) compute and store pathology 
scores for further use. Finally, a computational procedure must 
be readily available in the form of an open source computer 
utility. 

The paper is divided into four major headings: Introduction; 
Method: Two-part modeling in Symptoms Research; Exemplary 
Application of Two-part Modeling; and Conclusion. The first 
section introduces the zero-problem as a pitfall in symptoms 
research using community sampling. The second describes a 
two-part modeling methodology employing logarithmic data 
transformation designed to circumvent the zero-problem. The 
third section is devoted to an exemplary application of two-
part modeling to PTSD symptomatology. The final section draws 
conclusions as to how two-part modeling may be used to extract 
underlying pathology scores and how these scores may be used 
in subsequent symptoms research.

Methods: Two-part Modeling in 
Symptoms Research
Two-part modeling is typically used to analyze continuous 
data containing abundant zeros and frequently occurring in 
conjunction with positively skewed non-zero observations [6-8]. 
The division of data into two parts, one containing zero and the 
other non-zero observations, reflects the modeling assumption 
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where ∈is the base of the natural logarithms and fµ λ+ is a pathology 
true score measure with ( )E Pµ = , Pλ σ= , and f the standardization 
of the P variable. The purpose is to establish a causal linkage 
between an underlying pathology and psychological feelings 
of unpleasantness. The linkage between error in the pathology 
measurement and error in symptom measurement is similarly 
depicted as PE

SE ε=∈ =∈ .

Upon substitution for TS and ES, the continuous symptom 
response variable Y can be expressed as

	
fY µ λ ε+=∈ ⋅∈ ,

where fµ λ+ and ε are as previously defined. In the absence 
of measurement error in the pathology variable P, ε =0 and the 
symptom response variable Y is unaffected, as 0 1ε = . When 

0ε < , the symptom response variable Y is attenuated, and 
conversely inflated when ε >0 as should be expected. As the 

standardized pathology variable f →−∞ , ST 0→ . Likewise, 

asε → −∞ , SE 0→ . Consequently, Y>0, thereby avoiding 

the zero problem. 

Logarithmic transformation
The logarithm has been referred to as the most useful arithmetic 
concept in science [9]. Its use in biology has been catalogued 
by Koch [10,11]. In psychology, logarithms form the basis of 
Fitt’s, Hick’s, and the Weber-Fechner Laws [12,13]. The log 
transformation applied to the multiplicative symptom response 
model is represented as 

ln( ) ln( ) ln( )S SY T E= + ,

where ln(·) is the natural logarithm. The transformational effect is 
to convert the multiplicative symptom measurement model into 
a linear measurement model. Substituting the causal pathologic 
representation for TS and ES gives

ln( ) ln( ) ln( )fY fµ λ ε µ λ ε+= ∈ + ∈ = + + .

Scalar quantization
The continuous symptom response variable ln(Y) draws values 
from the real number line. However, symptom responses as 
conventionally scaled are restricted to integer values generally 
ranging from 1 to 5 or 7. This situation bears a remarkable 
similarity to the “analog” to “digital” conversion in signal theory. 
The process whereby an interval of analog signals is assigned a 
single scalar value is known in audio coding as scalar quantization 
[14]. Applied to symptoms measurement, experimental subjects 
select the integer value corresponding to the interval of ln(Y) 
containing their continuous ln(y) scores. The representation of 
a continuous symptom score ln(y) by an integer symptom scale 
representation

^
(ln( ))y y results in loss of information defined as 

^
(ln( )) (ln( )) ln( )q y y y y= − ,

and referred to as quantization distortion or noise [14]. The 

rationale for the noise designation can be illustrated by rewriting 
the above equation as 

	
^
(ln( )) ln( ) (ln( ))y y y q y= + ,

which emphasizes the role of q(ln(y)) as add-on noise.

Scale coarseness
Coarseness in symptom scaling is a function of the number of 
scale benchmarks used to categorize the ln(Y) variable. The 
more benchmarks provided, the smaller the quantization error. 
Conversely, fewer benchmarks coarsen the scale and increase 
quantization noise. The effect of quantization noise is to 
introduce nonlinear and systematic error that serve to attenuate 
estimates of population covariance and correlation [15]. Because 
quantization noise is systematic, it should not be confused with 
measurement error which by definition is unsystematic variation. 
Aguinis, Pierce, and Culpepper [15] provide a table of correction 
factors for disattenuating the effects of scale coarseness on inter-
scale correlations computed using benchmark integer values. 
Their corrections are incorporated into the Part II symptom 
scaling methodology herein proposed.

The log-normal distribution
As previously argued, the symptom measurement model can be 
expressed as lnY fµ λ ε= + + , which follows neo-classical 
test theory [2] in form with the exception that the observed 
variable Y is logarithmically transformed. As f and e in the 
pathology measurement model are defined as independent 
normally distributed random variables, ln Y as a weighted sum 
of normally distributed variables is itself normally distributed. 
Thus, Y can be said to be log-normally distributed with a two-
parameter probability density function

2
2

1 1( ) exp( (ln ) )
22

f y y
y

µ
σσ π

= − −
⋅ ⋅

, y > 0,

where μ is the location parameter and σ the scale 
parameter on a logarithmic scale. For a sample of size n, 

the parameters are estimated as 
^

1

1 ln( )
n

i
i

y
n

µ
=

= ∑ and 

2^ ^
1/2

1

1[ ln( ) ]
1

n

i
i

y
n

σ µ
=

 = − −  
∑  [16]. Sample parameter 

estimates are on a logarithmic scale as they are functions of the 
transformed value ln( )iy , where i = i, 2, …, n. Depending upon 
parameter values, the log-normal distribution can range in shape 
from near normal to skewed. Location and scale parameter 
estimates on the logarithmic scale can also be directly obtained 
from the mean and variance of assumed normally distributed 
sample data according to the relations



2018ACTA PSYCHOPATHOLOGICA
ISSN 2469-6676 Vol.4 No.6:23

4 This article is available from: www.psychopathology.imedpub.com

	

*^

2

* 2

ln
1

( )
s

µµ

µ

 
 
 =  
 + 
 

and

	

2^

* 2ln(1 )
( )

sσ
µ

= +
,

where *µ and s are the mean and standard deviation, 

respectively, of the non-transformed original sample data [17].

Visual graphics as a decision tool
The most observable distinction between the neo-classical true 
score and the symptom measurement model is the proposed 
form of the data distribution. The neo-classical model assumes 
that the non-transformed data follow a normal distribution 
whereas the symptom model assumes a log-normal distribution. 
The extent of comparative fit can be visually examined by fitting 
a normal and a log-normal distribution to the histogram of 
the non-transformed Part II data and displaying the result as a 
graphical plot. A comparative fit index (CFI) can be computed for 
each distributional form according to the formula

9
2

1
( ( ) ( ))i i

i
CFI q est q actual

=

= −∑ ,

where ( )iq est is the estimated value for the 1%, 5%, 10%, 25%, 
50%, 75%, 90%, 95%, and 99% quantiles of the normal or log-
normal distribution and ( )iq actual is the integer scale score 
corresponding to each quantile. The distribution with the lower 
CFI is judged to be the better fit. If the log-normal distribution is 
not the better fit, the hypothesis of a multiplicative measurement 
model is problematic. To log transform the original symptom 
scale data simply as a corrective for skewed data is subject to 
the scenario of misuses and misinterpretations as enumerated 
by Feng, Wang, Lu, and Tu [18]. Because the graphics procedure 
must be dynamic and able to operate in near real time as well 
as serving modeler’s immediate needs and interests, it has been 
described as dynamic-interactive by some authors [19].

Symptom scalability
A set of p symptom statements descriptive of unpleasant feelings 
associated with a target pathology is said to be scalable if there 
exists a standardized pathology measure f that is common to all 
p symptom statements. If so, then the log transformation of each 
symptom statement can be expressed as

ln i i i iY fµ λ ε= + + , i = 1, 2, …, p,

where iµ is the mean of an associated pathology measure Pi, iλ
is the standard deviation of Pi, and εi is the measurement error 
associated with Pi . The common presence of a single standardized 
pathology measure f underlying each of p log transformed 

symptoms implies that the p pathology measures are perfectly 
correlated and is the essence of the meaning of unidimensionality. 
For an extended discussion of unidimensionality in the context of 
true score theory, see [2, Tenet 5].

The hypothesis of scalability of a set of p symptom statements can 
be empirically tested by performing a confirmatory factor analysis 
(CFA) on the p x p correlation matrix of the log transformed 
values of Yi, i = 1, 2, … , p corrected for scale coarseness. For a 
more elaborative discussion, the reader is referred to [2, Tenet 
11]. If the CFA model is judged to fit the log transformed data, the 
symptom statements can be considered to be scalable, with each 
statement contributing in varying degree to a single pathological 
measure. If the CFA fails to provide a satisfactory data fit, the 
p symptom statements should be regarded as nonscalable and 
further scale construction efforts abandoned for that set of 
symptom statements.

A comparative analysis
The distinction between human ability and human health 
measurement is most apparent when examining the comparative 
meaning of classical true score and true symptom. As both neo-
classical true score and true symptom can be considered as 
mapping of an experimental probability space to real numbers 
[2], their difference must reside in the nature of the underlying 
generative experiment. For a more comprehensive discussion, 
the reader is referred to [2, Tenet 1]. Ability experiments as 
organized activity are designed to produce quantitative outcomes 
that differ in amount across a subject population. All subjects are 
assumed to possess this ability in some positive amount. Abilities 
as latent traits are relatively enduring over time. True implies 
that the latent trait scores are free of unsystematic measurement 
error. 

Symptoms, in contrast, are self-reports of the presence of 
unpleasant states-of-being that impair human psychological and 
physiological functioning [20]. To be useful in a diagnostic and 
treatment capacity, symptoms must be symptomatic of some 
underlying biomedical causal agent, generally the presence of 
biological pathogens, inherent weakness, organ malfunctioning, 
or environmental stressors. When applied to mental functioning, 
epistemology in the United States generally takes the form of a 
biomedical model that posits that mental disorders are diseases 
of the brain amenable to pharmacological treatment [21]. This is 
not the case for traits which are posited to have a genetic causal 
framework making them relatively immutable to treatment [22]. 

Symptom pathology score
The initial step in symptoms research is to identify a target 
pathology of research interest. Measurement requires that p 
benchmarked statements considered as descriptive of manifest 
feelings emanating from the target pathology be developed 
and submitted to two-part modeling. A log-normal distribution 
is fitted to the histogram of Part II untransformed data for each 
statement and compared with the fit of a normal distribution. 
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If the log-normal is judged to be the better fit, Part II data are 
log transformed and a p x p correlation matrix computed and 
corrected for scale coarseness. A single-factor CFA is performed 
on the corrected correlation matrix. If the hypothesis of 
unidimensionality is sustained, the p statements can be said to 
be scalable and a single pathology score estimate

^

jf  assigned to 
the jth symptomatic sample subject according to the formula

	

^

*
^

^ 1

2^

^
1

var( )

var( )

p
i

ij
i i

j
p

i

i i

y

f

λ

ε

λ

ε

=

=

=

∑

∑

,

where
*
ijy is the standardized log transformed observed score 

for the jth individual on the ith symptom statement and 
^

iλ and 
^

var( )iε are parameter estimates for the ith symptom statement 
obtained from performing an acceptable fitting CFA on the p x p 
correlation matrix of transformed Part II symptom data. In factor 
analytic terminology, this formulation is known as a Bartlett 
factor score [23]. 

The reliability of the standardized latent pathology score 
^

jf  
is defined as the squared canonical correlation between a 
maximally-weighted sum of p observed log transformed symptom 
scores and the standardized common pathology score variable 
f. This squared correlation is termed RMax, as it is the maximum 
squared correlation that can be obtained by choice of observed 
symptom weights, and is estimated as

2^

^
^ 1

2^

^
1

var( )

1
var( )

p
i

i i
Max

p
i

i i

R

λ

ε

λ

ε

=

=

=

+

∑

∑

. 

A computer routine for two-part modeling
Due to the computational requirements of two-part modeling 
and the incorporation of computer graphics, a customized 
integrated execution routine is presented in Appendix A. The 
routine is written in the SAS® IML language. The routine accepts 
as input a SAS® data file containing only the numeric responses 
for p symptom statements scaled on a 5-point scale with no zero 
benchmark for a sample of N individuals. No other character or 
ID variables are permitted. Missing values are not allowed and 
if present must be imputed with an integer scale value prior to 
running. The routine accepts data files containing 4 to 10 symptom 
statements as variables. Users are asked to input the name of 
the SAS® library housing the data set; the assigned name for the 
SAS® data set; the number of variables contained in the specified 
data set; formatting notation related to number of variables; the 
choice as to whether or not to create data histograms; the choice 

as to normal or log-normal distributional form; the choice as to 
whether to save computed pathology scores; and the file name 
where pathology score estimates are to be saved. User input is 
checked for accuracy and the program terminated if an entry 
inconsistency is encountered.

Given no input inconsistencies, the routine begins by sorting 
sample observations into those who meet the asymptomatic 
criterion (having a p-item profile containing not less than p 
– 1 1s) and those who do not, considered as symptomatic. 
The asymptomatic subsample is deleted from further analytic 
consideration. Given the recommended starting options to create 
a histogram and a normal distribution, the routine runs SAS® Proc 
Univariate on each of the p symptomatic subsample variables and 
plots both a normal and a lognormal distributional fit on a single 
graph for visual comparison. Additionally, goodness-of-fit data 
are presented for nine quantiles. A utility for computation of a fit 
index based on quantiles is presented in Appendix B. Users are 
responsible for provision of quantile data to the fit index routine.

The Appendix A routine must be rerun with the “no histogram” 
option and log-normal distributional specification for each 
pathology to be scaled. As a result, the original data are log 
transformed. A p x p correlation matrix is computed, corrected 
for scale coarseness, and a CFA performed using SAS® Proc Calis. 
The routine outputs the distributional type; the symptomatic 
sample size; the asymptomatic sample size; CFA fit statistics; CFA 
parameters; RMax; pathology score mean; and pathology score 
uncorrected and corrected variance.

Exemplary Application of Two-part 
Modeling
Sampling procedure
The sample selected for exemplary two-part analysis is drawn 
from the National Survey of the Vietnam Generation (NSVG) 
Public Use Analysis File that contained the analysis variables from 
the National Vietnam Veterans Readjustment Study (NVVRS) 
[24]. The data source was selected because it represents the most 
comprehensive and documented sample of military veterans’ 
health outcomes ever assembled. In the NVVRS, study cohorts 
were selected via probability sampling by a two-stage national 
household design. An initial sample of 1187 male veterans who 
had served in the Vietnam theater was drawn from the NSVG 
Public Use Analysis File. Vietnam theater group veterans were 
targeted because they had the most direct combat experience. 
Males were targeted because females during the Vietnam War 
were prohibited from combat duty. Ten of the 1187 veterans 
each had more than five missing data values and were deleted, 
producing a final analysis sample of 1177 male Vietnam theater 
veterans. The final sample is considered a community sample, 
with community being defined as those male veterans who had 
served in the Vietnam theater of operations. As with community 
sampling in general, the proportion of the final sample suffering 
from PTSD as a dysfunctional pathology was unknown.
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Sample data
PTSD symptom statements were drawn from the 35 items 
of the Mississippi Scale for Combat-Related Post-Traumatic 
Stress Disorder (M-PTSD) [25]. The M-PTSD items were scored 
on a 5-point Likert-type scale, adjusted for analytic purposes 
such that higher benchmark values always corresponded 
to greater dysfunctionality. No allowance was made for 
symptom absence. Item symptom statements were uniquely 
assigned to four pathologies identified from previous research 
as: Re-experiencing and Situational Avoidance; Withdrawal 
and Numbing; Arousal and Lack of Behavioral Control; Self-
Persecution/Survivor Guilt [Schlenger WE (2014) PTSD symptoms 
research: A third generation approach]. Each of the pathologies 
and their associated symptom statements was hypothesized 
to constitute a unidimensional symptom measurement model. 
Prior to analysis, 23 missing values were imputed using the “hot 
deck” procedure [26], which has the advantage of imputing scale 
scores as whole numbers.

Scale purification
Each of the four hypothesized pathology scales was subject to 
tetrad-based purification using a six-step process suggested by 
Drewes [27]. As a result of purification, six items were deleted 
from the first pathology measurement model, five from the 

second, three from the third, and one from the fourth. The first 
pathology measurement model was renamed Re-experiencing 
and contained five subsidiary symptom statements. The second 
was renamed Withdrawal and contained six subsidiary symptom 
statements. The third was renamed Arousal and contained five 
subsidiary symptom statements. The fourth was renamed Self-
Persecution and contained four subsidiary symptom statements. 
The four purified pathology models and their twenty component 
subsidiary statements are shown in Table 1. 

Results
Part I results
The Appendix A program was initially run with the “histogram” 
and “normal” option for each of the four pathology data sets. As 
a result, 20 separate histograms of untransformed symptomatic 
subject data were created. Histograms fitted with a normal and 
a log-normal distributional form are shown in Figure 1a-1e for 
Re-experiencing; Figure 2a-2f for Withdrawal; Figure 3a-3e for 
Arousal, and Figure 4a-4d for Self-Persecution. In the lower box 
for each figure, mean (Mu) and standard deviation (Sigma) for 
the original data are designated as Normal and mean (Zeta) 
and standard deviation (Sigma) for the log transformed data 
designated as Lognormal. Summary data for the non-transformed 

Item# Symptom statement CFI for normal 
distribution

CFI for
log-normal distribution

Re-experiencing
Item1 I have nightmares of experience in military. 2.230 0.363*

Item2 Dreams so real, I awake in cold sweat. 3.110 0.823*

Item3 My daydreams are very real and frightening. 2.561 0.763*

Item4 Unexpected noises make me jump. 1.363 0.628*

Item5 Used alcohol or drugs to sleep or forget. 4.016 0.617*

Withdrawal
Item1 Before I entered military, I had more friends. 6.308 2.109*

Item2 I am able to get emotionally close to others. a 0.913* 1.007
Item3 I still enjoy doing many things I used to enjoy. a 1.385 0.519*

Item4 No one understands how I feel, not even my family. 3.390 0.389*

Item5 I feel comfortable when I am in a crowd. a 1.580 0.862*

Item6 My memory is as good as it ever was. a 2.927 0.431*

Arousal
Item1 If pushed too far, I am likely to become violent. 1.062* 1.898
Item2 The people who know me best are afraid of me. 5.050 0.967*

Item3 I found it easy to keep my job since military. a 3.897 1.636*

Item4 I am frightened of my urges. 2.280 0.738*

Item5 I am an easy-going, even-tempered person. a 1.063 0.617*

Self-Persecution
Item1 Reminded of my deeds, I wish I were dead. 3.875 0.976*

Item2 Lately, I have felt like killing myself. 5.516 0.992*

Item3 I wonder why I am still alive when others died. 0.826* 1.365
Item4 I feel like I cannot go on. 1.238 1.082*

Note: CFI = Comparative fit index. 
*A lower comparative fit index indicates a better fitting distribution. 
aItem scoring reversal was employed. 

Table 1 Four purified global symptoms, their component symptom statements, and comparative fit indices.
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Separate fit indices were computed for each histogram using the 
program in Appendix B for the normal and for the log-normal 
distribution for each of the 20 symptom statements. The 99th 
quantile was excluded from the computation due to erratic 
influence on the log-normal fit index. Comparative results are 
shown in Table 1, where a lower index indicates a better fitting 
distribution. The log-normal distributional form exhibited a 
lower fit index for 17 of the 20 symptom statements. The normal 
form provided a better fit for Figures 2b, 3a and 4c, accounting 

Figure 1a Histogram of a normal and a log-normal distribution 
for re-experiencing Item #1. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.

Figure 1b Histogram of a normal and a log-normal distribution 
for re-experiencing Item #2. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.

data fit by a normal distribution are contained in the upper 
side box. Visual examination shows that the histograms can be 
grouped into one of three types: those with frequencies clumping 
at lower scale values (L), those clumping at middle scale values 
(M), and those with frequencies tending to clump at higher scale 
values (H). Of the 20 symptom statements, 75% (15) fell into the 
L category, 20% (4) into the M category and 5% (1) into the H 
category. The interpretation is that for the majority of symptom 
statements, higher score values are endorsed by fewer and fewer 
symptomatic subjects, leading to a skewed distributional form.

Figure 1c Histogram of a normal and a log-normal distribution 
for re-experiencing Item #3. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.

Figure 1d Histogram of a normal and a log-normal distribution 
for re-experiencing Item #4. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.
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for three of the four statements with mid-scale distributional 
clumping. The histogram as shown in Figure 1d, although 
exhibiting mid-scale clumping, is better fit by a log-normal than a 
normal distribution.

The comparative fit indices reported in Table 1 are univariate 
statistics and hence fail to take intra-pathology symptom 
correlation into account. A multivariate comparative index was 
computed based on the fact that the Mahalanobis d-squared 

statistic for a multi-normal distribution is chi-squared distributed 
[28]. The squared distance between estimated and observed 
vectors of 1%, 5%, 10%, 25%, 50%, 75%, 90% and 95% quantiles 
was computed for the original and log transformed symptomatic 
sub-sample data. Comparative results show 2.797 for the normal 
vs. 1.879 for the log transformation for Re-experiencing; 4.608 for 
the normal vs. 0.833 for the log transformation for Withdrawal; 
2.252 for the normal vs. 0.861 for the log transformation 
for Arousal; and 6.256 for the normal vs. 0.954 for the log 

Figure 1e Histogram of a normal and a log-normal distribution 
for re-experiencing Item #5. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.

Figure 2a Histogram of a normal and a log-normal distribution for 
withdrawal Item #1. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

 

Figure 2b Histogram of a normal and a log-normal distribution for 
withdrawal Item #2. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

Figure 2c Histogram of a normal and a log-normal distribution for 
withdrawal Item #3. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.
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transformation for Self-Persecution. The log transformation 
produced a better comparative fit for all pathology measurement 
models, thereby supporting the hypothesis of multiplicative 
combination of symptom true and error components. A routine 
for computing the multivariate comparative fit index is presented 
in Appendix C.

Sample size designated as N in the Summary Statistics histogram 

boxes ranged from 846 for Re-experiencing, 1133 for Withdrawal, 
980 for Arousal, and 310 for Self-persecution. In the context 
of two-part modeling, sample size is the estimated number of 
symptomatic individuals and can be construed as a prevalence 
measure. Accordingly, the four pathology measures ranked by 
prevalence are Withdrawal, Arousal, Re-experencing, and Self-
persecution. Self-persecution is an outlier with 1177 – 310 = 867 
veterans meeting the asymptomatic criterion.

Figure 2d Histogram of a normal and a log-normal distribution for 
withdrawal Item #4. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

Figure 2e Histogram of a normal and a log-normal distribution for 
withdrawal Item #5. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

Figure 2f Histogram of a normal and a log-normal distribution for 
withdrawal Item #6. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

Figure 3a Histogram of a normal and a log-normal distribution 
for arousal Item #1. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.
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Part II results
Computer outputs generated by rerunning the Appendix A 
program with the “no histogram” and “log-normal” options are 
presented in the supplementary file: Statistical Output A for 
Re-experiencing, Statistical Output B for Withdrawal, Statistical 
Output C for Arousal, and Statistical Output D for Self-Persecution. 
Each statistical output is structured so as to provide users with 
summary information as to symptomatic and asymptomatic 

sample sizes, confirmatory factor analysis (CFA) fit statistics, 
standardized CFA factor loadings and accompanying standard 
error, residual error variance and accompanying standard error, 
and the RMax reliability estimate.

Acceptance of the hypothesis of unidimensionality is dependent 
upon whether or not CFA produces an acceptable fit. Model fit is 
a subjective determination dependent in part on the probability 
of obtaining a chi square value greater than the observed value 
(P-Value); conventional fit indices (CFI and TLI); and root mean 

Figure 3b Histogram of a normal and a log-normal distribution 
for arousal Item #2. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

Figure 3c Histogram of a normal and a log-normal distribution 
for arousal Item #3. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

 

Figure 3d Histogram of a normal and a log-normal distribution 
for arousal Item #4. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.

Figure 3e Histogram of a normal and a log-normal distribution 
for arousal Item #5. The lower box shows mean (Mu) 
and standard deviation (Sigma) for the raw data and 
normal and zeta and sigma for the transformed data, 
respectively. Summary data for the non-transformed 
data are shown in the upper side box.
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square of approximation (RMSEA). For a reasonably good-
fitting CFA model, P-Value should be greater than 0.001; CFI 
and TLI should be greater than 0.90; and RMSEA should be less 
than or equal to 0.05 [29]. Judging from the results as shown 
in Statistical Outputs A-D, the hypothesis of unidimensionality 
is confirmed for Re-experiencing, Withdrawal, and Arousal and 
rejected for Self-persecution based on P-value<0.001, CFI<0.90; 
TLI<0.90, and RMSEA>0.05. The implication is that the symptom 
statements assigned to Re-experiencing, Withdrawal, and 

Figure 4a Histogram of a normal and a log-normal distribution 
for self-persecution Item #1. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.

Figure 4b Histogram of a normal and a log-normal distribution 
for self-persecution Item #2. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.

Arousal, respectively, can be combined into a weighted sum 
as each statement measures the same underlying pathology. 
Component statements assigned to Self-persecution cannot be 
combined, as the CFA results do not support the hypothesis of 
a common pathology underlying each of the four component 
symptom statements.

The results designated as factor loadings in Statistical Outputs 
A-D represent the relative importance of each observed symptom 

Figure 4c Histogram of a normal and a log-normal distribution 
for self-persecution Item #3. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.

 

Figure 4d Histogram of a normal and a log-normal distribution 
for self-persecution Item #4. The lower box shows 
mean (Mu) and standard deviation (Sigma) for the 
raw data and normal and zeta and sigma for the 
transformed data, respectively. Summary data for the 
non-transformed data are shown in the upper side box.
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statement in the measurement of the underlying standardized 
pathology measurement. Symptom statements with a factor 
loading >0.60 are referred to as marker symptoms as they make 
the major contribution to the pathology score. Because marker 
symptoms make the major measurement contribution, they are 
useful in furthering understanding of underlying causes. 

The standardized factor loadings in Statistical Output A show 
two feeling statements that qualify as marker variables: “I have 
nightmares of experience in military.” with a loading of 0.751 
and “Dreams so real, I awake in cold sweat.” with a loading of 
0.844. Both symptom statements pertain to dreams as the 
re-experiencing modality. Statistical Output B indicates two 
withdrawal statements as marker variables: “I still enjoy doing 
many things I used to enjoy.” with a loading of 0.629 and “No 
one understands how I feel, not even my family.” with a loading 
of 0.654. Withdrawal as behavioral dysfunctionality appears to 
be manifested in feelings of alienation in a civilian world in spite 
of continued enjoyment of many prior civilian activities. Arousal 
(Statistical Output C) is marked by a single symptom statement: 
“The people who know me best are afraid of me.” with a loading 
of 0.762. This suggests that awareness of the familial and societal 
consequences of unmanageable agitated behavior is a central 
facet of Arousal. Factor loadings for Self-persecution have no 
interpretation as markers in that the hypothesis that each 
symptom statement manifests the same underlying pathology is 
rejected.

Acceptance of the unidimensionality hypothesis does not 
necessarily imply that all manifest symptom statements are 
equally reliable. Statement reliability is measured by the square 
of the standardized factor loadings. Reliabilities for the five 
statements manifesting Re-experiencing are: 0.564, 0.712, 0.265, 
0.243, and 0.203. Reliabilities for the six statements manifesting 
Withdrawal are 0.295, 0.126, 0.396, 0.427, 0.233, and 0.276. 
Reliabilities for the five statements manifesting Arousal are 
0.278, 0.580, 0.081, 0.346, and 0.155. Reliability estimates for 
Self-persecution statements are meaningless in the absence of a 
common pathology measure.

The range of manifest symptom reliabilities, (0.712-0.203) for 
Re-experiencing, (0.427-0.126) for Withdrawal, and (0.580-
0.081) for Arousal attest to the multi-faceted complexity of PTSD 
pathologies [30]. No single symptom statement has sufficient 
reliability to serve as a sole proxy for the common pathology. 
Yet each has the potential to make a unique contribution. A 
promising approach is to use a weighted combination of all 
constituent manifest symptoms to predict a pathology score. The 
square of the multiple-regression coefficient is MaxR , as previously 
defined. Estimated MaxR values are given in Statistical Output A-D 
as 0.825 for Re-experiencing, 0.726 for Withdrawal, and 0.720 
for Arousal. 

The difference between MaxR and the square of the largest 
component factor loading represents the contribution of 
the remaining symptom statements to latent pathology 
prediction. For the Re-experiencing component, the remaining 

four statements account for (0.825–0.712) x 100% = 11.3% of 
the pathology score variance; for Withdrawal, the remaining 
five statements account for (0.726–0.427) x 100% = 29.9% 
of Withdrawal variance; and for Arousal, the remaining four 
statements account for an additional (0.720–0.580) x 100% = 
14% of Arousal variance. The larger residual contribution for 
Withdrawal is probably due to an additional symptom statement. 
The evidence-based conclusion is that the remaining statements 
in each component measurement model make a significant 
contribution to pathology score measurement and should be 
retained in the model. No conclusions can be drawn for Self-
persecution, as the measurement model failed the CFA test for 
unidimensionality.

The standardized beta coefficient 
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ith manifest symptom statement. Estimated standardized beta 
coefficients for the five symptom statements for Re-experiencing 
are BR = {0.366 0.624 0.149 0.138 0.120}; for the six Withdrawal 
statements BW = {0.291 0.153 0.393 0.431 0.237 0.274}; and BA = 
{0.284 0.706 0.121 0.350 0.182} for the five Arousal statements. 
Marker variables have the highest beta weights for each of the 
three PTSD components. 

A latent pathology score
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jf  is estimated for the jth subject as a 

weighted standardized score according to 
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where Bf  is as previously defined and Zij is a profile of 
standardized log transformed symptom scores. Note that the 
weighted score interpretation is equivalent to the Bartlett factor 
score as previously defined. Depending upon user discretion, 
the Appendix A routine can compute individual subject latent 
pathology scores and save as a SAS® file in a designated library.

Conclusion
Statistical analyses with latent pathology scores
For analysis purposes, latent pathology scores can be treated as if 
they were empirical variables. Means, variances, covariance, and 
correlations can be computed using conventional formulae. This 
allows researchers to establish inter-correlations among a set of 
differential pathologies; to use pathology scores as predictors of 
external health-related criteria variables or conversely external 
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health-related variables as predictors of single or multiple 
pathology scores; or to perform cluster or factor analyses to 
determine the dimensionality of a correlation matrix of selected 
pathologies.

There is, however, an important caveat to bear in mind. Latent 
pathology scores, more generally known as Bartlett factor scores, 
are weighted summations of standardized log transformed 
observed scale scores. Accordingly, the variance of pathology 
scores contains a contribution due to residual error variance. This 
contribution serves to inflate the computed variance estimate 
resulting in an upward bias. Fortunately, the population variance 
of standardized Bartlett factor scores Bf can be expressed as 

1( )B
Max

Var f
R

= ,

where MaxR is as previously defined (see Appendix D for proof). 

Thus, Var(fB) = 1 only when RMax = 1, which implies perfect scale 
reliability. As RMax decreases, Var(fB) increases due to presence 
of measurement error in the transformed observed symptom 
statements. Therefore, multiplication of Var(fB) by RMax as a 
correction yields unity which is the unbiased population value. 
This relation holds at the population level and may vary somewhat 
due to sampling error.

Computer output for the three PTSD components shown in 
Statistical Outputs A-D include Bartlett score means, Bartlett 
score variance uncorrected, and Bartlett score corrected 
variance. Due to standardization of profile scores, Bartlett score 
means were near zero for all three PTSD components. Bartlett 
score uncorrected variance is 1.142 for Re-experiencing, 1.289 for 
Withdrawal, and 1.319 for Arousal. The fact that all uncorrected 
score variance estimates exceed unity is indicative of the presence 
of measurement error. When corrected by multiplication by 
component RMax, component score corrected variance estimate 
is 0.942 for Re-experiencing, 0.936 for Withdrawal, and 0.949 
for Arousal. All corrected variance estimates are near the upper 
boundary of unity.

Whereas uncorrected Bartlett score variance is subject to the 
biasing effects of measurement error, Bartlett score covariance 
is not (see Appendix D for proof). Correlation between Bartlett 

scores ( )B if  and ( )B jf , interpreted as scores on separate 

pathologies, is defined as 
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But as previously discussed, ( )( )B jVar f and ( )( )B jVar f
are inflated due to presence of measurement error, serving 
to attenuate ( ) ( )( )B i B jCorr f f . Correction for attenuation is 

accomplished by multiplication of each uncorrected Bartlett 
score variance by its associated MaxR
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where *
( ) ( )( )B i B jCorr f f is the disattenuated factor score 

correlation. By incorporating the definition of correlation, the 
pair-wise factor score correction for attenuation can be rewritten as 
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which is the factor score extension of Spearman’s correction for 
attenuation [31].

Sample size is at issue as the number of symptomatic subjects 
varies by component pathology. For the PTSD example, the 
symptomatic sample size was 846 for Re-experiencing, 1133 
for Withdrawal, and 980 for Arousal. The Appendix A routine 
designates asymptomatic subjects as missing values in the 
computation and storage of Bartlett factor scores. This has 
the advantage of maintaining a constant sample size across 
component factors (N = 1177 for the PTSD example). 

Remaining at issue is how to handle missing values. The simplest 
approach is to compute pair-wise correlations using only those 
observations with non-missing factor scores on both pathology 
factors. While simple, the pair-wise approach has the disadvantage 
that Bartlett score inter-correlations may be based on different 
subjects depending upon the selected factor pair. Correlations 
based on different sample sizes and subject composition poses 
serious statistical problems for analyses requiring a k x k (k>2) 
dimensional correlation matrix. Consequently, a recommended 
solution is to keep all observations that have no missing values 
on the k Bartlett scores and to drop all others. By so doing, all 
k(k-1)/2 pair-wise correlations are based on the same sample and 
can be estimated by conventional means. More sophisticated 
missing value imputation is unsuitable either due to non-random 
missing value assignment or lack of external covariates to permit 
missing value prediction.

Implementation of the recommended procedure requires 
that the k Bartlett score files created by sequential running of 
the Appendix A utility for each component factor be merged 
into a single file. The k factors in the merged file must then be 
inter-correlated with the requirement that all retained sample 
observations contain no missing values. In SAS® Version 9.4 [32], 
this is accomplished by the following code:

data in.PTSD_merge;

merge in.PTSD1_BS

in.PTSD2_BS(rename=(v1=v2))

in.PTSD3_BS(rename=(v1=v3));

run;

proc corr data=in.PTSD_merge nomiss;

run;

File names are those used in analysis of the PTSD data. File 
naming conventions are at the user discretion but must be the 
same as those used in each of the separate analyses. Variables 
must be renamed sequentially in the merged file, as by default 
the Bartlett score variable in each merged file is named v1.
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Running the above program produces attenuated correlations. 
Correlations are corrected for attenuation by dividing each 
off-diagonal attenuated correlation by the square root of the 
product of the RMax for each contributing factor. In the following 
matrix, uncorrected correlations for the three PTSD pathologies 
are shown above the diagonal and corrected correlations below 
the diagonal.

1 0.444 0.508
0.574 1 0.532
0.660 0.736 1

R W A
R
W
A

−

Each correlation is based on a sample size of 766, which is the 
number of observations with no missing values on all three 
pathology scores. For the PTSD example, 766 out of 1177 
subjects qualified as symptomatic on each of the three PTSD 
pathology factors. Withdrawal and Arousal exhibit the highest 
and Withdrawal and Reexperiencing the lowest pair-wise 
correlations.

Symptoms Research – A Sequential Approach

Symptoms as latent variables. The premise of this paper is 
that neo-true score theory [2] can be meaningfully applied to 
psychopathological symptoms measurement. At the core is the 
axiom that an observed symptom score can be decomposed 
into a true-score and an error-score component. True and 
error symptom score components are each non-observable 
and assigned the status of latent variables. Error symptom 
latent scores are independent of true symptom scores, with the 
implication that true symptom scores are measured error free. 

The definition of symptom true and error scores differ from 
that used in neo-classic test score theory. For mental ability test 

scores X, true score is defined as X X XX T T TT fµ λ= + ⋅ , where 

XTµ is the population true score mean, λTx is the population true 
score standard deviation, and XTf is the standardized population 
true score [2, Tenet 5]. In contrast, for symptom score Y, true 
symptom score TY is a derived rather than a primary variable 
and is expressed as exp( )

P P PT T Tfµ λ+ ⋅ , where exp is the base 
of the natural logarithms and P P Pfµ λ+  is the true component 

PT  of an underlying causal pathology measure P. Exponentiation 
ensures that as the standardized pathology measure 

PTf →−∞ , 
0YT → . Similarly, untransformed symptom error is expressed as 
exp( )Y PE ε=  where Pε  is the error component of P, thereby 

ensuring that 0YE → as Pε → −∞ . Consequently, the zero-

problem is skirted, as Y>0. 

True score model differences. In neo-classical test theory, 
true and error score components are additively combined [2]. 
For an observed symptom random variable Y, true and error 
components are instead hypothesized to be multiplicatively 
combined as Y = TY·EY By defining exp( )Y PT T=  and exp( )Y PE E=

, exp( ) exp( ) exp( ) exp( )P P P PY T E T E P= ⋅ = + =  under the 

assumption that the pathology P score components are additively 
combined. Consequently, ln(Y) = P under the multiplicative 
combination of true and error symptom components so defined. 
If the pathology variable P is normally distributed, then by 
definitional equivalence, so must ln(Y). The distributional form 
wherein the log of a variable is normally distributed is known as a 
log-normal distribution. The normal distribution has the property 
that if two variables are each normally distributed, then their 
sum is also normally distributed. The log-normal distribution 
also shares this feature—if true and error components are each 
log-normally distributed, then their sum is also log-normally 
distributed. The normal and the log-normal are the only well-
known statistical distributions with this essential modeling 
property. 

This leaves symptoms researchers with two options as to 
measurement models—additive or multiplicative. There is 
recognition in the literature that symptoms may be multiplicative 
[33]. Fortunately, each type has a recognizable visual signature. 
For the normal bell curve, observations cluster symmetrically 
around the mean. The odds of a symptom score being less than 
one standard deviation below the mean are approximately 1 in 
6.3 and equals the odds of a symptom score being more than 
one standard deviation above the means. The odds increase 
exponentially as the distance below or above the mean increases 
[34]. In contrast, for the log-normal distribution, the mass of the 
probability density function is disproportionally grouped at the 
lower or higher end of the scale resulting in a skewed distribution. 
Skewness is visually illustrated in Figure 1b, the second symptom 
statement for the Re-experiencing pathology. For a normal 
distribution fit to that data, the probability of a scale value less 
than 2 is 0.510, as contrasted with 0.611 for the log-normal 
distribution fit to the same data. The increase in probability is 
due to clumping of observations at lower scale values.

The hypothesis that system true and error components are 
best considered to be multiplicatively combined is tested by 
the multivariate CFI presented in Appendix C. A lower CFI for 
the log-normal distribution is confirmatory evidence for the 
multiplicative assertion. A lower CFI for the normal distribution 
suggests that Part II multivariate symptom data fail to support a 
multiplicative measurement model.
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Modeling in symptoms research. For symptoms researchers, 
a legitimate question is: Why model? Conventional practice 
tends to treat individual symptom statements as bona fide 
symptom entities. What is often overlooked is that symptoms 
as reported unpleasant feelings occur within the broader 
context of individual subjective experience [33]. Symptoms are 
communicated by self-reports of those experiencing them. As 
such, they are subject to the vagaries of social communication 
[35]. Meaning assigned to physical sensations may well vary by 
demographic as well as individual factors. Variation introduced 
by systematic demographic characteristics can be controlled by 
population sampling. Individual factors, however, encompass 
non-systematic variability due to temporal situational states 
of mind [1]. Non-systematic effects are considered to occur 
randomly and are collectively referred to as measurement error.

If individual symptom statements are to have clinical utility, 
they must measure the systematic effects of causal pathologies. 
These systematic effects are referred to as true scores in classic 
measurement theory. True score contribution varies across 
symptom statements as reflected by differential statement 
reliability. It is quite possible for individual symptom statements 
to measure mainly random error, contradicting the prevalent 
supposition that statements are error free.

True scores as a measure of systemic effects vary in degree of 
uniqueness. At one extreme, each symptom statement has a 
unique true score indicating that each statement measures a 
different pathological entity. In this case, there are as many 
pathologies as there are symptom statements. The counter 
condition is that all symptom statements in the modeling domain 
measure a common latent pathology, a condition herein referred 
to as unidimensionality. Observable symptom statements are 
herein defined as containing both true and error measurement 
effects multiplicatively combined.

The classic means of dealing with error-prone measurement is 
summation over a large number of observed score replications 
[36]. The supporting rationale is that measurement error, being 
random, can be expected to be self-canceling over a large 
number of measurement instances. Whereas the logic with 
respect to error has stood the test of time, the meaning of a sum 
of error-free true symptom components is not so clear-cut. If 
each true variable is unique to a single symptom statement, the 
sum over p statements is a mishmash of unrelated pathological 
effects defying a meaningful interpretation. It is only when 
each symptom statement assigns an identical standardized 
true score to an individual subject, i.e., a defining property of 
unidimensionality, that meaning emerges.

The unidimensionality of a set of p symptom statements is 
empirically verifiable by running a single-factor confirmatory 
factor analysis (CFA) on the p x p correlation matrix. If the 
hypothesis of unidimensionality is sustained, symptoms 
researchers are faced with attaching meaning to the common 
variable. Standardized true score is a possibility but emphasizes 
mainly the error-free nature. Factor is a tempting choice but 

focuses more on dimensionality than function. Syndrome as 
a collection of signs and symptoms characteristic of a known 
pathological condition [37] appears a better option but shifts 
attention to the collectivity and away from the function served. 
The convention endorsed in this paper is to emphasize the core 
measurement function—mapping of the amount of quantified 
symptom unpleasantness due to causal pathologies to the real 
number line. For a more detailed discussion, please refer to 
[2, Tenet 1] which differs in application only to the extent that 
mental traits as opposed to mental states are addressed.

Unreliability of individual symptom statements attenuates 
the measurement of felt unpleasantness due to pathological 
conditions. The remedy is to use the p observed symptom 
statements as independent variables in a multiple regression 
model to predict pathology scores. The square of the multiple 
correlation coefficient is referred to as RMax and is the maximum 
correlation that can be obtained by weighting individual 
statements. Under the supposition that all p statements have 
some reliability, RMax will exceed the reliability of any symptom 
statement considered in isolation. This gain epitomizes the 
system adage that the whole is greater than the sum of its parts 
and constitutes the major rationale for symptoms modeling.

Summary Remarks
A case for a two-part symptoms modeling procedure as a means 
of dealing with the zero-problem inherent in community sampling 
has been made. The procedure assumes the pre-existence of a 
pool of p statements descriptive of adverse feelings considered to 
be caused by a target pathology. Statements may be drawn from 
existing scales or constructed to reflect contemporary research 
results, theories, or clinical intuition. Statements are self-rated 
on a five-point scale, preferably with a severity, duration, or 
frequency metric common to all statements. Whatever the 
metric, the leftmost benchmark is generally indicative of minimal 
unpleasantness. 

Central to the zero-problem is the not-so-remote possibility that 
a portion of a community sample may be asymptomatic, thereby 
constituting a zero class. As there is generally no scale provision 
for symptom absence, it is reasonable to suspect that zero-class 
members will likely gravitate to the left-most response category 
thereby creating a skewed distribution. Part I of the proposed 
two-part model operationally defines zero-class members as 
those respondents whose response profile contains at least p – 1 
leftmost category responses. Respondents whose profiles qualify 
are deleted from further modeling consideration.

Unlike modeling procedures that assume a normal distribution, 
the proposed two-part procedure presumes a log-normal 
Part II data distribution to ensure positive symptom amounts. 
Dependence on the normal curve implies acceptance of an 
additive measurement model which produces a symmetrical 
response distribution. The rationale for log-normal, in contrast, 
employs a multiplicative measurement mechanism and produces 
distributional shapes varying from near normal to extreme 
skewness. 
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To facilitate visual comparison, the computerized procedure fits 
both a normal and a log-normal distribution to the symptomatic 
sample histogram for each of the p symptom statements. A 
univariate and a multivariate comparative fit statistic measuring 
the agreement between observed and predicted quantiles 
are computed from procedural output. Acceptance of the 
multiplicative hypothesis is conditional on the log-normal being 
the better fit. If the multiplicative hypothesis is sustained, sample 
data are logarithmically transformed prior to Part II analysis.

Part II analyses consist of testing the unidimensionality 
hypothesis by running and reporting CFA results. Prior to analysis, 
the p x p correlation matrix is corrected for attenuation due to 
scale coarseness. Scalar quantization is offered as the means of 
analog-to-digital conversion. Standard fit indices and heuristics 
for their interpretation are provided to aid users in ascertaining 
CFA model fit. The RMax coefficient is computed. Users should be 
reminded that its use is conditional on the unidimensionality 
hypothesis being sustained. 

Standardized Bartlett pathology scores are computed, with users 
having the option of storing for future use. Bartlett scores have 
the advantage of incorporating the collective measurement 
contribution of p manifest symptom statements into a single 
pathology score. Bartlett scores can be used as if they were 
empirically obtained, with the singular exception that their 

sample variance is inflated due to the presence of measurement 
error in the component manifest statements. 

By the sequential application of two-part modeling, Bartlett 
scores for a community sample can be formulated for each of 
k target pathologies. Researchers should avoid overlapping 
identical symptom statements across the k pathology scales. To 
do so would allow a symptom statement to manifest multiple 
pathologies thereby violating the unidimensional scaling 
requirement. A k x k correlation matrix with no missing values 
can be computed, corrected for attenuation, and used as input 
for a variety of multi-variable statistical applications. Hopefully, 
two-part modeling will enhance the capability of symptoms 
researchers to alleviate human suffering.
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Appendix A 

 

TITLE: A computer routine to execute two-part modeling 

REQUIREMENTS: SAS/STAT Version 9.4 & SAS/IML Version 9.4 

DISCLAIMER: This utility is provided by the authors as a service to Acta 

Psychopathologica readers. There are no warranties, expressed or implied, as to the accuracy 

of the code provided herein. 

CODE: 

/*Routine to extract a dysfunctional sample from a mixture population of 

functional and dysfunctional sub-populations.*/ 

/*Items are assumed to be quantized to five digital values with 1 

representing the absence or near absence of dysfunctionality.*/ 

/*Observations are classified as dysfunctional if all p-items responses are 

greater than 1 or a unit response is given to only one item.*/ 

/*Scores for functional observations are treated as missing.*/ 

/*A sample of observations meeting the dysfunctionality criterion is 

created and a p x p correlation matrix computed.*/ 

/*The correlation matrix is corrected for attenuation due to 

quantization.*/ 

/*A single-factor CFA is performed on the corrected correlation matrix and 

Bartlett factor scores computed and saved.*/ 

/*User note: Enter the SAS library where the input mixture file is 

stored.*/ 

/*User note: Do NOT change ‘in’ libname.*/ 

libname in "H:\My SAS Data Files\V9.1"; 

/*User note: Enter the file name of the input mixture file.*/ 

%let filename = PTSD_dim1; 

/*User note: Routine restricts number of variables per scale to not less 

than four and not more than ten.*/ 

/*User note: Please enter the number of manifest variables.*/ 

%let num_vars = 5; 

%let vars_num = 'v1-v5'; 

%let var_num = v1:v5; 

%let name_vars = 'v1':'v5'; 

/*User note: User has choice as to whether to create item histograms. If 

not, enter 1, if yes enter 2.*/ 

%let hist_comp = 2; 

/*User note: User has choice as to normal or lognormal distributional form. 

If normal, enter 1. If lognormal, enter 2.*/ 

%let dist = 1; 

/*User note: User has option of saving corrected Bartlett scores. If 

not,enter 1, if yes enter 2.*/ 

%let BS_save = 1; 

/*User note: Enter name of file where Bartlett scores are to be saved. File 

will be stored in above designated SAS library.*/ 

%let B_scores = PTSD1_BS; 

/* **************************Do not alter code beyond this point 

****************************************************** */ 

proc iml; 

choice = &hist_comp; 



dist_kind = &dist; 

/*Get original data matrix.*/ 

use in.&filename; 

read ALL var _NUM_ into X; 

close in.&filename; 

N = nrow(X); 

p = ncol(X); 

if p ^= &num_vars then 

    do; 

        print "Number of file variables does not agree with user 

designation."; 

        abort; 

    end; 

 

if (p <4) | (p > 10) then 

    do; 

        print "Number of scale variables outside permissible range."; 

        abort; 

    end; 

/*Compute combinations of p items.*/ 

a = 1:p; 

do i = 1 to p; 

    if i = 1 then 

        do; 

            k1 = allcomb(p,a[1,i]); 

            call sort(k1,1:i); 

        end; 

    else 

    if i = 2 then 

        do; 

            k2 = allcomb(p,a[1,i]); 

            call sort(k2,1:i); 

        end; 

    else 

    if i = 3 then 

        do; 

            k3 = allcomb(p,a[1,i]); 

            call sort(k3,1:i); 

        end; 

    else 

    if i = 4 then 

        do; 

            k4 = allcomb(p,a[1,i]); 

            call sort(k4,1:i); 

        end; 

    else 

    if i = 5 then 

        do; 

            k5 = allcomb(p,a[1,i]); 

            call sort(k5,1:i); 

        end; 

    else 

    if i = 6 then 

        do; 

            k6 = allcomb(p,a[1,i]); 

            call sort(k6,1:i); 

        end; 

    else 

    if i = 7 then 

        do; 

            k7 = allcomb(p,a[1,i]); 



            call sort(k7,1:i); 

        end; 

    else 

    if i = 8 then 

        do; 

            k8 = allcomb(p,a[1,i]); 

            call sort(k8,1:i); 

        end; 

    else 

    if i = 9 then 

        do; 

            k9 = allcomb(p,a[1,i]); 

            call sort(k9,1:i); 

        end; 

    else 

    if i = 10 then 

        do; 

            k10 = allcomb(p,a[1,i]); 

            call sort(k10,1:i); 

        end; 

end; 

/*Create an item ID matrix.*/ 

id_index = J(N,2##p,0); 

/*Create a ID index matrix for each combination of k > 0 items for a p item 

scale.*/ 

start four_ID; 

    do m = 1 to 4; 

        A_comb_cols = k1[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k3[5-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m; 

        run comb_ID; 

    end; 

    do m = 1 to 6; 

        A_comb_cols = k2[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k2[7-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+4; 

        run comb_ID; 

    end; 

    do m = 1 to 4; 

        A_comb_cols = k3[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k1[5-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+10; 

        run comb_ID; 

    end; 

    do m = 1 to 1; 

        comb_cols = k4[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+14; 

        run comb_ID_E; 

    end; 

    do m = 1 to 1; 

        comb_cols = k4[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+15; 

        run comb_ID_F; 



    end; 

finish four_ID; 

start five_ID; 

    do m = 1 to 5; 

        A_comb_cols = k1[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k4[6-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m; 

        run comb_ID; 

    end; 

    do m = 1 to 10; 

        A_comb_cols = k2[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k3[11-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+5; 

        run comb_ID; 

    end; 

    do m = 1 to 10; 

        A_comb_cols = k3[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k2[11-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+15; 

        run comb_ID; 

    end; 

    do m = 1 to 5; 

        A_comb_cols = k4[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k1[6-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+25; 

        run comb_ID; 

    end; 

    do m = 1 to 1; 

        comb_cols = k5[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+30; 

        run comb_ID_E; 

    end; 

    do m = 1 to 1; 

        comb_cols = k5[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+31; 

        run comb_ID_F; 

    end; 

finish five_ID; 

start six_ID; 

    do m = 1 to 6; 

        A_comb_cols = k1[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k5[7-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m; 

        run comb_ID; 

    end; 

    do m = 1 to 15; 

        A_comb_cols = k2[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k4[16-m,]; 



        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+6; 

        run comb_ID; 

    end; 

    do m = 1 to 20; 

        A_comb_cols = k3[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k3[21-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+21; 

        run comb_ID; 

    end; 

    do m = 1 to 15; 

        A_comb_cols = k4[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k2[16-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+41; 

        run comb_ID; 

    end; 

    do m = 1 to 6; 

        A_comb_cols = k5[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k1[7-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+56; 

        run comb_ID; 

    end; 

    do m = 1 to 1; 

        comb_cols = k6[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+62; 

        run comb_ID_E; 

    end; 

    do m = 1 to 1; 

        comb_cols = k6[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+63; 

        run comb_ID_F; 

    end; 

finish six_ID; 

start seven_ID; 

    do m = 1 to 7; 

        A_comb_cols = k1[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k6[8-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m; 

        run comb_ID; 

    end; 

    do m = 1 to 21; 

        A_comb_cols = k2[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k5[22-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+7; 

        run comb_ID; 

    end; 

    do m = 1 to 35; 

        A_comb_cols = k3[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 



        B_comb_cols = k4[36-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+28; 

        run comb_ID; 

    end; 

    do m = 1 to 35; 

        A_comb_cols = k4[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k3[36-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+63; 

        run comb_ID; 

    end; 

    do m = 1 to 21; 

        A_comb_cols = k5[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k2[7-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+98; 

        run comb_ID; 

    end; 

    do m = 1 to 7; 

        A_comb_cols = k6[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k1[8-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+119; 

        run comb_ID; 

    end; 

    do m = 1 to 1; 

        comb_cols = k7[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+126; 

        run comb_ID_E; 

    end; 

    do m = 1 to 1; 

        comb_cols = k7[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+127; 

        run comb_ID_F; 

    end; 

finish seven_ID; 

start eight_ID; 

    do m = 1 to 8; 

        A_comb_cols = k1[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k7[9-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m; 

        run comb_ID; 

    end; 

    do m = 1 to 28; 

        A_comb_cols = k2[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k6[29-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+8; 

        run comb_ID; 

    end; 

    do m = 1 to 56; 

        A_comb_cols = k3[m,]; 



        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k5[57-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+36; 

        run comb_ID; 

    end; 

    do m = 1 to 70; 

        A_comb_cols = k4[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k4[71-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+92; 

        run comb_ID; 

    end; 

    do m = 1 to 56; 

        A_comb_cols = k5[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k3[57-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+162; 

        run comb_ID; 

    end; 

    do m = 1 to 28; 

        A_comb_cols = k6[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k2[29-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+190; 

        run comb_ID; 

    end; 

    do m = 1 to 8; 

        A_comb_cols = k7[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k1[9-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+238; 

        run comb_ID; 

    end; 

    do m = 1 to 1; 

        comb_cols = k8[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+254; 

        run comb_ID_E; 

    end; 

    do m = 1 to 1; 

        comb_cols = k8[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+255; 

        run comb_ID_F; 

    end; 

finish eight_ID; 

start nine_ID; 

    do m = 1 to 9; 

        A_comb_cols = k1[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k8[10-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m; 

        run comb_ID; 

    end; 

    do m = 1 to 36; 



        A_comb_cols = k2[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k7[37-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+9; 

        run comb_ID; 

    end; 

    do m = 1 to 84; 

        A_comb_cols = k3[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k6[85-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+45; 

        run comb_ID; 

    end; 

    do m = 1 to 126; 

        A_comb_cols = k4[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k5[127-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+129; 

        run comb_ID; 

    end; 

    do m = 1 to 126; 

        A_comb_cols = k5[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k4[127-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+255; 

        run comb_ID; 

    end; 

    do m = 1 to 84; 

        A_comb_cols = k6[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k3[85-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+381; 

        run comb_ID; 

    end; 

    do m = 1 to 36; 

        A_comb_cols = k7[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k2[37-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+465; 

        run comb_ID; 

    end; 

    do m = 1 to 9; 

        A_comb_cols = k8[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k1[10-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+501; 

        run comb_ID; 

    end; 

    do m = 1 to 1; 

        comb_cols = k9[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+510; 

        run comb_ID_E; 

    end; 



    do m = 1 to 1; 

        comb_cols = k9[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+511; 

        run comb_ID_F; 

    end; 

finish nine_ID; 

start ten_ID ; 

    do m = 1 to 10; 

        A_comb_cols = k1[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k9[11-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m; 

        run comb_ID; 

    end; 

    do m = 1 to 45; 

        A_comb_cols = k2[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k8[46-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+10; 

        run comb_ID; 

    end; 

    do m = 1 to 120; 

        A_comb_cols = k3[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k7[121-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+55; 

        run comb_ID; 

    end; 

    do m = 1 to 210; 

        A_comb_cols = k4[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k6[211-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+175; 

        run comb_ID; 

    end; 

    do m = 1 to 252; 

        A_comb_cols = k5[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k5[253-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+385; 

        run comb_ID; 

    end; 

    do m = 1 to 210; 

        A_comb_cols = k6[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k4[211-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+637; 

        run comb_ID; 

    end; 

    do m = 1 to 120; 

        A_comb_cols = k7[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k3[121-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 



        col_ID = m+847; 

        run comb_ID; 

    end; 

    do m = 1 to 45; 

        A_comb_cols = k8[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k2[46-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+967; 

        run comb_ID; 

    end; 

    do m = 1 to 10; 

        A_comb_cols = k9[m,]; 

        A_sub_mat = X[rows,A_comb_cols]; 

        B_comb_cols = k1[11-m,]; 

        B_sub_mat = X[rows,B_comb_cols]; 

        col_ID = m+1012; 

        run comb_ID; 

    end; 

    do m = 1 to 1; 

        comb_cols = k10[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+1023; 

        run comb_ID_E; 

    end; 

    do m = 1 to 1; 

        comb_cols = k10[m,]; 

        sub_mat = X[rows,comb_cols]; 

        col_ID = m+1024; 

        run comb_ID_F; 

    end; 

finish ten_ID; 

/*Modules for different number of variables.*/ 

start take_four; 

/*Correct for scale coarseness.*/ 

submit varname2; 

    proc corr data=&varname2 noprint outp=pm_corr; 

    run; 

    data pm_corr_mod (type=corr); 

        set pm_corr; 

            if (_TYPE_ = 'CORR') & (v1 ^= 1) then v1=v1/0.8892; 

            if (_TYPE_ = 'CORR') & (v2 ^= 1) then v2=v2/0.8892; 

            if (_TYPE_ = 'CORR') & (v3 ^= 1) then v3=v3/0.8892; 

            if (_TYPE_ = 'CORR') & (v4 ^= 1) then v4=v4/0.8892; 

    run; 

endsubmit; 

/*Compute CFA on disattenuated item correlation matrix.*/ 

    varname3 = 'pm_corr_mod'; 

    submit varname3; 

           proc calis data= &varname3 corr method=ml res se noprint 

outmodel=parms; 

                var v1-v4; 

         lineqs 

                v1 = lambda1 * f1 + e1, 

                v2 = lambda2 * f1 + e2, 

                v3 = lambda3 * f1 + e3, 

                v4 = lambda4 * f1 + e4; 

            variance 

                e1 - e4 = vare1-vare4, 

                f1 = 1.0; 

        run; 



        data parm_est; 

            set parms; 

                if _STDERR_ = . then delete; 

                keep _ESTIM_ _STDERR_; 

        run; 

   endsubmit; 

finish take_four; 

start take_five; 

/*Correct for scale coarseness.*/ 

submit varname2; 

    proc corr data=&varname2 noprint outp=pm_corr; 

    run; 

    data pm_corr_mod (type=corr); 

        set pm_corr; 

            if (_TYPE_ = 'CORR') & (v1 ^= 1) then v1=v1/0.8892; 

            if (_TYPE_ = 'CORR') & (v2 ^= 1) then v2=v2/0.8892; 

            if (_TYPE_ = 'CORR') & (v3 ^= 1) then v3=v3/0.8892; 

            if (_TYPE_ = 'CORR') & (v4 ^= 1) then v4=v4/0.8892; 

            if (_TYPE_ = 'CORR') & (v5 ^= 1) then v5=v5/0.8892; 

    run; 

endsubmit; 

/*Compute CFA on disattenuated item correlation matrix.*/ 

    varname3 = 'pm_corr_mod'; 

    submit varname3; 

        proc calis data= &varname3 corr method=ml res se noprint 

outmodel=parms; 

            var v1-v5; 

            lineqs 

                v1 = lambda1 * f1 + e1, 

                v2 = lambda2 * f1 + e2, 

                v3 = lambda3 * f1 + e3, 

                v4 = lambda4 * f1 + e4, 

                v5 = lambda5 * f1 + e5; 

            variance 

                e1 - e5 = vare1-vare5, 

                f1 = 1.0; 

        run; 

        data parm_est; 

            set parms; 

                if _STDERR_ = . then delete; 

                keep _ESTIM_ _STDERR_; 

        run; 

   endsubmit; 

finish take_five; 

start take_six; 

/*Correct for scale coarseness.*/ 

submit varname2; 

    proc corr data=&varname2 noprint outp=pm_corr; 

    run; 

    data pm_corr_mod (type=corr); 

        set pm_corr; 

            if (_TYPE_ = 'CORR') & (v1 ^= 1) then v1=v1/0.8892; 

            if (_TYPE_ = 'CORR') & (v2 ^= 1) then v2=v2/0.8892; 

            if (_TYPE_ = 'CORR') & (v3 ^= 1) then v3=v3/0.8892; 

            if (_TYPE_ = 'CORR') & (v4 ^= 1) then v4=v4/0.8892; 

            if (_TYPE_ = 'CORR') & (v5 ^= 1) then v5=v5/0.8892; 

            if (_TYPE_ = 'CORR') & (v6 ^= 1) then v6=v6/0.8892; 

 

    run; 

endsubmit; 

/*Compute CFA on disattenuated item correlation matrix.*/ 



    varname3 = 'pm_corr_mod'; 

    submit varname3; 

        proc calis data= &varname3 corr method=ml res se noprint 

outmodel=parms; 

            var v1-v6; 

            lineqs 

                v1 = lambda1 * f1 + e1, 

                v2 = lambda2 * f1 + e2, 

                v3 = lambda3 * f1 + e3, 

                v4 = lambda4 * f1 + e4, 

                v5 = lambda5 * f1 + e5, 

                v6 = lambda6 * f1 + e6; 

            variance 

                e1 - e6 = vare1-vare6, 

                f1 = 1.0; 

        run; 

        data parm_est; 

            set parms; 

                if _STDERR_ = . then delete; 

                keep _ESTIM_ _STDERR_; 

        run; 

   endsubmit; 

finish take_six; 

start take_seven; 

/*Correct for scale coarseness,*/ 

submit varname2; 

    proc corr data=&varname2 noprint outp=pm_corr; 

    run; 

    data pm_corr_mod (type=corr); 

        set pm_corr; 

            if (_TYPE_ = 'CORR') & (v1 ^= 1) then v1=v1/0.8892; 

            if (_TYPE_ = 'CORR') & (v2 ^= 1) then v2=v2/0.8892; 

            if (_TYPE_ = 'CORR') & (v3 ^= 1) then v3=v3/0.8892; 

            if (_TYPE_ = 'CORR') & (v4 ^= 1) then v4=v4/0.8892; 

            if (_TYPE_ = 'CORR') & (v5 ^= 1) then v5=v5/0.8892; 

            if (_TYPE_ = 'CORR') & (v6 ^= 1) then v6=v6/0.8892; 

            if (_TYPE_ = 'CORR') & (v7 ^= 1) then v7=v7/0.8892; 

 

 

    run; 

endsubmit; 

/*Compute CFA on disattenuated item correlation matrix.*/ 

    varname3 = 'pm_corr_mod'; 

    submit varname3; 

        proc calis data= &varname3 corr method=ml res se noprint 

outmodel=parms; 

            var v1-v7; 

            lineqs 

                v1 = lambda1 * f1 + e1, 

                v2 = lambda2 * f1 + e2, 

                v3 = lambda3 * f1 + e3, 

                v4 = lambda4 * f1 + e4, 

                v5 = lambda5 * f1 + e5, 

                v6 = lambda6 * f1 + e6, 

                v7 = lambda7 * f1 + e7; 

            variance 

                e1 - e7 = vare1-vare7, 

                f1 = 1.0; 

        run; 

        data parm_est; 

            set parms; 



                if _STDERR_ = . then delete; 

                keep _ESTIM_ _STDERR_; 

        run; 

   endsubmit; 

finish take_seven; 

start take_eight; 

/*Correct for scale coarseness.*/ 

submit varname2; 

    proc corr data=&varname2 noprint outp=pm_corr; 

    run; 

    data pm_corr_mod (type=corr); 

        set pm_corr; 

            if (_TYPE_ = 'CORR') & (v1 ^= 1) then v1=v1/0.8892; 

            if (_TYPE_ = 'CORR') & (v2 ^= 1) then v2=v2/0.8892; 

            if (_TYPE_ = 'CORR') & (v3 ^= 1) then v3=v3/0.8892; 

            if (_TYPE_ = 'CORR') & (v4 ^= 1) then v4=v4/0.8892; 

            if (_TYPE_ = 'CORR') & (v5 ^= 1) then v5=v5/0.8892; 

            if (_TYPE_ = 'CORR') & (v6 ^= 1) then v6=v6/0.8892; 

            if (_TYPE_ = 'CORR') & (v7 ^= 1) then v7=v7/0.8892; 

            if (_TYPE_ = 'CORR') & (v8 ^= 1) then v8=v8/0.8892; 

    run; 

endsubmit; 

/*Compute CFA on disattenuated item correlation matrix.*/ 

    varname3 = 'pm_corr_mod'; 

    submit varname3; 

        proc calis data= &varname3 corr method=ml res se noprint 

outmodel=parms; 

            var v1-v8; 

            lineqs 

                v1 = lambda1 * f1 + e1, 

                v2 = lambda2 * f1 + e2, 

                v3 = lambda3 * f1 + e3, 

                v4 = lambda4 * f1 + e4, 

                v5 = lambda5 * f1 + e5, 

                v6 = lambda6 * f1 + e6, 

                v7 = lambda7 * f1 + e7, 

                v8 = lambda8 * f1 + e8; 

            variance 

                e1 - e8 = vare1-vare8, 

                f1 = 1.0; 

        run; 

        data parm_est; 

            set parms; 

                if _STDERR_ = . then delete; 

                keep _ESTIM_ _STDERR_; 

        run; 

   endsubmit; 

finish take_eight; 

start take_nine; 

/*Correct for scale coarseness.*/ 

submit varname2; 

    proc corr data=&varname2 noprint outp=pm_corr; 

    run; 

    data pm_corr_mod (type=corr); 

        set pm_corr; 

            if (_TYPE_ = 'CORR') & (v1 ^= 1) then v1=v1/0.8892; 

            if (_TYPE_ = 'CORR') & (v2 ^= 1) then v2=v2/0.8892; 

            if (_TYPE_ = 'CORR') & (v3 ^= 1) then v3=v3/0.8892; 

            if (_TYPE_ = 'CORR') & (v4 ^= 1) then v4=v4/0.8892; 

            if (_TYPE_ = 'CORR') & (v5 ^= 1) then v5=v5/0.8892; 

            if (_TYPE_ = 'CORR') & (v6 ^= 1) then v6=v6/0.8892; 



            if (_TYPE_ = 'CORR') & (v7 ^= 1) then v7=v7/0.8892; 

            if (_TYPE_ = 'CORR') & (v8 ^= 1) then v8=v8/0.8892; 

            if (_TYPE_ = 'CORR') & (v9 ^= 1) then v9=v9/0.8892; 

    run; 

endsubmit; 

/*Compute CFA on disattenuated item correlation matrix.*/ 

    varname3 = 'pm_corr_mod'; 

    submit varname3; 

        proc calis data= &varname3 corr method=ml res se noprint 

outmodel=parms; 

            var v1-v9; 

            lineqs 

                v1 = lambda1 * f1 + e1, 

                v2 = lambda2 * f1 + e2, 

                v3 = lambda3 * f1 + e3, 

                v4 = lambda4 * f1 + e4, 

                v5 = lambda5 * f1 + e5, 

                v6 = lambda6 * f1 + e6, 

                v7 = lambda7 * f1 + e7, 

                v8 = lambda8 * f1 + e8, 

                v9 = lambda9 * f1 + e9; 

            variance 

                e1 - e9 = vare1-vare9, 

                f1 = 1.0; 

        run; 

        data parm_est; 

            set parms; 

                if _STDERR_ = . then delete; 

                keep _ESTIM_ _STDERR_; 

        run; 

   endsubmit; 

finish take_nine; 

start take_ten; 

/*Correct for scale coarseness.*/ 

submit varname2; 

    proc corr data=&varname2 noprint outp=pm_corr; 

    run; 

    data pm_corr_mod (type=corr); 

        set pm_corr; 

            if (_TYPE_ = 'CORR') & (v1 ^= 1) then v1=v1/0.8892; 

            if (_TYPE_ = 'CORR') & (v2 ^= 1) then v2=v2/0.8892; 

            if (_TYPE_ = 'CORR') & (v3 ^= 1) then v3=v3/0.8892; 

            if (_TYPE_ = 'CORR') & (v4 ^= 1) then v4=v4/0.8892; 

            if (_TYPE_ = 'CORR') & (v5 ^= 1) then v5=v5/0.8892; 

            if (_TYPE_ = 'CORR') & (v6 ^= 1) then v6=v6/0.8892; 

            if (_TYPE_ = 'CORR') & (v7 ^= 1) then v7=v7/0.8892; 

            if (_TYPE_ = 'CORR') & (v8 ^= 1) then v8=v8/0.8892; 

            if (_TYPE_ = 'CORR') & (v9 ^= 1) then v9=v9/0.8892; 

            if (_TYPE_ = 'CORR') & (v10 ^= 1) then v10=v10/0.8892; 

 

    run; 

endsubmit; 

/*Compute CFA on disattenuated item correlation matrix.*/ 

    varname3 = 'pm_corr_mod'; 

    submit varname3; 

        proc calis data= &varname3 corr method=ml res se noprint 

outmodel=parms; 

            var v1-v10; 

            lineqs 

                v1 = lambda1 * f1 + e1, 

                v2 = lambda2 * f1 + e2, 



                v3 = lambda3 * f1 + e3, 

                v4 = lambda4 * f1 + e4, 

                v5 = lambda5 * f1 + e5, 

                v6 = lambda6 * f1 + e6, 

                v7 = lambda7 * f1 + e7, 

                v8 = lambda8 * f1 + e8, 

                v9 = lambda9 * f1 + e9, 

                v10 = lambda10 * f1 + e10; 

 

            variance 

                e1 - e10 = vare1-vare10, 

                f1 = 1.0; 

        run; 

        data parm_est; 

            set parms; 

                if _STDERR_ = . then delete; 

                keep _ESTIM_ _STDERR_; 

        run; 

   endsubmit; 

finish take_ten; 

/*Create a  module to identify and record IDs of observations with a unit 

score for all items in the combination.*/ 

start comb_ID; 

    cols_A = ncol(A_sub_mat); 

    cols_B = ncol(B_sub_mat); 

    do i = 1 to N; 

        sub_count_A = 0; 

        sub_count_B = 0; 

        do j = 1 to cols_A; 

            if A_sub_mat[i,j] = 1 then 

                do; 

                    sub_count_A = sub_count_A+1; 

                end; 

        end; 

        do j = 1 to cols_B; 

            if B_sub_mat[i,j]^=1 then 

                do; 

                    sub_count_B = sub_count_B+1; 

                end; 

        end; 

        if (sub_count_A = cols_A) &(sub_count_B = cols_B) then 

            do; 

                id_index[i,col_ID] = 1; 

            end; 

    end; 

finish comb_ID; 

/*Create a module to identify and record IDs of observations with unit 

score for all p items.*/ 

start comb_ID_E; 

    cols_A = ncol(sub_mat); 

    do i = 1 to N; 

        sub_count_A = 0; 

        do j = 1 to cols_A; 

            if sub_mat[i,j] = 1 then 

                do; 

                    sub_count_A = sub_count_A+1; 

                end; 

        end; 

        if (sub_count_A = cols_A) then 

            do; 

                id_index[i,col_ID] = 1; 



            end; 

    end; 

finish comb_ID_E; 

/*Create a  module to identify and record IDs of observations with a no 

unit score for all p items.*/ 

start comb_ID_F; 

    cols_A = ncol(sub_mat); 

    do i = 1 to N; 

        sub_count_A = 0; 

        do j = 1 to cols_A; 

            if sub_mat[i,j] ^= 1 then 

                do; 

                    sub_count_A = sub_count_A+1; 

                end; 

        end; 

        if (sub_count_A = cols_A) then 

            do; 

                id_index[i,col_ID] = 1; 

            end; 

    end; 

finish comb_ID_F; 

/*Select the appropriate module depending on number of scale variables.*/ 

rows = 1:N; 

if p = 4 then 

    do; 

        cols = 10; 

        run four_ID; 

    end; 

if p = 5 then 

    do; 

        cols = 25; 

        run five_ID; 

    end; 

if p = 6 then 

    do; 

        cols = 56; 

        run six_ID; 

    end; 

if p = 7 then 

    do; 

        cols = 119; 

        run seven_ID; 

    end; 

if p = 8 then 

    do; 

        cols = 246; 

        run eight_ID; 

    end; 

if p = 9 then 

    do; 

        cols = 501; 

        run nine_ID; 

    end; 

if p = 10 then 

    do; 

        cols = 1012; 

        run ten_ID; 

    end; 

/*Determine number of observations in each combinatorial set.*/ 

double_sum = sum(id_index); 

if double_sum ^= N then 



    do; 

        print "Combinatorial error encountered."; 

        abort; 

    end; 

/*Create a sub-matrix of observations meeting dysfunctional criterion.*/ 

red_combs = id_index[,1:cols]; 

F_comb = id_index[,2##p]; 

red_combs = red_combs||F_comb; 

red_combs_rs = red_combs[,+]; 

keepers = sum(red_combs_rs); 

/*Identify keepers by row ID.*/ 

keep_IDs = J(1,keepers,0); 

count = 1; 

do i = 1 to N; 

    if red_combs_rs[i,1] = 1 then 

        do; 

            keep_IDs[1,count] = rows[1,i]; 

            count = count+1; 

        end; 

end; 

/*Use row ID to identify dysfunctional observations.*/ 

samp_N = X[keep_IDs,]; 

/*Save dysfunctional sample as SAS datafile.*/ 

varnames = &name_vars; 

create dys_file_N from samp_N [colname=varnames]; 

    append from samp_N; 

close dys_file_N; 

varname1 = &vars_num; 

/*Compute histogram if so indicated.*/ 

/*Submit dysfunctional sample to Proc Univariate.*/ 

choice = &hist_comp; 

if (choice = 2)&(&dist = 1) then 

    do; 

        submit varname1; 

        title 'Distribution of dysfunctional five point quantified data'; 

        ods graphics on; 

        ods select Histogram ParameterEstimates GoodnessOfFit FitQuantiles; 

            proc univariate data=dys_file_N; 

                var &varname1; 

                histogram / midpoints=1 to 5 by 1 

                normal 

                lognormal 

                odstitle = title; 

                inset n mean(6.4) std='Std Dev'(6.4) skewness(6.4) 

                /pos = ne header = 'Summary Statistics'; 

        endsubmit; 

        print "Activate desired histogram panel to obtain visual 

distributional fit."; 

        abort; 

    end; 

if (choice=2) & (&dist=2) then 

        do; 

            print "Histogram not displayed for lognormal data."; 

            abort; 

        end; 

/*Transform data if so indicated.*/ 

logN = &dist; 

samp_LN = log(samp_N); 

if (logN = 2)&(choice=1) then 

    do; 

        create dys_file_LN from samp_LN [colname=varnames]; 



            append from samp_LN; 

        close dys_file_LN; 

    end; 

/*Compute item correlation matrix.*/ 

if (choice=1)&(logN=1) then 

    do; 

        varname2 = 'dys_file_N'; 

    end; 

if (choice=1)&(logN=2) then 

    do; 

        varname2 = 'dys_file_LN'; 

    end; 

/*Select program module to run*/ 

if p = 4 then 

    do; 

        run take_four; 

    end; 

if p = 5 then 

    do; 

        run take_five; 

    end; 

if p = 6 then 

    do; 

        run take_six; 

    end; 

if p = 7 then 

    do; 

        run take_seven; 

    end; 

if p = 8 then 

    do; 

        run take_eight; 

    end; 

if p = 9 then 

    do; 

        run take_nine; 

    end; 

if p = 10 then 

    do; 

        run take_ten; 

    end; 

/*Save CFA parameters.*/ 

use parm_est; 

read all var _all_ into Y; 

close parm_est; 

/*Estimate R_Max.*/ 

num = 0; 

do i = 1 to p; 

    num = ((Y[i,1]##2)/(1-Y[i,1]##2))+num; 

end; 

den = 1+num; 

R_max = num/den; 

/*Standardize dysfunctional sample.*/ 

if (choice=1)&(logN=1) then 

    do; 

        X1 = samp_N; 

    end; 

else 

    if (choice=1)&(logN=2) then 

        do; 

            X1 = samp_LN; 



        end; 

X1_bar = X1[:,]; 

X1_cent = X1-X1_bar; 

X1_SS = X1_cent[##,]; 

X1_z = X1_cent/sqrt(X1_SS/keepers); 

/*Compute Bartlett true scores.*/ 

fact_lds = Y[1:p,1]; 

res_err = Y[p+1:2*p,1]; 

lambda = fact_lds; 

psi = diag(res_err`); 

psi_inv = inv(psi); 

C = psi_inv*lambda; 

K = lambda`*psi_inv*lambda; 

K_inv = inv(K); 

FC = C*K_inv; 

BS = X1_z*FC; 

/*Insert missing values.*/ 

BS_miss = J(N,1,.); 

do i = 1 to keepers; 

    a = keep_IDs[1,i]; 

    b = BS[i,1]; 

    BS_miss[a,1] = b; 

end; 

if (&BS_save = 2) then 

    do; 

        create in.&B_scores from BS_miss [colname=varnames]; 

            append from BS_miss; 

    end; 

/*Print output.*/ 

reset NOCENTER NONAME; 

if (choice=1)&(logN=1) then 

    do; 

        type = 'Normal'; 

    end; 

else 

    if (choice=1)&(logN=2) then 

        do; 

            type ='Lognormal'; 

        end; 

use pm_corr_mod; 

read all var _all_ into Y1; 

close pm_corr_mod; 

BS_mean = BS[+,]/keepers; 

BS_cent = BS-BS_mean; 

BS_SS = BS_cent[##,]; 

BS_var = BS_SS/keepers; 

BS_var_corr = BS_var*R_max; 

if &BS_save = 2 then save_BS = "Yes"; 

else 

    save_BS = "No"; 

missing = N-keepers; 

/*Compute CFA fit statistics.*/ 

err_det = det(psi); 

S_pred = fact_lds*fact_lds`+psi; 

S_obs_c = Y1[4:p+3,1:p]; 

S_det = det(S_obs_c); 

f_fun = log(err_det/(S_det*(1-R_max)))+trace(S_obs_c*inv(S_pred))-p; 

c_sq_M = (keepers-1)*f_fun; 

c_sq_B = -(keepers-1)*log(S_det); 

prob = 1-probchi(c_sq_M,(p*(p-3)/2)); 



CFI = 1-(max(c_sq_M-(p*(p-3)/2),0)/max(c_sq_M-(p*(p-3)/2),c_sq_B-(p*(p-

1)/2),0)); 

TLI = (c_sq_B/(p*(p-1)/2)-c_sq_M/(p*(p-3)/2))/(c_sq_B/(p*(p-1)/2)-1); 

RMSEA = sqrt((c_sq_M-(p*(p-3)/2)/(keepers-1))/p*(p-3)/2); 

a = (c_sq_M-(p*(p-3)/2))/(keepers-1); 

RMSEA1 = sqrt(a/(p*(p-3)/2)); 

load_err = Y[1:p,1:2]; 

res_var = Y[p+1:2*p,1:2]; 

print "*************************************OUTPUT 

STATISTICS**************************************"; 

print "    Distribution type :                                                          

" type; 

print "    Dysfunctional sample size :                                                  

" keepers; 

print "    Functional sample size :                                                     

" missing; 

print "    Chi Square :                                                                 

" c_sq_M; 

print "    P-value :                                                                    

" prob; 

print "    CFI :                                                                        

" CFI; 

print "    TLI :                                                                        

" TLI; 

print "    RMSEA :                                                                      

" RMSEA1;   

print "    Factor loadings/std.error :                                        

" load_err; 

print "    Residual error var./std.error                                      

" res_var; 

print "    RMax :                                                                       

" R_max; 

print "    Bartlett score mean :                                                        

" BS_mean; 

print "    Bartlett score variance :                                                    

" BS_var; 

print "    Bartlett score corrected variance :                                          

" BS_var_corr; 

print "    Save Bartlett scores :                                                       

" save_BS; 

quit; 

run;  



Appendix B 

 

TITLE: A computer routine to compute and compare Normal and Log-Normal CFIs 

REQUIREMENTS: SAS/STAT Version 9.4 & SAS/IML Version 9.4 

DISCLAIMER: This utility is provided by the authors as a service to Acta 

Psychopathologica readers. There are no warranties, expressed or implied, as to the accuracy 

of the code provided herein. 

CODE: 

/*A routine to compute and compare comparative fit indices(CFI) for a 

normal and a log-normal distribution.*/ 

/*Users are required to input quantile information from The UNIVARIATE 

Procedure output.*/ 

/*UNIVARIATE Procedure output is obtained from running Two-part modeling 

routine with histogram and normal distribution options.*/  

/*User note: Enter observed quantiles for Normal Distribution for Percents 

1.0 to 95.0.*/ 

%let N_obs = {1.0 1.0 1.0 1.0 2.0 3.0 4.0 4.0}; 

/*User note: Enter estimated quantiles for Normal Distribution for Percents 

1.0 to 95.0.*/ 

%let N_est = {-0.55858 0.20165 0.60692 1.28412 2.03653 2.78895 3.46615 

3.87142}; 

/*User note: Enter observed quantiles for Log-Normal Distribution for 

Percents 1.0 to 95.0.*/ 

%let LN_obs = {1.0 1.0 1.0 1.0 2.0 3.0 4.0 4.0}; 

/*User note: Enter estimated quantiles for Log-Normal Distribution for 

Percents 1.0 to 95.0.*/ 

%let LN_est = {0.50866 0.73215 0.88904 1.22977 1.76349 2.52884 3.49801 

4.24760}; 

/****************************Make no changes beyond this 

point.***************************************************************** */ 

proc iml; 

/*Load user supplied data.*/ 

obs_N = &N_obs; 

est_N = &N_est; 

obs_LN = &LN_obs; 

est_LN = &LN_est; 

/*Data checks.*/ 

N1 = ncol(obs_N); 

N2 = ncol(est_N); 

N3 = ncol(obs_LN); 

N4 = ncol(est_LN); 

if N1 ^= 8 then  

 do; 

  print "Should be eight entries for Normal observed."; 

  abort; 

 end; 

if N2 ^= 8 then  

 do; 

  print "Should be eight entries for Normal estimated."; 



  abort; 

 end; 

if N3 ^= 8 then  

 do; 

  print "Should be eight entries for Log-Normal observed."; 

  abort; 

 end; 

if N4 ^= 8 then  

 do; 

  print "Should be eight entries for Log-Normal estimated."; 

  abort; 

 end; 

/*Compute CFI for Normal Distribution.*/ 

diff_N = obs_N - est_N; 

CFA_N = (diff_N*diff_N`); 

/*Compute CFA for Log-Normal Distribution.*/ 

diff_LN = obs_LN - est_LN; 

CFA_LN = (diff_LN*diff_LN`); 

/*Print output.*/ 

reset NOCENTER NONAME; 

if CFA_LN <= CFA_N then  

 do; 

   conclusion = 'Log normal distribution is better fit.'; 

 end; 

else 

 conclusion = 'Normal distribution is better fit.'; 

 

print "**********************************TEST 

RESULTS******************************************* "; 

print "     Normal CFA :                                     " CFA_N; 

print "     Log-Normal CFA :                                 " CFA_LN; 

print "     Test Result :                                    " conclusion; 

quit; 

run; 

  



Appendix C 

 

TITLE: A computer routine to compute a multivariate fit index 

REQUIREMENTS: SAS/STAT Version 9.4 & SAS/IML Version 9.4 

DISCLAIMER: This utility is provided by the authors as a service to Acta 

Psychopathologica readers. There are no warranties, expressed or implied, as to the accuracy 

of the code provided herein. 

CODE: 

/*Routine to test whether normal or lognormal is better fitting 

multivariate distribution.*/ 

/*Items are assumed to be quantized to five digital values with 1 

representing the absence or near absence of dysfunctionality.*/ 

/*Mahalanobis D2 statistics are computed for each sample observation under 

the normal and lognormal distributional assumption.*/ 

/*Quantiles for the 1%, 5%, 10%, 25%, 50%, 75%, 90%, and 95% cumulative 

probabilities are computed for the D2 sample statistic.*/ 

/*Quantiles for the 1%, 5%, 10%, 25%, 50%, 75%, 90%, and 95% cumulative 

probabilities are computed for the chi sq distribution with p dfs.*/ 

/*Quantiles differences are computed for each probability.*/ 

/*A comparative index (CI)is computed for each distribution type.*/ 

/*User is responsible CI comparisons.*/ 

/*User note: The Appendix A program with the "histogram" and "normal" 

options must have been run immediately before running this program.*/ 

/*User note: Do NOT alter the following filename of symptomatic data 

created by first running the Appendix A program.*/ 

%let filename = dys_file_N; 

/*User note: Routine restricts number of variables per scale to not less 

than four and not more than ten.*/ 

/*User note: Please enter the number of manifest variables specified in 

running the Appendix A program.*/ 

%let num_vars = 5; 

/*User note: User has choice of testing fit of normal or lognormal 

distributional form. If normal form, enter 1. If lognormal, enter 2.*/ 

%let dist = 2; 

 

/* **************************Do not alter code beyond this point 

****************************************************** */ 

proc iml; 

dist_kind = &dist; 

/*Get original data matrix.*/ 

use &filename; 

if dist_kind = 2 then 

 do;  

  read ALL var _NUM_ into Y; 

  X = log(Y); 

 end; 

else 

if dist_kind = 1 then 

 do; 



  read ALL var _NUM_ into X; 

 end; 

else 

 do; 

  print "Please enter either 1 or 2."; 

  abort; 

 end; 

close in.&filename; 

N = nrow(X); 

p = ncol(X); 

if p ^= &num_vars then 

    do; 

        print "Number of file variables does not agree with user 

designation."; 

        abort; 

    end; 

 

if (p <4) | (p > 10) then 

    do; 

        print "Number of scale variables outside permissible range."; 

        abort; 

    end; 

Samp_mean = X[:,]; 

X_cent = X-Samp_mean; 

samp_cov = (X_cent`*X_cent)/(N-1); 

S_inv = inv(samp_cov); 

D_sq = J(N,1,0); 

do i = 1 to N; 

 D_sq[i,1] = X_cent[i,]*S_inv*X_cent[i,]`; 

end; 

call sort(D_sq); 

q = {.01, .05, .10, .25, .50, .75, .90, .95}; 

call qntl(D_sq_quant, D_sq, q, 5); 

chisq_quant = J(nrow(q),1,0); 

do i = 1 to nrow(q); 

 chisq_quant[i,1] = quantile('Chisq', q[i,1],p); 

end; 

Quant_scores = D_sq_quant||chisq_quant; 

Quant_diff = D_sq_quant-chisq_quant; 

Q_output = Quant_scores||quant_diff; 

r = {'P1' 'P5' 'P10' 'P25' 'P50' 'P75' 'P90' 'P95'}; 

c = {'D_sq' 'Chi_sq' 'Diff'}; 

print Q_output[rowname=r colname=c]; 

CI = quant_diff`*quant_diff; 

print CI; 

quit; 

run; 

  



Appendix D 

 

Justification for Bartlett Variance Adjustment 

Suppose a measurement model consisting of p standardized items, each with an assumed 

measurement equation of the form 

 i i iZ f    

where Zi is a standardized item, λi is a standardized factor loading, f is a standardized 

common factor, and εi is a error variable with E(εi) = 0 and Var(εi) = 1 - λi
2
. The measurement 

model is judged to be unidimensional by virtue of running a single-factor, uncorrelated error 

CFA.  

Furthermore, suppose that a standardized Bartlett factor scores is computed according to the 

formula 
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where Z is a 1 x p vector of standardized items, Θ is a p x p diagonal matrix of item error 

variances, and Λ is a p x 1 vector of standardized item loadings.  

Unbiased true score estimator 

Bartlett factor scores are unbiased, which is equivalent to claiming that 

 ( )B BE f f k k  , 

where 
B Bf f k is a Bartlett factor score conditional on assuming the value k. To prove this 

assertion requires that the expected value of a conditional Bartlett factor score be expressed 

as 
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By assumption,  



 ( )i i iZ f k k     

and  hence that 

 ( ) ( ) 0i i i i iE k k E k         . 

Substituting into the above formulation gives 
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as claimed. 

Standardized variance adjustment 

A procedure for adjusting the variance of a standardized Bartlett factor score by multiplying 

the variance estimate by the estimated RMax for the scale is offered. A proof that this variance 

adjustment results in an unbiased estimate remains to be developed. To do so, requires 

beginning with the expected value formulation for variance of a variable X as Var(X) = E(X
2
) 

– E(X)
2
. Therefore, the variance of a standardized Bartlett factor variable is Var(fB) = E(fB

2
) – 

0, as E(fB) = 0. Consequently, 
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Carrying out the squaring in the numerator and taking expected values gives us 
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But 2 2 2 2( ) ( ) ( ) ( )i i i i iE Z E f E f E       which equals 2 21i i   as ( ) 0iE f   by 

assumption. Again by assumption, ( )i j ij i jE Z Z    , where ρij is the correlation between 

standardized item Zi and Zj. Substituting back into the variance formulation and multiplying, 

gives 
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Distributing the summation and rearranging terms allows simplification as 
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This formulation can be further simplified as 
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which itself can be reduced to 
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By definition 
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Thus,  
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From this, we can deduce that Var(fB) = 1 only when RMax = 1. As RMax decreases, the 

variance of fB increases accordingly to reflect the contribution of error variance in the items. 

Multiplication of Var(fB) by RMax yields unity, which is the unbiased estimate as claimed. 

Covariance estimation 

Suppose that Bartlett factor scores are estimated separately for two measurement models, one 

with p standardized items and the other with q standardized items. Each measurement model 



has been judged to be unidimensional by running a separate single-factor, uncorrelated error 

CFA. The goal is to determine the covariance between Bartlett factor variables fB1 and fB2 for 

the two measurement models. Covariance is defined as Cov(fB1 fB2) = E(fB1 fB2) – E(fB1)E(fB2). 

From the above work, it is known that E(fB1) = E(fB2) = 0 when observed scores are 

standardized. As before, let Zi1 be the z-score variable for the i
th

 item in the first measurement 

model and Zj2 the z-score variable for the j
th

 item in the second measurement model. The 

covariance between Bartlett factor variables can now be expressed as 
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where λi1 is the standardized factor loading for the i
th

 item in the first measurement model and 

λj2 is the standardized factor loading for the j
th

 item in the second measurement model. This 

formulation can be further simplified as 
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By assumption, 
1 2 12 1 2( )i j i jE Z Z    , where ρ12 is the covariance between measurement 

model common factors, and λi1 and λj2 are as previously defined. Substituting into the above 

formulation allows the covariance to be expressed as 
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But the summation in the numerator and denominator are equivalent expressions, which 

allows one to claim that  

 1 2 12( )B BCov f f  . 

From this, we can conclude that the covariance of Bartlett measurement model scores 

computed using standardized item scores is an unbiased estimate of the true covariance 

between measurement model common factors. 



Supplementary File 

The supplementary file consists of SAS outputs obtained by running the Appendix A program 

separately for Re-experiencing, Withdrawal, Arousal, and Self-Persecution data files. Each 

output is structured so as to provide summary information as to symptomatic and asymptomatic 

sample sizes, confirmatory factor analysis (CFA) fit statistics, standardized CFA factor loadings 

and accompanying standard error, residual error variance and accompanying standard error, the 

RMax reliability estimate, Bartlett score means, Bartlett score uncorrected and corrected variance, 

and an indication as to whether Bartlett scores had been saved or not. 

  



Statistical Output A 

TITLE: SAS output for Re-experiencing 

The SAS System                                                  11:07 Wednesday, July 25, 2018   1 

*******************OUTPUT STATISTICS************************************** 

    Distribution type :                                                           Lognormal 

 

    Dysfunctional sample size :                                                         846 

 

    Functional sample size :                                                            331 

 

    Chi Square :                                                                    9.08647 

 

    P-value :                                                                     0.1056645 

 

    CFI :                                                                          0.995778 

 

    TLI :                                                                          0.991556 

 

    RMSEA :                                                                          0.0311 

 

    Factor loadings/std.error :                           0.7506678 0.0333458 

                                                                        0.8440159 0.0327463 

                                                                        0.5148675 0.0353195 

                                                                        0.4926127 0.0355337 

                                                                        0.4502212 0.0359185 

 

    Residual error var./std.error                       0.4364979 0.0322706 

                                                                        0.2876372 0.0328681 

                                                                        0.7349115 0.0388916 

                                                                        0.7573328 0.0396710 

                                                                        0.7973009 0.0410895 

 

    RMax :                                                                        0.8246514 

 

    Bartlett score mean :                                                         -2.98E-15 

 

    Bartlett score variance :                                                     1.1423991 

 

    Bartlett score corrected variance :                                            0.942081 

 

    Save Bartlett scores :                                                        Yes 

  



Statistical Output B 

TITLE: SAS output for Withdrawal 

The SAS System                                                  11:07 Wednesday, July 25, 2018   3 

*******************OUTPUT STATISTICS************************************** 

    Distribution type :                                                           Lognormal 

 

    Dysfunctional sample size :                                                        1133 

 

    Functional sample size :                                                             44 

 

    Chi Square :                                                                  17.621723 

 

    P-value :                                                                     0.0398247 

 

    CFI :                                                                           0.99096 

 

    TLI :                                                                         0.9849334 

 

    RMSEA :                                                                       0.0290906 

 

    Factor loadings/std.error :                          0.5434498 0.0326767 

                                                                        0.3552993 0.0338708 

                                                                        0.6291432 0.0321966 

                                                                        0.6538010 0.0320938 

                                                                        0.4826332 0.0330810 

                                                                        0.5256970 0.0327932 

 

    Residual error var./std.error                        0.7046623 0.0353442 

                                                                        0.8737624 0.0388620 

                                                                        0.6041788 0.0341225 

                                                                        0.5725443 0.0339511 

                                                                        0.7670652 0.0364963 

                                                                        0.7236426 0.0356703 

 

    RMax :                                                                        0.7260943 

 

    Bartlett score mean :                                                         7.624E-15 

 

    Bartlett score variance :                                                     1.2888399 

 

    Bartlett score corrected variance :                                           0.9358194 

     

    Save Bartlett scores :                                                        Yes  



Statistical Output C 

TITLE: SAS output for Arousal 

The SAS System                                                  11:07 Wednesday, July 25, 2018   5 

*******************OUTPUT STATISTICS************************************** 

    Distribution type :                                                           Lognormal 

 

    Dysfunctional sample size :                                                         980 

 

    Functional sample size :                                                            197 

 

    Chi Square :                                                                  2.6808602 

 

    P-value :                                                                     0.7490442 

 

    CFI :                                                                                 1 

 

    TLI :                                                                         1.0080073 

 

    Factor loadings/std.error :                          0.5272521 0.0361445 

                                                                        0.7615300 0.0375843 

                                                                        0.2848967 0.0370875 

                                                                        0.5879596 0.0362825 

                                                                        0.3940416 0.0366158 

 

    Residual error var./std.error                       0.7220052 0.0392391 

                                                                        0.4200721 0.0442139 

                                                                        0.9188339 0.0430480 

                                                                        0.6543036 0.0390719 

                                                                        0.8447312 0.0412952 

 

    RMax :                                                                        0.7195787 

 

    Bartlett score mean :                                                         -8.57E-16 

 

    Bartlett score variance :                                                     1.3188642 

 

    Bartlett score corrected variance :                                           0.9490265 

 

    Save Bartlett scores :                                                        Yes  



Statistical Output D 

TITLE: SAS output for Self-persecution 

The SAS System                                                  11:07 Wednesday, July 25, 2018   6 

*******************OUTPUT STATISTICS************************************** 

    Distribution type :                                                           Lognormal 

 

    Dysfunctional sample size :                                                         310 

 

    Functional sample size :                                                            867 

 

    Chi Square :                                                                  26.118127 

 

    P-value :                                                                     2.1307E-6 

 

    CFI :                                                                         0.7963966 

 

    TLI :                                                                         0.3891898 

 

    RMSEA :                                                                       0.1975502 

 

    Factor loadings/std.error :                           0.6186872 0.0797137 

                                                                        0.5269263 0.0756228 

                                                                        0.4953228 0.0745387 

                                                                        0.3551142 0.0731884 

 

    Residual error var./std.error                        0.6172262 0.0904883 

                                                                        0.7223487 0.0814456 

                                                                        0.7546553 0.0797012 

                                                                        0.8738939 0.0782013 

 

    RMax :                                                                        0.5957859 

 

    Bartlett score mean :                                                         1.138E-15 

 

    Bartlett score variance :                                                     1.6012576 

 

    Bartlett score corrected variance :                                           0.9540067 

 

    Save Bartlett scores :                                                        Yes 

 

 

 

 


